

IMPLEMENTATION OF AN ARTIFICIAL NEURAL NETWORK

EMPLOYING FIELD PROGRAMMABLE GATE ARRAY TECHNOLOGY

Yousry El- Gamal, Magdy Saeb, Nadine El- Mekky

Arab Academy for Science, Technology & Maritime Transport
School of Engineering, Computer Department,

Alexandria, Egypt

Abstract: A hardware artificial neural network implementation employing field programmable gate
array technology is presented. We propose a recurrent weight-updating algorithm with variable stability
controlling factor to accelerate on chip learning. The digital circuit includes a status register that holds
the address of the neuron that has fired. Thus, there is no need to retrain the circuit for a given problem.
While full parallelism in the adder and multiplier circuits is not achieved, yet a remarkable
performance of the order of few hundreds of nanoseconds was recorded. We used one-layer module,
with input multiplexers, to replace multi-layer implementation. This has led to a considerable saving of
precious chip area. The simplicity of the circuit obtained, with its inherently reliable operation, makes
it a worthy candidate for larger massively parallel architectures.

Keywords: Artificial Neural Networks (ANN), Multi-layer ANN (MNN), Recurrent ANN, FPGA,
Parallel architecture.

1. INTRODUCTION

Recent advances in artificial neural network
systems (ANNs) have led to several
applications such as image recognition, speech
recognition, and pattern classification [3].
Although most practical applications of ANNs
are carried out using software simulators,
many other potential applications require large,
high-speed networks implemented in efficient
custom hardware, which can fully utilize the
inherent parallelism embedded in neural
network dynamics. Many designers and
researches are developing VLSI
implementations using various techniques,
ranging from digital to analog and even optical
[1]. The primary disadvantages of analog
implementation are the inaccuracy of analog
computations and low design flexibility even
though they can possibly provide higher speed
with low hardware cost [2]. On the other hand,
digital ANN implementation can take
advantage of some of the benefits of the state-
of-the-art VLSI implementation techniques.
The classical ANN implementation generally
requires at least five functions such as in multi-
layer neural network [1]. These are:

1. Weight storage;
2. Synaptic multiplication;
3. Summation of synaptic contribution;
4. Nonlinear activation function;
5. Transmission of input and output activities

among neurons.
6. Network status storage.

Two major problems are encountered in the
implementation of ANN with digital
architecture. These are the multipliers and the
nonlinear characteristics of neurons, which
require large circuits [3]. The most significant
feature of neural networks is their learning
ability. Size and real-time considerations show
that on-chip learning is necessary for a large
range of applications. In this work we propose
a hardware artificial neural network
implementation employing field programmable
gate array technology. We employ a recurrent
weight-updating algorithm with variable
stability controlling factor to accelerate on chip
learning [5]. The digital circuit includes a
status register that holds the address of the
neuron that has fired. Thus, there is no need to
retrain the circuit for a given problem. While
full parallelism in the adder and multiplier
circuits has not been achieved, yet a
remarkable performance of the order of
hundreds of nanoseconds was recorded [2].
We used one-layer module, with input
multiplexers, to replace multi-layer hardware
implementation. This has allowed us to save
precious chip area. The simplicity of the circuit
obtained makes it a worthy candidate for future
larger massively parallel architectures.
In the next section, we discuss the operation of
ANN. In section 3 the architecture of the
proposed ANN is described. Section 4
demonstrates the learning phases while
training our ANN; section 5 gives a summary
of the results obtained. Finally, we give an
overall summary and our conclusions. An
added appendix partially shows the obtained
simulation results.

2. OVERVIEW OF THE ANN

ANNs are computational systems inspired by
the structure, processing method, and learning
ability of a biological brain [1]. Expandable
digital architectures for an ANN are needed to
provide an efficient real time implementation
platform. This, in turn allows the construction
of very large neural networks using FPGA
technology [6]. A neural network has the form
N (w, x) where w is the weights and x is the
network input. If the data samples are (xi, yi)
then we seek w so that N (w, xi) = yi for all i.
The neural architecture is formulated as a
nonlinear Least Squares of the form:

min ∑ (N (w, xi) - yi) 2 (1)

During the forward operation, data from
neurons of a lower layer is propagated forward
to neurons in the upper layer via a feed-
forward connection network. Let Ok(s) denote
the output of kth neuron of the Sth layer, then
the computation performed by each neuron is

Hk(s) = (2)

Where layers are numbered from 0 to M. Hk(s)

is the weighted-sum of the kth neurons in the
Sth layer and Wkj(s) is the synaptic weight [1].
The output Ok(s) of the neuron is obtained by
computing an activation function on the
weighted-sum. Usually sigmoid function is
used as the nonlinear activation function [7].

3. THE IMPLEMENTATION OF ANN

USING FPGA TECHNOLOGY

In this section we discuss the number
representation used, the synapse unit, the
neuron unit, a one-layer unit and the multi-
layer unit as follows.

3.1 Number Representation

The internal data representation in this project
employs Fixed-point binary. The number is
divided into two parts. The first part at the left
of the decimal point is represented using 8 bits.
The second eight bits in the right of the
decimal point represents the fraction.
Therefore, a total number of bits is 16 bits is
used for infix number representation.

3.2 Synapse Unit

A neural network has the form N (w, x) where
w is the weights and x is the network input. If

the data samples are (xi, yi) then each input xj
is multiplied by an adjustable constant wij
before being fed to the ith processing element
in the output layer, using the multiplier unit
described below yielding:

yi = Wi * Xi for all i (3)

3.2.1 Add-and-Shift Multiplier

The process consists of looking at successive
bits of the multiplier (B), and considering the
least significant bit first. If the multiplier bit is
a 1, the multiplicand (A) is copied down, else
zeros are copied down. Each time the number
copied down is shifted one position to the left
from the previous state. Finally, the numbers
are added and their sum forms the product.
This unit is shown below.

Figure 1: The ADD/SHIFT multiplier

This method takes the advantages of the fact
that for binary multiplication, the partial
product can only be either the top number
exactly if the multiplier digit is 1 or a o if the
multiplier digit is 0.

3.3 Neuron Unit

The neuron unit performs two functions:

1. Summation of synaptic contribution
using the adder/subtractor described below

Si = ∑ (Wi * Xi) (4)

2. Nonlinear activation function

Yi = f (Si + bi) (5)

∑
−

=
+−1s

1j

s
k

1s
j

s
kj

N)(θ)(O)(W

Figure2: The neuron module

3.3.1 The Adder/subtractor Module

The Adder/Subtractor module adds or subtracts
two data inputs 32 bits each and Carry input.
The module provides a Carry Output and an
Overflow output to indicate the status of the
current arithmetic operation.

3.3.2 The Activation Function

The “threshold logic” model proposed by
McCulloch and Pitts [1] has two functions:

1. compare the sum with a threshold θ

If sum >= θ then Si = ∑ Wi Xi – θi
 Else Si = 0

2. A squash function f (a function that maps

a large input space into small output
space) is applied to the neuron’s state to
give its output yi.
This function can be a sigmoid function
where:

yi = 1/ (1+e-Si)….. (6)

 Or a sin function where:

yi = sin (Si)….. (7)

3.3.2.1 Taylor Series Expansion

We use the Taylor polynomial to find an
approximation polynomial for equation (6) as
shown below:

• Given that the Maclaurin series for

1 / (1 + x) = 1 - x + x2 +….. … (8)

• Replacing X by e-Si yields

yi = 1 - e-Si + e-2Si….. (9)

• The Maclaurin Series for

eX = 1 + X + X2 /2! +… (10)

• Replacing x by -Si yields

yi = 1 - 3 Si + 2 Si2 ….. (11)

3.4 One layer Unit

A one-layer unit is built by combining the
simple neurons previously described

3.4.1 The status register

With each layer, there is a status register that
holds the address of the neuron that has fired.
This, there is no need to retrain the circuit for a
given problem

3.5 Multi-layer Unit

The feed-forward network is composed of a
series of two or more mutually exclusive sets
of layers; the first or input layer hold site for
the inputs applied to the network and
distributes these values to the units in the next
layer. The last, or output, layer is the stage at
which the overall mapping of the network
input is available. Between these two
extremes, lie zero or more hidden layers where
additional computing takes place. In our
architecture we use a one-layer unit, with input
multiplexers to replace the multi-layer
hardware implementation. The size of the
multiplexer depends on the number of layers in
our design. If we have eight layers we will use
an 8x1 multiplexer with 3 selectors [7]. The
value of the selectors are used to denote the
stages where we are and then the links or
weights that must be stored before the
execution are fed forward to provide a portion
of the activation for the units in the next higher
layer. Thus, from an architectural viewpoint,
this design approach saves precious chip area,
it also provides parallel processing within each
layer. However the flow of interlayer data is
necessarily serial.

4. LEARNING PHASE

Neural network computers are not
programmed in the way used with digital
computers. Instead of being programmed with
a set of rules, the way a classic expert system
is, a neural network computer learns the
desired behavior by adjusting or "adapting" the
weights of the interconnections until the

desired output is obtained. Another input-
output set is then applied, and the network is
allowed to learn this set. After a few sets the
network will have learned or generalized its
response so that it can give the correct
response to most applied input data. The
scheme used to adapt the network is called the
learning rule [6].

There is a specific method in training an ANN:

• Data is presented, and an output is

computed.
• An error is obtained by comparing the

output with a desired response, and it is used
to modify the weights with a training
algorithm.

• This procedure is repeated using all the
data in the training set until a convergence
criterion is met.

Thus in ANNs the designer does not have to
specify the parameters of the system. They are
automatically extracted from the input data and
the desired response by means of the training
algorithm.

4.1 Recurrent Learning Algorithm

Recurrent learning algorithm has been
successfully applied to the training of multi-
layer feed-forward neural networks in a
number of practical problems. It has the
advantages of:

1. Being performed totally within the
neural network structure

2. Intense popularity

Criterion of the learning algorithm is to
minimize the least square error between the
teacher value and the actual value. At the very
beginning of the learning phase, the forward
path is executed to obtain the output response
of the input training pattern. Then the error
between the teacher value and the actual output
value is used to update the weights values.
In the recurrent-trained multi-layer, the
performance measure is convergence speed.
This speed is affected by the choice of
Learning rate λ, Momentum coefficient α. The
best performance was achieved at (α, λ) = (0.8,
0.05).

W new = W old + λ (1- α) ∆w (12)

Suppose, that we have a single data point (X,
D) consisting of an input vector X = (X1…Xn)
and an output vector D (“desired” output) =
(D1…Dm). For a given set w of weight values,

the feed-forward network produces the output
vector Y (w) = (Y1 (w)…Ym (w)). One way to
express the error ∆w is the following:

∆w = (13)

5. SIMULATION RESULTS

In the following few lines we provide a
summary of the simulation reports obtained.

1. The Simulation Delay Summary Report:

• Average Connection Delay: 2.574 ns

• Average Connection Delay on the 10

Worst Nets: 7.095 ns.
• Total real time to completion: 13 secs.

2. Timing summary:

Constraints cover (100.0% coverage):
• 33104 paths,
• 208 nets,
• 254 connections

3. Design statistics:

• Maximum combinational path delay:

48.620ns
• Maximum net delay: 8.522ns

6. SUMMARY & CONCLUSIONS

Motivated by the relative flexibility of using
FPGA technology, we have demonstrated the
basic building blocks of an ANN processor
implementation. The distinct features of this
implementation are as follows:

• A single-layer with a multiplexer replaces

a multi-layer ANN. This configuration
saves precious chip area, where the chip
family available to us has a relatively
small gate density.

• A recurrent weight-updating algorithm

with variable stability controlling factor to
accelerate on-chip learning is used.

• A status register is used to store the

address of the fired neuron. Thus, there is
no need to retrain the neural chip for a
given problem.

• In spite of a partial parallelism of the

adder and multiplier circuits has been

()()∑
=

−
m

1k

2wYkDk
2

1

used, yet a maximum combinational path
delay of 48.620ns was achieved.

• Most of our design optimization efforts

were concentrated on the minimization of
the utilized area rather than minimizing
time delays. However, in future
implementation with advanced chip FPGA
families, better performance can be easily
realized.

REFERENCES

1. George Cybenko, “Neural Networks

in Computational Science and
Engineering,” Computational Science
& Engineering, Spring 1996, pp.36-
43.

2. Simon Y. Foo, Lisa R. Anderson and
Yoshiyasu Takefuji, “Analog
Componets for the VLSI of Neural
Networks, ” Circuits & Devices, Vol.
6, No. 4, July 1990, pp. 18-26.

3. Haykin, Simon, “Neural networks: a
comprehensive foundation,” 2nd ed ,
1999, Prentice-Hall, Inc.

4. Smith Murray, “Neural networks for
statistical modeling,”1993, Van
Nostrand Reinhold.

APPENDIX

Partial Simulation results

5. H. P. Graf, L. D. Jackel, “Analog
electronic neural network circuits,”
IEEE Circhits Devices Mag., Vol. 5,
pp. 44-49, July 1989.

6. M. Yasunga et al, “A self-learning
dogital neural network using wafer-
scale LSI”, IEEE journal of Solid-
State Circuits, Vol. 28, pp. 106-114,
1993.

7. F. Sargeni, V. Bonaiuto, “ A fully
digitally programmable CNN chip,”
IEEE Trans. Circuits-II, Vol. 42, pp.
741-745, November 1995.

	Implementation of an Artificial Neural Network
	Employing Field Programmable Gate Array Technology
	Yousry El- Gamal, Magdy Saeb, Nadine El- Mekky
	Most of our design optimization efforts were concentrated on the minimization of the utilized area rather than minimizing time delays. However, in future implementation with advanced chip FPGA families, better performance can be easily realized.
	REFERENCES

