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Abstract: - Ingestion of materials into an aircraft engine can cause damage to the engine blades.  Detection of 
this foreign object debris can alert maintenance teams of potential problems before they can endanger the 
flight crew or the aircraft.  Using eddy-current data for each of the blades, we monitored each blade position.  
A hierarchical neural network was used to track changes in the position of the blades.  Changes in the blades’s 
position would be tagged and recorded to indicate the ingestion of potentially damaging debris. 
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1  Introduction 
As seen in Figure 1, a jet engine that is used in Navy 
fixed-wing aircraft is a complex piece of machinery.  
While redundancy exists, faults and failures in 
components of the engine can lead to a catastrophic 
failure of the engine.  To avoid such a failure 
periodic maintenance is performed on these engines.  
However, the maintenance is usually performed on a 
periodic time basis.  Such maintenance schedules 
can be too early for some engines which can 
increase costs and too late in other cases which is 
even more costly.   
                                             

 
 
Fig. 1:  An aircraft engine is complex piece of 
machinery comprised of blades, compressors, 
electronics, etc. 
 

Parts of the engine that often encounters 
damage are the blades of the engine and the hub.  
The larger turbine blades at the front of the engine 
are often damaged when they ingest foreign 
material.  The blades will deform which can cause 
them to crack which, in turn, can cause pieces to be 
ingested  in the latter stages of the turbine.  Jet 
engines on Navy aircraft are often damaged by 
ingesting debris that exists on the deck of an aircraft 

carrier.  While this debris will damage blades in the 
engine, the detection of the damage is not 
necessarily apparent through visual inspection.  In 
fact, significant damage and possible catastrophic 
failure of the engine may be several flight hours off.   

In order to improve the maintenance of its 
aircraft, the Navy has started investigation of the use 
of  imbedded sensors in the engine to detect faults 
before catastrophic failure.  In this paper, we apply a 
neural-fuzzy classification technique to detect faults 
using embedded sensors data that measures the blade 
position.  By using this classification technique, we 
are able to monitor blade position changes in the 
turbine which could indicate blade deformities. 

In Section II of the paper we overview the 
hierarchical neural network (HNN) algorithm that 
we use to determine whether the engine is in a 
normal state or a fault state.  In Section III, we 
describe the data set that was used to demonstrate 
our clustering algorithms capabilities, and, finally, in 
Section IV we present the results of our algorithm 
along with analysis. 
 
 

2  The Hierarchical Neural Network 
In this work, we looked at the fault detection 
problem as a simple pattern classification problem.  
Given a number of objects in the world, they are 
identified as belonging to a particular category (or to 
more than one or none of them).  Our object is 
considered the angle of arrival of each blade.  These 
measured angles or measurement are the input 
features from which we classify.   



In general, we can have access to N features.  
We may think of these as forming an N-dimensional 
vector space: 
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The feature space spans the entire space that all 
measurements lie in.  In other words, no 
measurement may lie outside the feature space but is 
considered a subspace of the feature space.  In 
addition, there will probably be regions in the 
feature space which no real object (of the kind being 
considered in the particular problem domain) would 
possibly fall into.  While the feature space can be 
linguistic in nature, a mapping from linguistics to a 
subset of real numbers is used. 

With this framework in mind, pattern 
classification becomes a question of knowing what 
region in the feature space corresponds to a 
particular category or set of categories of the objects, 
i.e. what class (or classes) the object belongs to.  
Note that such a region may not necessarily consist 
of a single connected neighborhood of the space.  
Nor are the boundaries of a class necessarily “hard”-
limited as seen classes T4 and T5 in Figure 2.  If, for 
example, we classify various fruits with the features 
of color (wavelength), and diameter, the “grape” 
class will contain separate regions in the red, green, 
and violet parts of the spectrum, and the “blueberry” 
class will probably lie between the green and violet 
grapes in the feature space.  The boundary between 
“Granny Smith” and  “Golden Delicious” apple 
classes might well be “fuzzy”, given this particular 
feature set, and there may in fact be overlap between 
the two regions, since you might imagine one of the 
greener Golden Deliciousness being the same size 
and color as a Granny Smith.  There will certainly be 
overlap between classes and their super-classes, say, 
between the “Golden Delicious” and “apple” classes. 

So how do EBF networks categorize?  The 
architecture for the standard elliptical basis function 
(EBF) neural net is shown in Figure 3.  There are 
two steps involved with training the EBF neural 
network.  The first step is the clustering of all of the 
training set input feature vectors to form the hidden-
layer elliptical basis units (EBUs) which take the 
form 

( ) ( )1

( )
T

i i iu m C u mEBU i e
−− − −=     (2) 

  
where u is the measurement vector, m represents the 
mean of the ith  cluster and C is the associated 
covariance. 

 
 
 
 
 
 
 
 
 
 
 
     
 
                          
Fig. 2:  A three dimensional feature space can have 
disjoint and overlapping classes along many regions 
that contain no known patterns. 
              

A learning vector quantization (LVQ) 
algorithm (an example of an unsupervised learning 
algorithm) is used to find prototype vectors for some 
B number of N-dimensional clusters.    The set of 
training input vectors is then divided up into B 
subsets where each subset, i, contains the input 
vectors which are closest according to some metric 
(most often, Euclidean distance) to the ith prototype 
vector.  Then the means and variances of each 
dimension of each subset are estimated; the means 
become the centroids of the EBUs and the variances 
set the width of the ellipsoid dimensions.  
Effectively, the clusters are being modeled as multi-
dimensional Gaussian distributions.  Finally, a 
“fuzzy factor” is applied which shrinks or expands 
uniformly each dimension of the EBUs.  When an 
input vector is applied to the trained EBUs, they 
each produce an activation which is high when the 
input vector lies inside the particular ellipsoid and 
low when it lies outside. 
 

In the second training step, the weights 
between the EBUs and the output units are trained 
using a least mean-squares (LMS) algorithm.  Each 
training set input vector is applied to the first layer 
of the network, such that a set of EBU responses is 
formed for each one.  The EBU responses are then 
tagged with the truth class outputs and these are used 
as exemplars to train the weights.  In the hierarchical 
neural network (HNN) code, there exists the option 
of either using an iterative perceptron-style 

T1 
T2 T3 

T4 
T5 



algorithm or a fast pseudo-inverse technique for the 
LMS function approximation.  After the weights are 
trained, there may or may not be a training of 
thresholds of the output units on a separate training 
data set; there will be if “hard” (i.e., output units 
“on” or “off”) classification is desired. Note that it is 
possible to train the system to give multiple 
classifications for particular inputs; this might be 
appropriate if a class is, for example, a subcategory 
of another. 

 
 

 
 
 

Fig. 3:  Standard EBF Neural Network Architecture 
 
The EBF network is similar to other network 

architectures which use basis function units, such as 
the fuzzy min-max neural network [2].   

 An important variation of the standard EBF 
method is the class-dependent elliptical basis 
function (CD-EBF) neural network, shown in 
Figure 3.  Here, each of the EBUs now only models 
a single class.  This partitioning of the EBUs is 
achieved during training of the CD-EBF neural net.  
The first training step is similar to that of a generic 
EBF net.  The main difference is that instead of 
performing one LVQ to create B EBUs, the LVQ 
step is repeated for each of the classes that are 
considered as follows: 
 
For each class c = 1, ..., C 
• Pick the number of basis units desired to model 

class c.  (In Figure 2, each of the classes is 
implied to have B EBUs associated with it.)  

• Perform an LVQ to determine the prototype 
vectors of the EBUs for class c. 

• Estimate the means and variances for each EBU 
associated with class c as above, and adjust the 
dimensions with the fuzzy factor. 

 
At this point, there are two options.  The 

first is to perform the LMS step as with the generic 
EBF neural net.  The second is do no second-layer 

(LMS) training, and during classification, simply 
select the class of the EBU that has the highest 
activation, in a "winner-take-all" fashion.  This is 
possible since all the EBUs now are associated with 
only a single class.  Under this "LVQ-training-only" 
option, the CD-EBF neural net becomes a nearest-
neighbor classifier with the class-dependent EBUs 
defining prototype “models” for each of the classes 
considered. 
 
 

 
Fig. 4:  Class-Dependent EBF Neural Network 
Architecture 
 

For our engine fault monitoring, the 
CD_EBF was employed. 
 
 

3  Outline of the Experimental Data 
The data that was employed for our testing came 
from an actual F-119 jet engine test run.  The engine 
was set to operation and various foreign object 
debris (FOD) was introduced into the intake of the 
engine.  The FOD ranged from paintless paint to 
rubber ball to material used in an aircraft carriers 
flight deck.  Tests were run prior to the introduction 
to the FOD as well.   

The actual data was sample raw eddy-
current data as seen in Figure 5.  As described in [3], 
the eddy-currents vary as a blade passes through the 
sensor.  In the test system four sensors were used.  
The first three measured the individual blades at 
three different points in the rotation.  The fourth 
sensor measured a full rotation of the turbine shaft.  
The rotation sensor provided us with the rpm’s of 
the turbine and a reference point from which we 
could measure the times of arrival from each blade.  
The data sets were broken down into each revolution 
of the data.  The data was processed to provide a 
detection of a blade and a time of arrival relative to 
the reference time.  Then each blade’s times of 
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arrival over the various rotations were normalized to 
an angle of arrival relative to their estimated rpm. 
 
 

 
 
Fig.5:  Three sets of eddy-current data report on 
individual blades while the fourth set reports total 
shaft rotation. 
 

These angle of arrivals of each blade over a 
run provided a noisy interpretation of the data as 
seen in Figure 6.  To filter the noise a windowed 
mean of the data was used.  The window cover one 
hundred samples.  An example of the result is shown 
in Figure 7. 

Selected portions of the angle of arrival data 
were transformed into training and testing sets. 
Instead of developing a HNN to detect FOD events, 
the HNN was trained to recognize normal/non-FOD 
impacted angle of arrivals. Deviations from 
“normal” angle of arrivals will appear to the 
ellipsoidal-basis function (EBF) neural networks 
(NN) as an anomaly. Seven EBF neural networks 
were trained to compose the HNN. The training set 
was composed of 121,600 exemplars.  Each blades 
data was processed separately through the HNN 
classifier/event detector. 
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Fig. 6:  The blade position is measured relative to 
the rpm of the engine . 
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Fig. 7:  Mean filtering provides a manageable 
representation of the data 
 
 

4  ANALYSIS 
We processed the data on 38 blades.  Figure 8 
displays the time history of 38 blades in the upper 
chart for the case where a rubber ball is dropped into 
the engine.  The white indicates normal activity 
while the discoloration indicates a variation from the 
initial mean angle of arrival as detected by the HNN.  
The lower chart  presents the final time slice of the 
data as processed by HNN system.   According to 
the HNN classifier/event detector, during the last 
revolution of data processed, the FOD event 
impacted blades 9, 10, 12, 13, 14, 15, 16, 18, 22, 24, 
and 37.  

Figure 9 demonstrates that  blades 
experiencing deviation in the positive direction can 
fit nicely into a possible damage assessment scale.  
 

 
Fig. 8:  A time history of relative blade angles shows 
that the angles of the blades change when FOD is 
introduced. 
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Fig. 9:  The HNN detects the change in position of 
the blades that indicate which blades have been 
impacted by FOD and may be damaged. 
 
 

5  Conclusions 
In this effort, we developed a prototype FOD event 
detection system that will be integrated with other 
sensors to detect potential damage to a turbine 
engine.   By smoothing the data sets we yielded data 
that clearly show FOD events with our HNN.. The 
eddy-current sensors also provide information on the 
length of the blade, the pitch of the blade and other 
features that were not exploited in this study. Future 
studies are encouraged to explore the benefits of 
using these other features that eddy-current sensors 
provide. 

The development of the FOD event 
detection system provided an excellent opportunity 
to investigate the imple-mentation of a multi-sensor 
data fusion system from various sensors.  However, 
to properly train and test the neural networks, 
synchronized multi-sensor data sets are required.  
The employment of a multi-channel and multi-rate 
data acquisition is necessary.  The fusion of the 
HNN results into another HNN would be simple 
process.   

The use of HNN as a tool for engine 
anomaly detection has been shown.  It is a useful 
tool with great promise. 
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