
A Computational Study  
of Incremental Projection Learning in Neural Networks  

 
HENDRI MURFI*, BENYAMIN KUSUMOPUTRO** 

* Department of Mathematics, University of Indonesia, Depok 16424 – INDONESIA 
 

** Faculty of Computer Science, University of Indonesia, Depok 16424 – INDONESIA 
 

 
Abstract:  One of the essences of supervised learning in neural network is generalization capability. It is an ability 
to give an accurate result for data that are not learned in learning process. One of supervised learning method that 
theoretically guarantees the optimal generalization capability is projection learning. The method was formulated as 
inverse problem from functional analytic point of view in reproducing kernel Hilbert space. This paper will 
describe a computational study to the incremental projection learning in neural networks, called incremental 
projection generalizing neural networks, for solving function approximation problem. The study is done based on 
computer simulations of a mathematics function as test problem. Aspects of study focus on model selection, 
generalization capability and number of neurons in hidden layer.   
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1. Introduction 
One of the essences of supervised learning in neural 
network is generalization capability. It is an ability to 
give an accurate result for data that are not learned in 
learning process. The generalization capability is 
measured base on generalization error1 value. One of 
supervised learning method that has goal to increase 
generalization capability directly is projection 
learning proposed by Ogawa [4]. Ogawa formulated 
the supervised learning method as inverse problem 
from functional analytic point of view. In this 
method, learning target and learning result are 
assumed to belong to a reproducing kernel Hilbert 
space. Then, variance of generalization error is 
minimized under the constraint of minimal value of 
bias. The minimal value of bias is gotten with 
orthogonal projection of learning target onto 
approximation space. This approach will guarantee 
theoretically to get optimal generalization capability.   

In neural networks, it is often expected to further 
improve the generalization capability after the 
learning process has been completed. One of the 
common approaches is to add learning data to the 

                                                           
1 Generalization error is formulated as En ||fm – f||2, En is 
expectation function; f is learning target function and fm is 
learning result function from a set of m learning data. This 
formula expanded by Takemura be ||En fm - f||2  + En ||fm –En f||2.  
The first and second term is called the bias and variance of fm. 

neural networks. The learning method is generally 
called incremental learning.  Projection learning has 
developed for incremental learning and known as 
incremental projection learning (IPL). Vijayakumar 
and Ogawa developed IPL with absence of noise 
[11]. Then, Sugiyama and Ogawa continued to 
develop for presence of noise [6][7]. Sugiyama and 
Ogawa also presented that the IPL provided exactly 
the same generalization capability as that obtained by 
batch projection learning. This result shows that 
generalization capability of incremental projection 
learning probably still can be increased when we 
work on an active learning [9]. 

This paper will describe a computational study to 
the IPL in neural networks, called incremental 
projection generalizing neural networks (IPGNN), 
for solving function approximation problem. The 
study was done based on computer simulations of a 
mathematics function as test problem. Aspects of 
study focused on model selection, generalization 
capability and number of neurons in hidden layer.  
We also compared generalization capability of the 
neural networks with other neural networks, they 
ware incremental back propagation neural networks 
(IBPNN) with incremental gradient descent learning 
with momentum [2][3] and incremental radial basis 
function neural networks (IRBFNN) with 
incremental orthogonal least squares learning [1][2]. 
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The implementation used software Matlab at Pentium 
II machine with windows environment.  

This paper is organized as follow: section 2 will 
describe architecture of neural networks and 
algorithm of IPGNN used in this paper. In section 3, 
computer simulation and a computational study 
based on the computer simulation will be presented. 
This paper will be closed with a summation in 
section 4. 

 
 

2. Architecture and Algorithm 
IPGNN is a three-layer feedforward neural network with 
architecture as describes in Fig. 1. The architecture has an 
input layer, a hidden layer and an output layer with only 
one neuron. Number of neuron in hidden layer grows as 
long as learning process. Learning starts with no neuron in 
hidden layer and grows by allocating a new neuron based 
on sampling function of the additional learning datum in 
used reproducing kernel Hilbert space. Reproducing 
kernel2 functions are adopted as activation or basis 
functions in hidden layer. In this architecture, there is no 
weight on connection from input layer to hidden layer. 

Once the learning process has terminated then 
approximation value for any input (x) is given by the 
formulation: 
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Where x is an input vector, N is number of neuron in 
hidden layer, wi is weight on connection from ith 
neuron in hidden layer to output layer and ui(x) is ith 
basis function on x. 
 

 

 

 

 

 

Fig. 1. Architecture of Neural Networks 
 

                                                           
2 Let H be a functional Hilbert space and let D be the domain of 
the function in H. The reproducing kernel K(x,x’) is bivariate 
function define on D x D that satisfies the following conditions: 
• For any fixed x’ in D, K(x,x’) belongs to H as a function of 

x 
• It hold that )'()',(),( xfxKf =⋅⋅  for any f ∈ H, any x’ 

∈ D. Where ⋅⋅,  is an inner product defined on H 

IPGNN is a neural networks that represents 
learning result function of IPL algorithm. Therefore, 
The neural networks learning problem is divided into 
two stages. Function approximation from given 
learning data is performed in the first stage, and a 
neural networks which represent the approximated 
function is constructed in the second stage. In this 
paper, we use IPL algorithm proposed by Sugiyama 
and Ogawa to develop function approximation [6][7]. 
The following proposition is a simpler form of IPL 
algorithm in the case where noise of learning data has 
normal distribution N(0, σ) and variance σ is 
positive. 
 
Proposition 1 (IPL) [6][7] When the noise 
correlation matrix is positive definite and diagonal, a 
posterior projection learning result fm+1 is obtained by 
using prior results fm as 
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Where ψ  is sampling function of m+1-th learning 
data, A

1+m

m is sampling operator,  is range of 
adjoin A

)( *
mAR

m or in this case is approximation space, 
 is orthogonal projection of ψ onto null space 

of A
ψ)( mANP

m, Qm is noise correlation matrix and σ is noise 
variance. 

Now we go to the second stage, the construction 
of a neural network that represents fm. The 
construction algorithm is called incremental 
projection learning in neural networks (IPLNN). In 
this paper, we use IPLNN4 that constructs IPGNN 
which represents learning result function 2.2 [5][10] 
(Fig. 2). 

In the IPLNN4 algorithm, the construction 
process is divided onto two categories base on 
sampling function of learning data (ψi). If 

 then a new neuron with the 
reproducing kernel K(x,x

)( *
1 mm AR∉+ψ

m+1) as basis function is 



added and weights on connection to output layer are 
adjusted. Otherwise, there is no additional neuron. 
There is only an adjusting of weights on connection 
to output layer. The condition ψ  means 

that ψ  is linearly independent of , i.e., the 

approximation space  becomes wider than 
. In contrast,ψ  means that ψ  is 

linearly dependent of { } , and hence the 

approximation space  is equal to . The 
Condition  can be checked since 

 if and only if 
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If dimension of reproducing kernel Hilbert space 

is µ then condition N(Aµ) = {0} will be reached when 
a learning data such that ψ  is added µ 
times. Therefore, the number of neuron in hidden 
layer theoretically is less than or equal to the 
dimension of reproducing kernel Hilbert space.  

In implementation, Sugiyama and Ogawa use the 
following criterion. 

 
Jika = v1 > ε maka ψ   (9) 
 
Where ∈ is small constant, say ∈ = 10-4. 

 
 

3. Computer Simulation  
In this section, we shall describe simulation result of 
generalization capability of IPGNN. We use function 
3.1 as test problem whose domain is [-Π,Π]. 
Generalization error of learning result is measured by 
equation 3.2.   

  (10) 
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Reproducing kernel Hilbert space is spanned by {1, 
sin kx, cos kx} whose inner product is defined as  
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and reproducing kernel is defined as 
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Fig. 2. The IPLNN4 algorithm. [ ]i and [ ]ij 
denote the i-th element of a vector and the (i,j)-
element of a matrix, respectively. 
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Our simulation starts with simulation of optimal 

order basis selection based on number and noise 
variance of learning data. In learning point of view, 
the selection method is known as model selection. 
From Table 1 and Table 2, we can see that optimal 
order basis depend on both number and noise 
variance of learning data. Our result says that we 
need larger order basis for larger number or smaller 
noise variance of learning data. Base on this 
situation, we also need incremental model selection 
in order to get optimal generalization capability of 
incremental projection learning. The model selection 
method that heavily related to incremental projection 
learning has been proposed but the method has not 
aimed at incremental learning scenario yet [8].  

From Table 1 and Table 2, we also can see that 
number of hidden neuron is bigger than dimension of 
used Hilbert space. The number of hidden neuron 
does not depend on dimension of Hilbert space but 
have tendency to depend on number of learning data. 

 
Table 1. Simulation of optimal order basis selection  

based on umber of learning data 

 
 
 
 

Table 2. Simulation of optimal order basis selection 
based on  noise variance of learning data 

Case Number Noise Order Dim of Number
of Data Basis Space of Neuron

I 40 N(0,0.1) 6 13 40
40 N(0,0.1) 6 13 40
40 N(0,0.1) 6 13 40

II 40 N(0,0.2) 5 11 40
40 N(0,0.2) 6 13 40
40 N(0,0.2) 6 13 40

III 40 N(0,0.3) 6 13 40
40 N(0,0.3) 6 13 40
40 N(0,0.3) 6 13 40

IV 40 N(0,2) 5 11 40
40 N(0,2) 4 9 40
40 N(0,2) 5 11 40

V 40 N(0,3) 4 9 40
40 N(0,3) 4 9 40
40 N(0,3) 4 9 40

VI 40 N(0,4) 4 9 40
40 N(0,4) 4 9 40
40 N(0,4) 4 9 40

 
Next, we will compare generalization capability 

of IPGNN with other neural networks; they are 
IBPNN and IRBFNN. Characteristic of each neural 
network as following   
• IBPNN. The optimal number of hidden units is 

choose manually based on characteristic of 
learning data and fixed throughout the learning 
process. Tag-sigmoid function is adopted as 
activation function in hidden layer and linear 
function in output layer. The stopping criteria is 
if epoch is bigger than 3000 or mean square error 
is smaller than 10-5 on minimum generalization 
error has reached 

Case Num ber Noise Order Dim  of Num ber
of Data Bas is Space of Neuron

I 40 N(0,1) 5 11 40
30 N(0,1) 4 9 30
20 N(0,1) 4 9 20
10 N(0,1) 4 9 10
5 N(0,1) 4 9 5

II 40 N(0,1) 5 11 40
30 N(0,1) 4 9 30
20 N(0,1) 4 9 20
10 N(0,1) 4 9 10
5 N(0,1) 4 9 5

III 40 N(0,0.1) 6 13 40
30 N(0,0.1) 4 9 30
20 N(0,0.1) 6 13 20
10 N(0,0.1) 4 9 10
5 N(0,0.1) 4 9 5

• IRBFNN. The number of hidden units is 
dynamically. Learning starts with no neuron in 
hidden layer and grows by allocating a new 
neuron in hidden layer. Radial basis function is 
adopted as activation function in hidden layer 
and linear function in output layer. The stopping 
criteria is if the maximum neuron in hidden layer 
has reached or sum square error is smaller than 
10-5. 
The computer simulation is grouped based on 

number and noise variance of learning data. Our 
simulation starts with forty learning data whose 
normal distribution with variance 1. Table 3 is 
simulation result for this condition. From the table, 
we can see that IPGNN does not always give better 



generalization capability. The results depend heavily 
on the learning data. 

Table 3. Generalization capability 
for forty learning data and noise variance 1 

 
Next, we will simulate generalization capability 

for some kind of number of learning data. Table 4 
describes the condition. From the table, we can see 
that IPGNN still gives better generalization capability 
when number of learning data is small enough.  In 
case II and III, we also can see that IPGNN gives 
better generalization capability although when number 
of learning data is big enough it gives worse 
generalization capability. Graphical simulation of case 
III with five learning data is presented by Fig. 3. 

Table 4. Generalization capability  
for some kind of number of learning data 

 
The next simulation, we shall simulate 

generalization capability based on noise variance of 
learning data. We use big enough noise variance of 
learning data (bigger than one). Table 5 presents 
simulation result of this condition. From this table, 
we can find out that IPGNN still gives better 
generalization capability when noise variance of 
learning data is big enough. The Fig. 4 simulates case 
V of Table 5 graphically. 

Finally, we shall simulate the condition of 
learning data whose number is big enough and noise 
variance is small enough. For this condition, we get 
result that IPGNN gives worse generalization 

capability than IBPNN. While than IRBFNN, 
IPGNN can give either better or worse result. Table 6 
and Fig. 5 present simulation of this condition. 

Table 5. Generalization capability  
for big enough noise variance of learning data  Case Number Noise IPGNN IBPNN IRBFNN

of Data
I 40 N(0,1) 0.3999 0.8573 1.1943
II 40 N(0,1) 1.1037 0.8904 3.5178
III 40 N(0,1) 0.9641 0.6966 0.7221

Case Number Noise IPGNN IBPNN IRBFNN
of Data

I 40 N(0,2) 1.3102 3.2028 4.6839
II 40 N(0,2) 1.6034 2.5719 11.5226
III 40 N(0,2) 0.8587 2.5123 1.5664

IV 40 N(0,3) 4.1020 7.1684 18.9112
V 40 N(0,3) 1.6403 4.5324 2.6182
VI 40 N(0,3) 2.5363 4.7056 8.5409

VII 40 N(0,4) 2.2749 8.1463 4.5663
VIII 40 N(0,4) 5.6786 7.9739 16.1306
IX 40 N(0,4) 5.0104 8.6923 8.5244  

 
Table 6. Generalization capability for big enough number 

and small enough noise variance of learning data 
Case Number Noise IPGNN IBPNN IRBFNN

of Data
I 40 N(0,0.1) 0.5265 0.3622 0.3673
II 40 N(0,0.1) 0.5718 0.2785 0.4741
III 40 N(0,0.1) 0.6082 0.3645 0.4056

IV 40 N(0,0.2) 0.6706 0.2388 0.4507
V 40 N(0,0.2) 0.6250 0.3099 0.4215
VI 40 N(0,0.2) 0.5761 0.2416 0.3307

VII 40 N(0,0.3) 0.7321 0.2314 1.0656
VIII 40 N(0,0.3) 0.5102 0.3278 0.5577
IX 40 N(0,0.3) 0.6315 0.2604 1.4034

Case Number Noise IPGNN IBPNN IRBFNN
of Data GE GE GE

I 40 N(0,1) 0.3999 0.7542 1.1943
30 N(0,1) 0.8083 0.7526 0.4486
20 N(0,1) 1.2895 0.7235 0.6550
10 N(0,1) 0.5823 4.3613 0.7283
5 N(0,1) 1.3314 6.4306 1.8085

II 40 N(0,1) 0.9641 0.6758 0.7596
30 N(0,1) 1.0334 0.7864 0.7318
20 N(0,1) 2.5886 0.8808 3.1920
10 N(0,1) 0.9919 3.7826 1.1394
5 N(0,1) 1.6796 7.6127 2.1461

III 40 N(0,0.1) 0.6017 0.2202 0.4931
30 N(0,0.1) 1.8677 0.3725 2.0004
20 N(0,0.1) 1.9294 0.3560 1.9839
10 N(0,0.1) 0.4918 3.9742 0.4646
5 N(0,0.1) 1.2998 8.9038 2.4679

 

 

4. Summary and Concluding Remark 
In this paper we study computationally to 
incremental projection generalizing neural networks 
(IPGNN) for solving function approximation 
problem. Base on our simulation results, we have the 
following condition: 
• The optimal model of IPGNN, in this manner is 

order basis, depends on both number of learning 
data and noise variance of learning data. We 
need larger order basis for larger number of 
learning data or smaller noise variance of 
learning data. Base on this situation, we also 
need incremental model selection in order to get 
optimal generalization capability of IPGNN. The 
model selection method that heavily related to 
incremental projection learning has been 
proposed but the method has not aimed at 
incremental learning scenario yet. 



 
 

Fig. 3 Graphical simulations for case III with 5 learning data from Table 4. Solid and dotted 
lines denote the original function and a learning result. o indicates learning data. 

 
 
 
 

 
 
 
 

 
 
 
 
 
 

Fig. 4. Graphical simulations for case V from Table 5. Solid and dotted lines denote the original 
function and a learning result. o indicates learning data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Graphical simulations for case IV from Table 6. Solid and dotted lines denote 
the original function and a learning result. o indicates learning data. 

 
 
 



• The number of neuron in hidden layer of IPGNN 
theoretically should be less than or equal to 
dimension of used reproducing kernel Hilbert 
space. In our simulation, the number of hidden 
neuron is bigger than dimension of the used 
reproducing kernel Hilbert space. The number of 
hidden neuron does not depend on dimension of 
Hilbert space but have tendency to depend on 
number of learning data. 

• IPGNN does not always give better 
generalization capability. It still always gives 
better generalization capability when number of 
learning data is small enough or noise variance of 
learning data is big enough. Otherwise, IPGNN 
does not always give better generalization 
capability. Even though, when number of 
learning data is big enough and noise variance of 
learning data is small enough, IPGNN gives 
worse generalization capability than IBPNN 
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