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Abstract: - The paper presents a new approach to sequential multi-stage combination of instance-based classifiers.  

Each classifier in the sequence requires more computational effort than the preceding classifier due to using a larger 
subset of features.  A more complex classifier is activated only if the confidence level of the preceding classifier is below 
a pre-defined threshold. The optimal threshold is found by maximizing a customizable fuzzy-based measure, called 
Performance Index (PI), which expresses the task-specific trade-off between classification accuracy and computational 
complexity.  The approach is evaluated on a two-stage combination of k-Nearest Neighbor classifiers. The features to be 
used by the first classifier in the combination are found by a novel feature selection method, called “IFN + Relief.”  The 
PI measure is shown empirically to be an efficient tool for integrating accuracy and complexity considerations in the 
design of a multi-stage classification system.  
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1 Introduction 
 
Classifier combination has become a very active 

area of research [5]. The driving force behind these 
activities is the expectation that the performance of a 
combined system can exceed the performance of each 
individual classifier. The main motivation behind 
existing combination architectures (e.g., parallel 
combination, serial combination, hierarchical 
concatenation, etc.) is improvement of classification 
accuracy. In this paper, we are rather concerned with the 
improvement of computational efficiency through 
classifier combination. Reducing the amount of 
computation associated with classifying new instances is 
especially important for “lazy” learning methods, like k-
nearest neighbors, which defer the processing of training 
examples until each new instance becomes available. 
We propose a serial classifier combination scheme that 
follows the reevaluation approach (see [13]). This 
approach is motivated by the observation that in many 
applications the majority of the patterns to be classified 
are 'well-behaved'. This means they can be classified 
using a relatively simple and fast classifier, while just a 
few 'hard' cases require reevaluation by a more 
sophisticated classifier, which has higher classification 
accuracy. However, if the sophisticated classifier is 
applied to all patterns, including the easy ones, more 
computing resources than necessary are spent.  

Our architecture for serial classifier 
combination, initially introduced by us in [8], includes 
two sequential classifiers of the same type, namely C1 
and C2. The C1 classifier uses a selected subset of the 
features that are used by C2. Whenever the decision 
reached by C1 is below a given level of confidence, C1 
rejects the input and activates C2. For most classifiers 
the computation time grows with the dimensionality of 
the feature space. Therefore, C1 will be faster than C2. If 
a sufficiently large portion of all patterns will be 
classified by C1, and not passed onto C2, substantial 
savings in computation time can be expected. Variation 
of the confidence threshold in C1 allows trading 
computation time for classification accuracy.  

The best trade-off between computational 
complexity and classification accuracy depends on the 
considered classification task.  In a general case, the 
overall performance depends on both computational 
complexity and accuracy in some implicit and possibly 
nonlinear fashion. Such relationships as “A 50% 
reduction in the classification time is worth a 1% loss in 

accuracy” are easily handled by humans, but are hard to 
implement on computers.  The fuzzy set theory is known 
as an efficient tool for automating the human perception 
of information (see [6]).  In this paper, we evaluate the 
performance of a multi-stage classifier by a new fuzzy-
based measure, called Performance Index.   

The rest of our paper is organized as follows. In 
Section 2, we describe the feature selection method used 
in this work.  A two-stage combination of k-Nearest 
Neighbor Classifiers is presented in Section 3.   
Empirical evaluation of the system is carried out in 
Section 4 and conclusions regarding possible extensions 
of our approach are drawn in Section 5.  

2 Feature Selection Algorithm 
The architecture described in Section 1 requires 

for each classifier Ci to use a subset of features Fi out of 
all available features F, such that F1⊆ Fi⊆ Fn = F. Many 
different approaches to feature selection have been 
proposed in the literature (see [9]).  Our method of 
feature selection is based on two feature filter 
algorithms, Relief [4] and IFN [7] [10], which are briefly 
described in the next sub-sections. 

2.1 The Relief Algorithm 
The Relief algorithm, proposed by Kira and 

Rendell in [4], selects features by their relevance to the 
target concept (function).  The basic idea of Relief is 
similar to the guiding principle of the k-Nearest 
Neighbors algorithm: instances that are closer to a given 
instance are more likely to belong to the same class.  If a 
dimension (feature) is relevant, the closest instances of 
the same class are expected to be closer to a given 
instance along that dimension than the closest instances 
of all the other classes.   

Relief normalizes the values of feature relevance 
to the [0,1] range. The average relevance level of a 
relevant feature should be close to one, while the 
relevance levels of irrelevant features should be close to 
zero.  According to [4], the distinction between relevant 
and irrelevant features is best determined by manual 
inspection, which means that the algorithm is usually 
implemented in a “semi-automatic” mode. 

2.2 The Information-Fuzzy Network (IFN) 
Algorithm 

An Info-Fuzzy Network (IFN) [10] is a network-
like classification model, which differs from the 
structure of a standard decision tree (see [11]) in two 
aspects: it is restricted to a single testing feature across 



 

 

all nodes of the same hidden layer and it has 
interconnections between the terminal (leaf) nodes and 
the final nodes, which represent the classes under 
consideration.  

The network is built by a greedy stepwise 
procedure: at each step, a new feature is selected to 
maximize the total decrease in the conditional entropy, 
as a result of splitting the nodes of the last layer. The 
nodes of a new hidden layer are defined for a Cartesian 
product of split nodes of the previous hidden layer and 
the values of a new selected feature.  If there is no 
feature decreasing the conditional entropy of the target 
attribute, the network construction stops and the 
algorithm outputs the list of features associated with the 
network layers.   

2.3 IFN + Relief 
Relief does not provide an automatic threshold 

for separating the relevant features from the irrelevant 
ones.  On the other hand, the IFN method clearly 
determines the number of relevant features, which is 
equal to the number of network layers.  Consequently, 
we have proposed a novel combination of these two 
algorithms called “IFN + Relief.” According to the new 
method, the number of the selected features is 
determined by IFN, while the selection of features is 
based on the relevance level calculated by Relief.  The 
empirical results presented by us in [8] show that the 
new method tends to be superior, or at least comparable, 
to each one of the stand-alone methods (IFN and Relief). 

3 Two-Stage Combination of k-Nearest 
Neighbor Classifiers 

In this section, we describe the implementation 
and the main settings of the two-stage classifier, based 
on the k-NN algorithm, and suggest a new measure for 
evaluating the performance of a multi-stage 
classification system. 

3.1 Two-Stage Classifier 
In this paper, we propose a serial combination of 

two k-Nearest Neighbor (k-NN) classifiers (see [11]).  
The input to the system includes the training set and a 
subset of features selected by the “IFN+Relief” 
algorithm from that set.  The first classifier C1 attempts 
to classify a new instance by using the selected features 
only.  The number of the nearest neighbors in the 
majority class is then compared to a user-defined 
threshold, which represents a minimum percentage of 
the total number of nearest neighbors (k).  If the 

percentage of examples in the majority class is greater 
than the threshold, the system outputs the classification 
made by C1.  Otherwise (if the majority is less than or 
equal to the threshold), the second, more expensive, 
classifier C2 is applied by using the full set of the 
available features.  In the second case, the system 
outputs the classification made by C2. 

The system implementation involves the choice 
of the following parameters: 

• Number of nearest neighbors (k). To study the 
effect of the majority threshold (see below) on 
the system performance, we have set the number 
of nearest neighbors to 10.   

• Feature selection algorithm.  We have applied a 
novel feature selection method called “IFN + 
Relief” (see sub-section 2.3 above).  

• Majority threshold.  This is the lowest 
percentage of the training instances belonging to 
the most common class, which makes the 
system to accept the decision of C1. As the 
threshold goes up, the run time of the system 
will increase, since more and more instances are 
classified by the second classifier (C2).  At the 
same time, the classification performance of the 
system is expected to improve and to get closer 
to the accuracy of C2.  In the next sub-section, 
we propose a fuzzy-based method for finding a 
threshold point, which provides the optimal 
trade-off between accuracy and complexity for a 
given application. 

3.2 Performance Index 
Accuracy and complexity are measured on 

completely different scales and finding the best trade-off 
between run-time complexity and classification accuracy 
is a subjective and application-specific task.  We may 
only assume that the classifier performance is a non-
increasing function of time complexity and a non-
decreasing function of classification accuracy.  In [6] we 
have presented a fuzzy-theoretic approach to automating 
the human perception of data, based on the 
Computational Theory of Perceptions [15].  In this 
paper, we propose a novel, CTP-based measure for 
evaluating performance of a multi-stage k-NN classifier.  
The new measure, called Performance Index (PI), is 
defined by 

PI = min [CI, AI]                (1) 

where CI and AI are the indices referring to the 
computational complexity and the classification 
accuracy, respectively (see below).  The min operator is 



 

 

common for representing an intersection of fuzzy sets 
[14].  It has two mathematical properties, which make it 
particularly useful for evaluating the classifier 
performance: it is non-decreasing in each set (better 
values of accuracy or complexity can never decrease the 
overall performance) and it has the following boundary 
conditions: min [0, *] = 0 and min [1, *] = *.  These 
conditions are quite reasonable in our case.  The first 
condition means that the complexity of a poor classifier 
is not important, while the second one implies that if one 
parameter (either accuracy, or complexity) has the 
optimal value, the performance is determined by the 
value of the other parameter only. 

The Complexity Index (CI) is a function of the 
total number of feature-values, TFVn, accessed by n 
sequential classifiers for classifying X instances.  TFVn 
can be found by the following formula: 

∑
=

=
n

i
iin xmTFV

1

                      (2) 

where n is the total number of classifiers, mi is 
the number of features (out of M) used by classifier i 
(∀i: 0 ≤ mi ≤ mi+1 ≤  M),  and xi is the number of 
instances accepted by classifier i (Σxi =  X) .   

The number of feature-values accessed by a 
single-stage k-NN Classifier is TFV1 = M*X.  
Consequently, we normalize the total number of feature-
values used by defining the Complexity Ratio RC as 
follows: 

RC = TFVn  / TFV1  = 
XM

xm
n

i
ii

∗

∑
=1     (3) 

We suggest the following non-linear function 
for representing the Complexity Index, based on the 
value of RC: 

CRe
CI β+

=
1

2
   (4) 

where RC is the Complexity Ratio and β is a 
scaling factor representing the user perception of a given 
complexity ratio.  The above fuzzy-like function is equal 
to one, if TFVn is equal to zero (no features used), and 
by changing the value of β it can be brought arbitrarily 
close to zero for any positive value of RC.   As shown 
below, the value of the optimal majority threshold 
depends only on the ratio between β and an additional 
scaling factor (α).  Hence, from now on we will assume 
that β = 1. 

The Accuracy Index (AI) can be calculated in a 
similar manner.   We assume that AI reaches its 
maximum value of one, when the misclassification rate 
is equal to zero and it becomes arbitrarily close to zero 
for large values of the error rate.  The formula for 
calculating AI is given by: 

Ee
AI α+

=
1

2
                           (5) 

where E is the error (misclassification) rate and 
α is a scaling parameter having characteristics similar to 
β in the formula of CI.   

What is the meaning of α and how should one 
determine its value for a given classification task?  As 
shown experimentally in [8], the error rate is usually a 
non-increasing function of the majority threshold. That 
is, the more training instances among the k nearest 
neighbors are required to be from the majority class, the 
smaller is the error rate. On the other hand, the 
complexity ratio is never decreasing as the threshold 
goes up.  Consequently, we may assume that in most 
datasets, AI tends to increase with the value of the 
threshold while CI goes down under the same 
conditions.  The maximum value of PI is reached at a 
threshold point that corresponds to the optimum trade-
off between the complexity and the accuracy from the 
user’s point of view. This implies that the indices of 
complexity (4) and accuracy (5) are equal.  
Consequently: 

α / β = RC / E           (6) 

and for β = 1: α = RC / E = RE      (7) 

where RE is defined as the efficiency ratio 
between the complexity ratio and the error rate.  Thus, 
the parameter α can be interpreted as the optimal 
efficiency ratio of a multi-stage classifier.  In the next 
section, we study the effect of α on the location of the 
optimal threshold point for a set of representative 
learning tasks. 

 

4 Experimental Evaluation of the 
System 

According to its definition (see sub-section 3.1 
above), the majority threshold may vary from the inverse 
of the number of classes m in a given dataset to one. For 
the lowest value of the threshold, the complexity ratio 
RC is minimal and as the threshold goes up, RC increases 
gradually accompanied by a possible decrease in the 



 

 

testing error rate E.  Thus, the efficiency ratio RE tends 
to be smaller for the lowest threshold than for the 
threshold of one and the latter will usually be slightly 
below the RE of a single-stage classifier, which uses the 
full set of features.  The actual values of RC, E, and RE 
for these three configurations of the classification system 
are presented in Table 1 below for a representative set of 
benchmark datasets, available from the UCI Machine 
Learning Repository [1]. 

We are explaining the meaning of the numbers 
in Table 1 by using as an example the first row of the 
table, which is related to the Chess dataset.  This dataset 
has two classes, which implies that the minimum 
majority threshold is 0.5.  If the error rate corresponding 
to this threshold (0.082) is acceptable for the user, the 
system should use the minimum threshold, since it has 
the lowest complexity ratio (0.278).  In terms of the PI 
parameters, it means that α < 3.402.  The complexity 
ratio of the highest threshold (1.0) is 0.376.  If this 
complexity is low enough for the user, the maximum 
threshold should be chosen by the system, since it 
provides the lowest error rate (0.05).  Any α above 
7.533 is applicable to this case.  If the user is not 
satisfied either with the error rate of 0.082, or with the 
complexity of 0.376, the best threshold should be 
associated with an efficiency ratio, which corresponds to 
the best trade-off between the accuracy and the 
complexity of the system.  In Figures 1 - 3, we show the 
indices for α = 4, 5, and 6 respectively. 
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Figure 1 Chess Dataset - Complexity vs. Accuracy 
(αα = 4) 
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Figure 2 Chess Dataset - Complexity vs. Accuracy 
(αα = 5) 
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Figure 3 Chess Dataset - Complexity vs. Accuracy 
(αα = 6) 

 

5 Conclusions  
In this paper, we have presented a fuzzy-based 

method for designing the parameters of a sequential 
multi-stage classifier based on a user-specified trade-off 
between accuracy and complexity.  The majority 
threshold found by the method optimizes the 
performance of a given classifier from the user’s point of 
view.  The overall Performance Index (PI) is defined as 
a function of both the computational complexity and the 
classification accuracy.  The results of experiments on 
benchmark datasets demonstrate the applicability of the 
proposed approach to a variety of classification tasks. 

In our view, the proposed approach to trading 
accuracy for complexity in a classifier combination is 
still far from being fully explored and exploited.  The 
approach is definitely not limited to a k-NN Classifier 



 

 

and it can be applied to other classification methods, 
e.g., Bayes Classifier, neural networks, and decision 
trees.  Moreover, the method and its extensions can be 
applied to classifying online streams of instances, like 
log and clickstream data on the web (see [2]). 

Acknowledgment: This work was partially 
supported by SPAWAR Research Grant N00039-01-1-
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Table 1 Calculation of Efficiency Ratio Values 

 Selected Minimum Threshold   Maximum Threshold   All Features    

Dataset Features 
Complexity 
Ratio 

Error 
Rate 

Efficiency 
Ratio 

Complexity 
Ratio 

Error 
Rate 

Efficiency 
Ratio 

Complexity 
Ratio 

Error 
Rate 

Efficiency 
Ratio 

Chess 10 0.278 0.082 3.402 0.376 0.050 7.533 1.000 0.094 10.622 

Credit 3 0.214 0.151 1.423 0.770 0.113 6.815 1.000 0.113 8.852 

Diabetes 3 0.375 0.286 1.313 0.898 0.227 3.956 1.000 0.227 4.407 

Glass 2 0.222 0.535 0.415 1.000 0.380 2.630 1.000 0.380 2.630 

Heart 3 0.231 0.235 0.981 0.873 0.200 4.367 1.000 0.212 4.722 
Optdigits-
Orig 13 0.013 0.513 0.025 0.978 0.025 38.553 1.000 0.024 41.130 

Wine 2 0.154 0.150 1.026 1.000 0.033 30.000 1.000 0.033 30.000 

Mean 5.1 0.21 0.28 1.23 0.84 0.15 13.41 1.00 0.15 14.62 
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