
FAULT DETECTION FOR ENGINE BLADES USING
HIERARCHICAL NEURAL NETWORKS

ARTHUR TERANISHI AND STEPHEN STUBBERUD

ORINCON Corporation
9363 Towne Centre Dr.
San Diego CA, 92121

United States of America

Abstract: - Ingestion of materials into an aircraft engine can cause damage to the engine blades. Detection of
this foreign object debris can alert maintenance teams of potential problems before they can endanger the
flight crew or the aircraft. Using eddy-current data for each of the blades, we monitored each blade position.
A hierarchical neural network was used to track changes in the position of the blades. Changes in the blades’s
position would be tagged and recorded to indicate the ingestion of potentially damaging debris.

Key-Words: fault detection, neural networks, classification, anomaly detection, EBF, LVQ

1 Introduction
As seen in Figure 1, a jet engine that is used in Navy
fixed-wing aircraft is a complex piece of machinery.
While redundancy exists, faults and failures in
components of the engine can lead to a catastrophic
failure of the engine. To avoid such a failure
periodic maintenance is performed on these engines.
However, the maintenance is usually performed on a
periodic time basis. Such maintenance schedules
can be too early for some engines which can
increase costs and too late in other cases which is
even more costly.

Fig. 1: An aircraft engine is complex piece of
machinery comprised of blades, compressors,
electronics, etc.

Parts of the engine that often encounters
damage are the blades of the engine and the hub.
The larger turbine blades at the front of the engine
are often damaged when they ingest foreign
material. The blades will deform which can cause
them to crack which, in turn, can cause pieces to be
ingested in the latter stages of the turbine. Jet
engines on Navy aircraft are often damaged by
ingesting debris that exists on the deck of an aircraft

carrier. While this debris will damage blades in the
engine, the detection of the damage is not
necessarily apparent through visual inspection. In
fact, significant damage and possible catastrophic
failure of the engine may be several flight hours off.

In order to improve the maintenance of its
aircraft, the Navy has started investigation of the use
of imbedded sensors in the engine to detect faults
before catastrophic failure. In this paper, we apply a
neural-fuzzy classification technique to detect faults
using embedded sensors data that measures the blade
position. By using this classification technique, we
are able to monitor blade position changes in the
turbine which could indicate blade deformities.

In Section II of the paper we overview the
hierarchical neural network (HNN) algorithm that
we use to determine whether the engine is in a
normal state or a fault state. In Section III, we
describe the data set that was used to demonstrate
our clustering algorithms capabilities, and, finally, in
Section IV we present the results of our algorithm
along with analysis.

2 The Hierarchical Neural Network
In this work, we looked at the fault detection
problem as a simple pattern classification problem.
Given a number of objects in the world, they are
identified as belonging to a particular category (or to
more than one or none of them). Our object is
considered the angle of arrival of each blade. These
measured angles or measurement are the input
features from which we classify.

In general, we can have access to N features.
We may think of these as forming an N-dimensional
vector space:

1

2

N

feature

feature
F

feature

 =

M
 (1)

The feature space spans the entire space that all
measurements lie in. In other words, no
measurement may lie outside the feature space but is
considered a subspace of the feature space. In
addition, there will probably be regions in the
feature space which no real object (of the kind being
considered in the particular problem domain) would
possibly fall into. While the feature space can be
linguistic in nature, a mapping from linguistics to a
subset of real numbers is used.

With this framework in mind, pattern
classification becomes a question of knowing what
region in the feature space corresponds to a
particular category or set of categories of the objects,
i.e. what class (or classes) the object belongs to.
Note that such a region may not necessarily consist
of a single connected neighborhood of the space.
Nor are the boundaries of a class necessarily “hard”-
limited as seen classes T4 and T5 in Figure 2. If, for
example, we classify various fruits with the features
of color (wavelength), and diameter, the “grape”
class will contain separate regions in the red, green,
and violet parts of the spectrum, and the “blueberry”
class will probably lie between the green and violet
grapes in the feature space. The boundary between
“Granny Smith” and “Golden Delicious” apple
classes might well be “fuzzy”, given this particular
feature set, and there may in fact be overlap between
the two regions, since you might imagine one of the
greener Golden Deliciousness being the same size
and color as a Granny Smith. There will certainly be
overlap between classes and their super-classes, say,
between the “Golden Delicious” and “apple” classes.

So how do EBF networks categorize? The
architecture for the standard elliptical basis function
(EBF) neural net is shown in Figure 3. There are
two steps involved with training the EBF neural
network. The first step is the clustering of all of the
training set input feature vectors to form the hidden-
layer elliptical basis units (EBUs) which take the
form

() ()1

()
T

i i iu m C u mEBU i e
−− − −= (2)

where u is the measurement vector, m represents the
mean of the ith cluster and C is the associated
covariance.

Fig. 2: A three dimensional feature space can have
disjoint and overlapping classes along many regions
that contain no known patterns.

A learning vector quantization (LVQ)
algorithm (an example of an unsupervised learning
algorithm) is used to find prototype vectors for some
B number of N-dimensional clusters. The set of
training input vectors is then divided up into B
subsets where each subset, i, contains the input
vectors which are closest according to some metric
(most often, Euclidean distance) to the ith prototype
vector. Then the means and variances of each
dimension of each subset are estimated; the means
become the centroids of the EBUs and the variances
set the width of the ellipsoid dimensions.
Effectively, the clusters are being modeled as multi-
dimensional Gaussian distributions. Finally, a
“fuzzy factor” is applied which shrinks or expands
uniformly each dimension of the EBUs. When an
input vector is applied to the trained EBUs, they
each produce an activation which is high when the
input vector lies inside the particular ellipsoid and
low when it lies outside.

In the second training step, the weights
between the EBUs and the output units are trained
using a least mean-squares (LMS) algorithm. Each
training set input vector is applied to the first layer
of the network, such that a set of EBU responses is
formed for each one. The EBU responses are then
tagged with the truth class outputs and these are used
as exemplars to train the weights. In the hierarchical
neural network (HNN) code, there exists the option
of either using an iterative perceptron-style

T1
T2 T3

T4
T5

algorithm or a fast pseudo-inverse technique for the
LMS function approximation. After the weights are
trained, there may or may not be a training of
thresholds of the output units on a separate training
data set; there will be if “hard” (i.e., output units
“on” or “off”) classification is desired. Note that it is
possible to train the system to give multiple
classifications for particular inputs; this might be
appropriate if a class is, for example, a subcategory
of another.

Fig. 3: Standard EBF Neural Network Architecture

The EBF network is similar to other network

architectures which use basis function units, such as
the fuzzy min-max neural network [2].

 An important variation of the standard EBF
method is the class-dependent elliptical basis
function (CD-EBF) neural network, shown in
Figure 3. Here, each of the EBUs now only models
a single class. This partitioning of the EBUs is
achieved during training of the CD-EBF neural net.
The first training step is similar to that of a generic
EBF net. The main difference is that instead of
performing one LVQ to create B EBUs, the LVQ
step is repeated for each of the classes that are
considered as follows:

For each class c = 1, ..., C
• Pick the number of basis units desired to model

class c. (In Figure 2, each of the classes is
implied to have B EBUs associated with it.)

• Perform an LVQ to determine the prototype
vectors of the EBUs for class c.

• Estimate the means and variances for each EBU
associated with class c as above, and adjust the
dimensions with the fuzzy factor.

At this point, there are two options. The

first is to perform the LMS step as with the generic
EBF neural net. The second is do no second-layer

(LMS) training, and during classification, simply
select the class of the EBU that has the highest
activation, in a "winner-take-all" fashion. This is
possible since all the EBUs now are associated with
only a single class. Under this "LVQ-training-only"
option, the CD-EBF neural net becomes a nearest-
neighbor classifier with the class-dependent EBUs
defining prototype “models” for each of the classes
considered.

Fig. 4: Class-Dependent EBF Neural Network
Architecture

For our engine fault monitoring, the
CD_EBF was employed.

3 Outline of the Experimental Data
The data that was employed for our testing came
from an actual F-119 jet engine test run. The engine
was set to operation and various foreign object
debris (FOD) was introduced into the intake of the
engine. The FOD ranged from paintless paint to
rubber ball to material used in an aircraft carriers
flight deck. Tests were run prior to the introduction
to the FOD as well.

The actual data was sample raw eddy-
current data as seen in Figure 5. As described in [3],
the eddy-currents vary as a blade passes through the
sensor. In the test system four sensors were used.
The first three measured the individual blades at
three different points in the rotation. The fourth
sensor measured a full rotation of the turbine shaft.
The rotation sensor provided us with the rpm’s of
the turbine and a reference point from which we
could measure the times of arrival from each blade.
The data sets were broken down into each revolution
of the data. The data was processed to provide a
detection of a blade and a time of arrival relative to
the reference time. Then each blade’s times of

ΣΣ

ΣΣ
�
�
�

�
�
�

�
�
�

Input Vector

Basis Units

Outputs

Class 1

Class C

Class C
Units

Class 1
Units

w
1,1
1

w
1,C
1

w
B,1
C

w
B,C
C

w
B,C
1

ΣΣ

ΣΣ

�
�
�

�
�
�

�
�
�

Input Vector
Basis Units

Outputs

Class 1

Class C

w 1,1
w 1,C

w B,1

w B,C

arrival over the various rotations were normalized to
an angle of arrival relative to their estimated rpm.

Fig.5: Three sets of eddy-current data report on
individual blades while the fourth set reports total
shaft rotation.

These angle of arrivals of each blade over a
run provided a noisy interpretation of the data as
seen in Figure 6. To filter the noise a windowed
mean of the data was used. The window cover one
hundred samples. An example of the result is shown
in Figure 7.

Selected portions of the angle of arrival data
were transformed into training and testing sets.
Instead of developing a HNN to detect FOD events,
the HNN was trained to recognize normal/non-FOD
impacted angle of arrivals. Deviations from
“normal” angle of arrivals will appear to the
ellipsoidal-basis function (EBF) neural networks
(NN) as an anomaly. Seven EBF neural networks
were trained to compose the HNN. The training set
was composed of 121,600 exemplars. Each blades
data was processed separately through the HNN
classifier/event detector.

Blade Position

-2

0

2

4

6

8

10

12

14

16

1

11
9

23
7

35
5

47
3

59
1

70
9

82
7

94
5

10
63

11
81

12
99

14
17

15
35

16
53

17
71

18
89

20
07

21
25

22
43

23
61

Sample

P
o

si
ti

o
n

Blade Position

Fig. 6: The blade position is measured relative to
the rpm of the engine .

FOD 25 Chnl 11 - GDATS Means

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361 385 409 433 457

Series1

Fig. 7: Mean filtering provides a manageable
representation of the data

4 ANALYSIS
We processed the data on 38 blades. Figure 8
displays the time history of 38 blades in the upper
chart for the case where a rubber ball is dropped into
the engine. The white indicates normal activity
while the discoloration indicates a variation from the
initial mean angle of arrival as detected by the HNN.
The lower chart presents the final time slice of the
data as processed by HNN system. According to
the HNN classifier/event detector, during the last
revolution of data processed, the FOD event
impacted blades 9, 10, 12, 13, 14, 15, 16, 18, 22, 24,
and 37.

Figure 9 demonstrates that blades
experiencing deviation in the positive direction can
fit nicely into a possible damage assessment scale.

Fig. 8: A time history of relative blade angles shows
that the angles of the blades change when FOD is
introduced.

 GDATS Angle of Arrival

-0.05

0

0.05

0.1

0.15

0.2

1 213 425 637 849 1061 1273 1485 1697 1909 2121 2333

Fod25. Blade 11. cat = 0
Fod 22. Blade 25. cat = 2
Fod 15. Blade 16. cat = 0
Fod 13. Blade 7. cat = 0

Fig. 9: The HNN detects the change in position of
the blades that indicate which blades have been
impacted by FOD and may be damaged.

5 Conclusions
In this effort, we developed a prototype FOD event
detection system that will be integrated with other
sensors to detect potential damage to a turbine
engine. By smoothing the data sets we yielded data
that clearly show FOD events with our HNN.. The
eddy-current sensors also provide information on the
length of the blade, the pitch of the blade and other
features that were not exploited in this study. Future
studies are encouraged to explore the benefits of
using these other features that eddy-current sensors
provide.

The development of the FOD event
detection system provided an excellent opportunity
to investigate the imple-mentation of a multi-sensor
data fusion system from various sensors. However,
to properly train and test the neural networks,
synchronized multi-sensor data sets are required.
The employment of a multi-channel and multi-rate
data acquisition is necessary. The fusion of the
HNN results into another HNN would be simple
process.

The use of HNN as a tool for engine
anomaly detection has been shown. It is a useful
tool with great promise.

References:
[1] Brotherton, T., T. Johnson, and G. Chadderdon,
“Classification and Novelty Detection Using Linear
Models and a Class Dependent Neural Network,”
Proceedings of 1998 World Congress for
Computational Intelligence (IJCNN), Anchorage,
Alaska, pp. 876-879, May, 1998.
[2] Patrick K. Simpson, “Fuzzy Min-Max Neural
Networks—Part 1: Classification,” IEEE
Transactions on Neural Networks, vol. 3, pp. 776-
786, 1992.

[3] Terpay, G.W. and G.G. Zipfel, Jr. “Measuring
Blade Condition in a Gas Turbine Engine Using
Eddy-Currents,” preprint, 2000.

