
Using Agents to Reduce Maintenance Cost
of Complex Software Systems

COSTAS VASSILIADIS and MIKHAIL DOBRYNIN
School of Electrical Engineering and Computer Science

Ohio University, Main Campus
Athens, Ohio 45701

USA

Abstract: - PaTra (PAtch TRAcker) is an agent capable of keeping track of patches that have been applied
(old) and have to be applied (new) to a complex software system. Patra uses Oracle’s Metalink, a support web
site that can provide a list of patches for a specific product and platform. The agent queries daily, to get a list
of patches for platforms and products that are specified in its configuration file. PaTra finds new patches,
stores their information into its database and sends electronic notifications to a system administrator. Upon
receiving the notifications, the system administrator uses PaTra’s interface to examine the new patches and
make a final decision whether they have to be applied to the system or not. Although in its current
implementation PaTra can be used with Oracle’s ERP system, it can be modified for other complex software
systems with a similar scheme of interaction between a software producer and a software consumer. This is a
time consuming process especially when there are several instances of the same system and even different
versions that have to be maintained. Software systems based on intelligent agent technology can effectively be
used to automate some of the maintenance procedures. This work proposes to delegate the task of keeping
track of patches to an intelligent software agent. This automation saves time and cuts the cost of maintaining
the system in general.

Key-Words: - Intelligent Agents, Software Maintenance, ERP Systems, Web-based Applications

1 Introduction
Approximately 70 percent of the total cost of
owning software is related to maintenance. Both
software designers and software users of large
complex systems deal with the maintenance of the
systems. Designers have to support the systems they
sell by creating patches and upgrades to the various
modules while consumers are responsible for
keeping the systems up and running.
 Companies that have deployed such systems
always assign teams responsible for the maintenance
of the system. The list of their activities usually
include: a) Keeping track of new patches, which
come out on a regular basis and are usually
accessible through the vendor’s web site. For
example Oracle has a tech-support web site called
Metalink, where all the patches can be browsed by
categories, and where patches are listed with
descriptions and prerequisites, b) Determining
which patches have to be applied to the specific
system. While some patches have prerequisites, and
others are cumulative, any complex software system
keeps an internal track of the patches that have been
applied, c) Downloading appropriate patches. With
an FTP session established, and user authentication

required, patches are downloaded to a local host,
d) Applying patches. This process is complicated
and difficult to generalize. There are software
systems such as the Kintana system, that have been
specifically developed for patch application. Kintana
keeps track of the patches that have been applied to
the system. It defines a workflow for each patch
application. This is needed as application process
may consist of several steps which have to be
approved by different offices.
 All of the operations above are time consuming.
Software systems based on intelligent agent
technology can effectively be used to automate
some of these procedures and significantly reduce
their cost. For example, Visa makes use of 21
mainframe computers to run its 50 million line
transaction processing system. This system is
updated as many as twenty thousand times per year.
One of the steps taken by many software companies
is using the Internet as a tool to interact with
customers by means of a support web site. On these
sites users can create requests for assistance. On
Oracle’s support site ‘Metalink’, these requests are
called TARs – Technical Assistance Requests,
Customers search for new patches, download them,

and have access to extensive documentation libraries
and knowledge bases. This increases the quality of
customer support and lowers the cost of software
maintenance.
Keeping track of patches can effectively be
automated by using intelligent agent technology.
PaTra, a software agent, automates a task of keeping
track of patches, thus allowing system
administrators to concentrate on the other three
tasks. By adding intelligence to the agent and with
some collaboration on Oracle’s part it is possible to
automate the second activity - determining what
patches have to be applied to the system. Currently
Oracle’s patch descriptions are very unstructured,
and this makes it very difficult to make any
automated decisions based on the descriptions. If
Oracle used structured patch descriptions, preferably
XML-based, it would be possible to automate the
process of making a decision whether a particular
patch has to be applied or not. If the problem of
automating decision-making was solved, then it will
be easy to automate the next activity – downloading
patches that have been approved at the previous
step. Automation of the last maintenance activity –
applying patches – will pose a significant challenge
until a general procedure for patch application is
established.

2 Problem Formulation
It is important to make a distinction between an
upgrade and a patch. Although these terms appear to
be similar they have significant differences. An
upgrade implies that a version of a software system
changes. Upgrades replace old systems with a newer
one. A patch, on the other hand, is the immediate
solution to a problem. It can sometimes be
downloaded from the vendor’s Web site. The patch
is not necessarily the best solution for the problem
and the product developers often find a better
solution and they offer it with the product’s next
release. The application of patches only partially
changes a software system, whose version usually
stays the same.
 Patches are usually used when the cost associated
with the development and the application of the
patch is significantly less than the cost associated
with the development and the application of an
upgrade. That is why simple software systems
almost never have patches, while users constantly
upgrade them. On the other hand, complex software
systems usually get upgraded once every few years,
while being constantly patched. Because large
number of patches in a software system may

contribute to instability and security problems,
software developers try not to issue too many
patches between software upgrades.

2.1 Trends in Software Upgrading
The Internet offers new interaction possibilities
between software producers and consumers. Many
software companies already have on-line services to
support their products. For example, Microsoft
Corp’s on-line Windows Update service allows a
user to check a local installation of Windows for
available updates, security packs, and new device
drivers. Symantec's LiveUpdate makes it easy to
keep Norton Utilities up-to-date with the latest
program updates.
 Many software products currently have a built-in
functionality to check for availability of a newer
version using the Internet connection. One good
example is WinAmp that can check for a new
version every time it is run. Some sites even offer an
independent, all-system check-up for upgrades and
patches. One such service is CatchUp.com. The
CatchUp software simultaneously searches for
installed versions of software applications and
hardware drivers. The results page shows the
components that CatchUp did locate on the PC that
are supported by the service. Then a user can select
software components to be updated and the CatchUp
software downloads the selected patches and
updates via the Internet and installs them on a PC.
 Thus, software development companies try to use
the benefits that the Internet provides for high-level
software maintenance to meet growing consumer
expectations. Ideal software is one that keeps itself
updated. There are a number of interesting research
efforts on dynamic software updating [1] and
Configurable Distributed Systems [2] that run
continuously or for very long periods of time.
Perhaps in the near future we will see these theories
implemented in marketed software systems.

2.2 Delegating Patch Tracking to an Agent
PaTra, as an agent is capable of keeping track of
patches, which allows the system administrator to
delegate this task to the agent. The system
administrator should first be able to understand the
structure of the maintained system: what platforms
are used, how many hosts, what software products
are installed and what their versions on each
particular host are. PaTra was developed for
Oracle’s ERP system. This system has four hosts:
the development host is used to develop custom

applications, the test host is used for testing
developed applications, the training host is used to
train employees for the new system, and the
production host provides a production environment.
The system is based on two different platforms –
AIX and Solaris. Each host has a number of
instances. Each instance has two major software
components - DB (Oracle Database) and APPS
(Oracle Applications) - and their versions. Each
instance also can have other software products or
modules installed – Human Recourses, Financials,
Manufacturing and Distribution, Process
Manufacturing, and others. Knowing their system,
system administrators routinely check if there are
any new patches for any components of the system
available on the vendor’s web site. By specifying a
platform and a software product name on a search
form, the system administrator gets a list of all
patches for a particular software product.
 The next step is to manually identify if any new
patches appeared on the list since the last revision,
in which case a decision has to be made based on
the information provided in the readme files. This
process continues until all combinations of
‘Platform-Software Product’ presented in the system
have been checked for new patches.
 This time-consuming procedure is delegated to
PaTra. Once installed, information about the
software system has to be added to the agent’s
configuration file. Also PatchSets and
PatchSetArrays should be defined. A PatchSet is
basically a pair of values – Platform and Software
Product – required by the patch search form on
Metalink. The set is represented as a function P(p,s)
that has parameters p (Platform) and s (Software
Product) as the input and a set of patches as the
output. Some instances may require more than one
PatchSet, that is why each an instance is associated
with a PatchSetArray.
 Once configuration is completed, the agent is
ready for patch tracking. PaTra is run every night.
The Cron utility on Unix can be used to schedule
agent invocations. Upon invocation, the agent
queries Metalink with every PatchSet it has in its
configuration file and stores returned lists of patches
into its database. Having completed querying
Metalink, PaTra analyzes the patches it has just
received by comparing them against patches that
had been in the database before the execution. If
new patches are detected, PaTra sends an electronic
notification to the system administrator and
terminates. Upon receiving the notification, the
system administrator goes to PaTra’s web interface
to examine whether these new patches need to be
applied to the system or not. Patches are grouped by

instances. PaTra presents patches sorted by their
Status. New patches go first, followed by patches
that have already been applied. Patches that are not
applicable to the system are at the bottom of the list.
The color of a patch reflects its status. New patches
are pink, Applied are gray, and Not Applicable are
yellow. All possible statuses of patches are defined
in the configuration file along with their colors and
priorities they will have in the list. The system
administrator can perform several operations with a
patch on the list. PaTra is not just a notification tool
that alerts the system administrator when new
patches are released, it is also a configuration
management tool that keeps track of all the patches
that have been applied to the system. Because all
patches are already in the agent’s database along
with their descriptions, there is no need for the
system administrator to keep records of patches that
have been applied, a time consuming process.

3 System Design
PaTra is a complex software agent based on a three-
tiered architecture (Fig. 1), that provides a high level
of functionality and flexibility. The tiers are
somewhat independent from each other and it is
possible to modify any of the tiers without any
impact on the others. The design consists of the
Knowbot tier written in WebL [3] which provides
web-parsing capabilities, the Database tier which is
an information storage for the agent, and the
Interface tier which provides communication with
the system administrator. The database tier connects
the knowbot tier and the interface tier. The knowbot
tier and the interface tier do not have any direct
interactions. Moreover, these two tiers are even
implemented on two different servers. The knowbot
tier runs on IBM AIX, whereas the interface tier is
located on Windows 2000 Professional.
 The Interface tier provides communication
capabilities for PaTra to interact with a system
administrator. A Java Servlet module [4]
communicates with the database tier by means of
JDBC [5].

3.1 Implementation Issues
The implementation phase of PaTra had several
challenges. One was the user authentication and the
other was the design of the web parser. Oracle’s
Metalink allows access only for authorized users.
Obviously, in order to query Metalink for patches
PaTra has to be able to perform user authentication
without user intervention.

 The development environment, selected for
PaTra’s implementation was AgentBuilder by
Reticular Systems Inc. [6]. It turned out that this
environment did not provide any effective means for
user authentication and web parsing. The second
choice was NQL (Network Query Language). NQL
is a powerful scripting language ideal for building
intelligent agents, bots and web applications. Strong
communications is an important part of NQL's
feature set. Internet access to common protocols
such as HTTP, FTP, NNTP, and TELNET are built
into the language, as well as support for up-and-
coming standards such as LDAP. E-mail is easily
accessed, as are databases and desktop applications.
Unfortunately, this language is a commercial
product and its price was rather high. The third and
final selection was WebL, a programming language
for the web.
 WebL is a free, powerful web scripting language
(Fig. 2), for processing documents on the web. It is
well suited for retrieving documents, extracting
information from them, and manipulating their
contents. In contrast to other general purpose
programming languages, WebL is specifically
designed for automating tasks on the web. WebL
has a built-in knowledge of web protocols like
HTTP and FTP. It also knows how to process
documents in plain text, HTML and XML format.
WebL is written entirely in Java.
 The challenges of the user authentication and
web parsing were effectively overcome with this
language. The only drawback was that WebL
programs tend to run slowly sometimes, and their
memory usage is quite high because WebL keeps
everything in memory, including complete copies of
pages. In PaTra’s case it is not a problem, because
real-time parsing of a web page is not required and
the knowbot is run at night. Thus, WebL has proved
to be a right choice for development of a software
agent like PaTra.

3.2 Security Implications with PaTra.
In order to assess possible security implications
related to PaTra, it is important to analyze security
risks that are present in the existing system, related
to the following activities: Keeping track of new
patches, Downloading patches, Applying patches.
 In the current system, these procedures are
performed manually by a database administrator. In
order to find new patches, one has to use the Internet
to log on Oracle’s Metalink and browse through a
list of newly released patches. The only security
mechanism that Oracle provides to its clients is
identification and authentication, which is done by

means of a logon process. However, the lack of a
secure Internet connection may easily undermine
Oracle’s intention to identify and authenticate users
of its support site. Because Internet connection is
not secure, user ids and passwords being transmitted
on a network can be captured and used to gain
access to legitimate users’ accounts. Patches being
transmitted on a network can be maliciously
modified in such a way that, once installed, they can
harm or compromise legitimate users’ systems. It
would be a good practice for Oracle to provide some
kind of digital signature along with patches to verify
their origin and content. The lack of digital
signatures in patches may theoretically jeopardize
security of Oracle’s client’s systems.
 PaTra’s automation mimics the job of database
administrator in retrieving web pages with
descriptions of patches from vendor’s support site.
PaTra does not automatically download patches, but
only their descriptions along with web links for
downloading. Therefore, the use of PaTra does not
increase existing security risks. It only automates
tasks that are already being performed by a system
administrator.

4 Conclusions
The goal of this work was to develop and implement
a prototype of a software agent for helping in the
maintenance process of a complex software system.
The motivation for the tool was the reduction of
routine work that is currently performed by system
administrators responsible for software
maintenance.
 While a number of researchers have proposed
agent-based products for software maintenance,
none of them are very practical and they cannot be
applied to ERP and other complex software systems.
The implementation and preliminary testing of
PaTra has proven that a software agent can
effectively be used for complex software systems
maintenance. PaTra was built in a three-tiered agent-
based architecture, which helped in achieving
flexibility and extensibility. PaTra has two main
functions. First, it serves as a notification tool that
alerts system administrators when new patches are
released - it visits the vendor’s support site on a
regular basis to check if new patches are available.
Second, it is used as a configuration management
tool that keeps track of all the patches that have been
applied to the system.
 PaTra has a great potential for improvement, as it
automates only one of the four software
maintenance activities performed on consumer sites

– the keeping track of patches. The next
maintenance activity, determining what patches
have to be applied to the system based on patch
descriptions, can be automated by adding some
intelligence to the agent. This task would be much
easier to solve with Oracle’s collaboration - if
Oracle, for example, started to use structured or
XML-based patch description. Another promising
improvement would be to make PaTra highly
adaptable. The current implementation of PaTra
heavily relies on its configuration file, and in case of
changes in the maintained system (for example – a
new host or instance added) the configuration file
has to be changed accordingly. It would be a great
improvement for PaTra to be able to reconfigure
itself in response to changes in the configuration of
the system, although that could be a rather
challenging and large undertaking. During the phase
of PATra’s design a number of alternative
architectures for the software agent were considered.
One of them seems to be promising. It involves two
software agents – one resides on the software
producer’s site, and the other on the customer’s site.
The agents communicate or negotiate with each
other. The customer’s agent informs the vendor’s
agent about the configuration of the system and the
vendor’s agent provides its counterpart with a
precise list of patches that need to be applied to that
system. As one can see there are many directions to
go from here and this is just another sign that the
Intelligent Agent Technology in general and its
applications in software systems maintenance
specifically have a large potential for growth.

References:
[1] Hicks, M. “Dynamic Software Updating.”

SIGPLAN Conference on Programming
Language Design and Implementation, 2001.

[2] Scott, R.H. “Agent-based Software
Configuration and Deployment.”, Ph.D.
Dissertation, University of Colorado, 1999.

[3] “Agent Builder.” Reticular Systems Inc,
1999.

[4] Hannes, M. “WebL – a programming
language for the Web.” Compaq Systems
Research Center, 1999.

[5] Hunter, J. Java Servlet Programming.
O’Reilly, 1998.

[6] Hamilton, G., Cattel, R., Fisher, M. JDBC
Database Access with Java. Addison-
Wesley, 1997.

Fig. 1 Three-Tiered Architecture of Patra

Fig. 2 Using WebL for Web Page Parsing. Code retrieves all attributes of a patch.

Metalink

Java-based knowbot,
Written in WebL

fetches and
analyzes the web

site.

System
Administrator

(Human
operator)

Dynamic Web
Interface

Written in Java
(Servlet), uses

JDBC to access the
database.

Database of patches

(PL/SQL package

provides
AnalyzePatches

function)

Knowbot Tier Interface Tier Database Tier

var tables = Elem(P,"table") directlyinside Elem(P,"table")[1];
every table in tables do
// Get ID
ID=Str_Trim(Text(Elem(table,"td")[0]));
// Get Patch name
PatchName=Str_Trim(Text(Elem(Elem(table,"td")[1],"a")[0]));
// Get Readme file location
Readme=Str_Trim(Elem(Elem(table,"td")[2],"a")[0].href);
// Get Product
Product=Str_Trim(Text((Elem(Elem(P,"table")[1],"td") after table)[0]));
// Get Last Updated Attribute
LastUpdated=Str_Trim(Text((Elem(Elem(P,"table")[1],"td") after table)[1]));
// Get Platform
Platform=Str_Trim(Text((Elem(Elem(P,"table")[1],"td") after table)[2]));
// Get Patch Version
PatchVersion=Str_Trim(Text((Elem(Elem(P,"table")[1],"td") after table)[3]));
// Get Info
Info=Str_Trim(Text((Elem(Elem(P,"table")[1],"td") after table)[4]));
// Get Size of the Patch
PatchSize=Str_Trim(Text((Elem(Elem(P,"table")[1],"td") after table)[5]));
……
// End of the loop
end;

