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Abstract:  A hardware artificial neural network implementation employing field programmable gate 
array technology is presented. We propose a recurrent weight-updating algorithm with variable stability 
controlling factor to accelerate on chip learning.  The digital circuit includes a status register that holds 
the address of the neuron that has fired. Thus, there is no need to retrain the circuit for a given problem. 
While full parallelism in the adder and multiplier circuits is not achieved, yet a remarkable 
performance of the order of few hundreds of nanoseconds was recorded.  We used one-layer module, 
with input multiplexers, to replace multi-layer implementation. This has led to a considerable saving of 
precious chip area. The simplicity of the circuit obtained, with its inherently reliable operation, makes 
it a worthy candidate for larger massively parallel architectures.   
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1. INTRODUCTION   
 
Recent advances in artificial neural network 
systems (ANNs) have led to several 
applications such as image recognition, speech 
recognition, and pattern classification [3]. 
Although most practical applications of ANNs 
are carried out using software simulators, 
many other potential applications require large, 
high-speed networks implemented in efficient 
custom hardware, which can fully utilize the 
inherent parallelism embedded in neural 
network dynamics. Many designers and 
researches are developing VLSI 
implementations using various techniques, 
ranging from digital to analog and even optical 
[1]. The primary disadvantages of analog 
implementation are the inaccuracy of analog 
computations and low design flexibility even 
though they can possibly provide higher speed 
with low hardware cost [2]. On the other hand, 
digital ANN implementation can take 
advantage of some of the benefits of the state-
of-the-art VLSI implementation techniques. 
The classical ANN implementation generally 
requires at least five functions such as in multi-
layer neural network [1]. These are: 
 
1. Weight storage; 
2. Synaptic multiplication; 
3. Summation of synaptic contribution; 
4. Nonlinear activation function; 
5. Transmission of input and output activities 

among neurons. 
6. Network status storage. 
 

Two major problems are encountered in the 
implementation of ANN with digital 
architecture. These are the multipliers and the 
nonlinear characteristics of neurons, which 
require large circuits [3]. The most significant 
feature of neural networks is their learning 
ability. Size and real-time considerations show 
that on-chip learning is necessary for a large 
range of applications. In this work we propose 
a hardware artificial neural network 
implementation employing field programmable 
gate array technology. We employ a recurrent 
weight-updating algorithm with variable 
stability controlling factor to accelerate on chip 
learning [5].  The digital circuit includes a 
status register that holds the address of the 
neuron that has fired. Thus, there is no need to 
retrain the circuit for a given problem. While 
full parallelism in the adder and multiplier 
circuits has not been achieved, yet a 
remarkable performance of the order of 
hundreds of nanoseconds was recorded [2].  
We used one-layer module, with input 
multiplexers, to replace multi-layer hardware 
implementation. This has allowed us to save 
precious chip area. The simplicity of the circuit 
obtained makes it a worthy candidate for future 
larger massively parallel architectures. 
In the next section, we discuss the operation of 
ANN. In section 3 the architecture of the 
proposed ANN is described. Section 4 
demonstrates the learning phases while 
training our ANN; section 5 gives a summary 
of the results obtained. Finally, we give an 
overall summary and our conclusions. An 
added appendix partially shows the obtained 
simulation results. 
 



 

 

2. OVERVIEW OF THE ANN 
 
ANNs are computational systems inspired by 
the structure, processing method, and learning 
ability of a biological brain [1]. Expandable 
digital architectures for an ANN are needed to 
provide an efficient real time implementation 
platform. This, in turn allows the construction 
of very large neural networks using FPGA 
technology [6].  A neural network has the form 
N (w, x) where w is the weights and x is the 
network input. If the data samples are (xi, yi) 
then we seek w so that N (w, xi) = yi for all i. 
The neural architecture is formulated as a 
nonlinear Least Squares of the form: 
 

min ∑ (N (w, xi) - yi) 2  (1) 
 
During the forward operation, data from 
neurons of a lower layer is propagated forward 
to neurons in the upper layer via a feed-
forward connection network. Let Ok(s) denote 
the output of kth neuron of the Sth layer, then 
the computation performed by each neuron is  
 
 
Hk(s)  =                                                    (2) 
 
 
Where layers are numbered from 0 to M. Hk(s) 

is the weighted-sum of the kth neurons in the 
Sth layer and Wkj(s) is the synaptic weight [1]. 
The output Ok(s) of the neuron is obtained by 
computing an activation function on the 
weighted-sum. Usually sigmoid function is 
used as the nonlinear activation function [7]. 
 
3. THE IMPLEMENTATION OF ANN 

USING FPGA TECHNOLOGY 
 
In this section we discuss the number 
representation used, the synapse unit, the 
neuron unit, a one-layer unit and the multi-
layer unit as follows. 
 
3.1 Number Representation 
 
The internal data representation in this project 
employs Fixed-point binary. The number is 
divided into two parts. The first part at the left 
of the decimal point is represented using 8 bits. 
The second eight bits in the right of the 
decimal point represents the fraction. 
Therefore, a total number of bits is 16 bits is 
used for infix number representation. 
 
3.2 Synapse Unit 
 
A neural network has the form N (w, x) where 
w is the weights and x is the network input. If 

the data samples are (xi, yi) then each input xj 
is multiplied by an adjustable constant wij 
before being fed to the ith processing element 
in the output layer, using the multiplier unit 
described below yielding: 
 

yi = Wi * Xi  for all i   (3) 
 

3.2.1 Add-and-Shift Multiplier 
 
The process consists of looking at successive 
bits of the multiplier (B), and considering the 
least significant bit first. If the multiplier bit is 
a 1, the multiplicand (A) is copied down, else 
zeros are copied down. Each time the number 
copied down is shifted one position to the left 
from the previous state. Finally, the numbers 
are added and their sum forms the product. 
This unit is shown below. 

Figure 1: The ADD/SHIFT multiplier 
 
This method takes the advantages of the fact 
that for binary multiplication, the partial 
product can only be either the top number 
exactly if the multiplier digit is 1 or a o if the 
multiplier digit is 0. 

 
3.3 Neuron Unit 
 
The neuron unit performs two functions: 
 

1. Summation of synaptic contribution 
using the adder/subtractor described below 

 
Si = ∑ ( Wi * Xi )   (4) 

 
2. Nonlinear activation function 

 
Yi = f (Si + bi)    (5) 
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Figure2: The neuron module  

 
3.3.1 The Adder/subtractor Module 
 

The Adder/Subtractor module adds or subtracts 
two data inputs 32 bits each and Carry input. 
The module provides a Carry Output and an 
Overflow output to indicate the status of the 
current arithmetic operation.  

 
3.3.2 The Activation Function 
 
The “threshold logic” model proposed by 
McCulloch and Pitts [1] has two functions: 
 
1. compare the sum with a threshold θ 
 

If sum >= θ then Si = ∑  Wi Xi – θi 
                           Else Si = 0 
 
2. A squash function f (a function that maps 

a large input space into small output 
space) is applied to the neuron’s state to 
give its output yi.  
This function can be a sigmoid function 
where: 

 
yi = 1/ (1+e-Si )….. (6) 

 
       Or a sin function where: 
 

yi = sin (Si)….. (7) 
 
3.3.2.1 Taylor Series Expansion 
 
We use the Taylor polynomial to find an 
approximation polynomial for equation (6) as 
shown below: 
 

• Given that the Maclaurin series for  
  
1 / ( 1 + x)  = 1 - x + x2 +….. … (8) 
 
• Replacing X by e-Si yields  

 
yi = 1 - e-Si  + e-2Si….. (9) 
 
• The Maclaurin Series for  
 
eX = 1 + X + X2 /2! +… (10) 
 
• Replacing x by -Si yields  
 
yi = 1 - 3 Si + 2 Si2 ….. (11) 
 
3.4 One layer Unit 
 

A one-layer unit is built by combining the 
simple neurons previously described 
 
3.4.1 The status register 
 
With each layer, there is a status register that 
holds the address of the neuron that has fired. 
This, there is no need to retrain the circuit for a 
given problem 
  
3.5 Multi-layer Unit 
 
The feed-forward network is composed of a 
series of two or more mutually exclusive sets 
of layers; the first or input layer hold site for 
the inputs applied to the network and 
distributes these values to the units in the next 
layer. The last, or output, layer is the stage at 
which the overall mapping of the network 
input is available. Between these two 
extremes, lie zero or more hidden layers where 
additional computing takes place. In our 
architecture we use a one-layer unit, with input 
multiplexers to replace the multi-layer 
hardware implementation. The size of the 
multiplexer depends on the number of layers in 
our design. If we have eight layers we will use 
an 8x1 multiplexer with 3 selectors [7]. The 
value of the selectors are used to denote the 
stages where we are and then the links or 
weights that must be stored before the 
execution are fed forward to provide a portion 
of the activation for the units in the next higher 
layer. Thus, from an architectural viewpoint, 
this design approach saves precious chip area, 
it also provides parallel processing within each 
layer. However the flow of interlayer data is 
necessarily serial. 
 
4. LEARNING PHASE 
 
Neural network computers are not 
programmed in the way used with digital 
computers. Instead of being programmed with 
a set of rules, the way a classic expert system 
is, a neural network computer learns the 
desired behavior by adjusting or "adapting" the 
weights of the interconnections until the 



 

 

desired output is obtained. Another input-
output set is then applied, and the network is 
allowed to learn this set. After a few sets the 
network will have learned or generalized its 
response so that it can give the correct 
response to most applied input data. The 
scheme used to adapt the network is called the 
learning rule [6]. 
 
There is a specific method in training an ANN: 
 
• Data is presented, and an output is 

computed. 
• An error is obtained by comparing the 

output with a desired response, and it is used 
to modify the weights with a training 
algorithm. 

• This procedure is repeated using all the 
data in the training set until a convergence 
criterion is met.  

 
Thus in ANNs the designer does not have to 
specify the parameters of the system. They are 
automatically extracted from the input data and 
the desired response by means of the training 
algorithm. 
 
4.1 Recurrent Learning Algorithm 
 
Recurrent learning algorithm has been 
successfully applied to the training of multi-
layer feed-forward neural networks in a 
number of practical problems. It has the 
advantages of: 
 

1. Being performed totally within the 
neural network structure 

2. Intense popularity 
 
Criterion of the learning algorithm is to 
minimize the least square error between the 
teacher value and the actual value. At the very 
beginning of the learning phase, the forward 
path is executed to obtain the output response 
of the input training pattern. Then the error 
between the teacher value and the actual output 
value is used to update the weights values.  
In the recurrent-trained multi-layer, the 
performance measure is convergence speed. 
This speed is affected by the choice of 
Learning rate λ, Momentum coefficient α. The 
best performance was achieved at (α, λ) = (0.8, 
0.05).   
 
W new = W old + λ (1- α) ∆w  (12) 
 
Suppose, that we have a single data point (X, 
D) consisting of an input vector X = (X1…Xn) 
and an output vector D (“desired” output) = 
(D1…Dm). For a given set w of weight values, 

the feed-forward network produces the output 
vector Y (w) = (Y1 (w)…Ym (w)). One way to 
express the error ∆w is the following:  
 
 

∆w =                                             (13) 
 
 
 

5. SIMULATION RESULTS 
 
In the following few lines we provide a 
summary of the simulation reports obtained. 
 
1. The Simulation Delay Summary Report: 
  
• Average Connection Delay: 2.574 ns 
 
• Average Connection Delay on the 10 

Worst Nets: 7.095 ns. 
• Total real time to completion: 13 secs. 
 
2. Timing summary: 
 
Constraints cover (100.0% coverage): 
• 33104 paths, 
• 208 nets, 
• 254 connections 
 
3. Design statistics: 
 
• Maximum combinational path delay: 

48.620ns 
• Maximum net delay:   8.522ns 

 
6. SUMMARY & CONCLUSIONS 
 
Motivated by the relative flexibility of using 
FPGA technology, we have demonstrated the 
basic building blocks of an ANN processor 
implementation. The distinct features of this 
implementation are as follows: 
 
• A single-layer with a multiplexer replaces 

a multi-layer ANN. This configuration 
saves precious chip area, where the chip 
family available to us has a relatively 
small gate density. 

 
• A recurrent weight-updating algorithm 

with variable stability controlling factor to 
accelerate on-chip learning is used.  

 
• A status register is used to store the 

address of the fired neuron. Thus, there is 
no need to retrain the neural chip for a 
given problem. 

 
• In spite of a partial parallelism  of the 

adder and multiplier circuits has been 
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used,  yet a maximum combinational path 
delay of 48.620ns was achieved.  

 
• Most of our design optimization efforts 

were concentrated on the minimization of 
the utilized area rather than minimizing 
time delays. However, in future 
implementation with advanced chip FPGA 
families, better performance can be easily 
realized.  
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