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Abstract: - An isoperimetric problem of the calculus of variations is reviewed.  An integral functional, 
dependent on a function u (x), its derivative u′ (x) and on the independent variable x, is minimised.  The 
minimisation is subject to the isoperimetric constraint that the length of the integration interval remains 
constant.  The well-known Euler equation of the fundamental problem of the calculus of variations is recovered 
with an additional relationship connecting the values of the function u and its derivative u′ at the ends of the 
interval.  A new complementary extremum principle is derived, that offers an algorithm for determining lower 
bounds on the minimum value of the original functional.  A special treatment of the degenerate case where 
there is linear dependence on u is presented.  Examples of each case are given and the scope for future work is 
discussed. 
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1  Introduction 
Interest in isoperimetric optimisation 
problems dates back to Queen Dido of 
Carthage.  Her enemies taunted her by 
offering her as much land as she could 
enclose with the hide of an ox.  She 
confounded them by cutting the hide into 
strips, making a rope from them, and 
laying it in a large semi-circular with ends 
on the shore.  The canny queen knew that 
the circle is the solution of the problem of 
maximising the area contained by a curve 
of given length.  Legend has it that she 
was allowed to found Carthage in the large 
area enclosed.   
   Isoperimetric optimisation problems 
remain of interest to day as they arise in 
diverse applications.  One may 
immediately cite the problem of 
minimising the drag on a body of given 
mass or volume as an example of 
importance.  Indeed, this paper lays the 
groundwork for addressing one example of 
this problem – the required extension to 
treat higher dimension problems and 
general constraints will form the subject of 
a following paper. 
   We are concerned with the mathematics 
of isoperimetric problems where it is 
desired to optimise a functional of a field 

variable that satisfies a differential 
equation within a domain having a 
variable boundary.  The aim is to perform 
the optimisation with respect to the 
variable boundary, or in other words, to 
choose the best domain to maximise or 
minimise the quantity of interest as 
determined by the functional.  We shall 
focus on problems where the governing 
differential equation is itself the Euler 
equation of an extremum principle, this 
Euler equation being derived by the 
methods of the calculus of variations.  
Although this narrows the applicability of 
the analysis somewhat, there is a 
considerable body of problems in 
mathematical physics for which such 
extremum principles exist.  Much work on 
solving the differential equations within a 
prescribed fixed domain has been done.  
However, there is far less literature on 
problems where there is an unknown 
boundary.  The solution of such problems 
can be challenging even for the simplest 
governing equations.  Usually there is a 
requirement to undertake numerical 
computation in order to predict the 
unknown boundary and calculate the 
desired optimal value of the functional.  
Under such circumstances it is very 
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desirable to have the capability of 
obtaining reasonably accurate upper and 
lower bounds on the desired value by a 
simple analytical method.  Such bounds 
can serve as a check on a detailed 
numerical solution scheme.  Moreover, the 
bounds could assist in the provision of 
useful initial values where an iterative 
numerical scheme is required to obtain the 
exact solution. 
   Optimal boundary problems have been 
studied by a number of authors.  Tuck [1], 
Watson [2], Pironneau [3], Bourot [4], 
Mironov [5] and more recently Richardson 
[6] considered the problem of minimising 
the drag on an axisymmetric body of given 
volume moving in the direction of its axis 
in slow viscous flow.  The analogous 
problem for flow at higher Reynolds 
numbers was considered first by Pironneau 
[7] and then by Glowinski and Pironneau 
[8].  Polya [9] and subsequently Banichuk 
[10] and Curtis and Walpole [11] 
considered the optimisation of elastic bars 
and shafts in torsion.  Banichuk and 
Karihaloo [12] and later Parberry and 
Karihaloo [13] studied the similar problem 
of the minimum weight design of bars 
subject to constraints on their torsional and 
flexural rigidities. 
   Gurvitch [14] considered the problem of 
determining the domain that minimises the 
electrostatic capacity functional in the 
class of plane doubly connected domains 
having the same area and outer boundary.  
Payne [15] reviewed the literature on the 
problem of minimising the average virtual 
mass in potential flow theory.  Curtis [16] 
investigated the problem of minimising the 
rate of heat loss from a body surrounded 
by a layer of homogeneous insulation of 
given volume.  The minimisation was with 
respect to variation of the shape of the 
outer surface of the insulation layer. 
   Many of the above authors used the 
calculus of variations to obtain necessary 
conditions for optimality.  The calculus of 
variations is applied in this paper too.  The 
reader desiring more background on the 
calculus of variations is referred to Bolza 
[17] and Hildebrandt and Tromba [18].  
We show how one may exploit the 
standard theory to obtain approximations 
to the optimal value of the functional by 

the development of complementary 
extremum principles. 
   The focus of the paper is the natural 
starting point of the fundamental one-
dimensional problem of the calculus of 
variations.  We suppose that the well-
known Euler equation applies in a given 
domain and gives a minimum of the 
functional concerned for that domain.  
Then the end points are allowed to vary 
subject to the constraint that the length of 
the domain remain fixed.  The minimum 
value of all the minima is sought by 
variation of the domain limits while 
satisfying this isoperimetric constraint. 
   We consider this one-dimensional 
problem with the aim of establishing the 
basic principles prior to considering more 
complex problems in several variables.  In 
the present treatment we derive necessary 
conditions for the existence of the lower 
bounds by investigating first-order 
variations only.  Consideration of 
sufficient conditions is deferred to later 
work.  From an engineering viewpoint 
these are perhaps not of great importance, 
since an optimal solution is often 
demonstrably better than the alternatives.  
However, confirmation of local optimality 
is always desirable in seeking confidence 
that one has found a global optimum. 
   Watson (Ioc.cit.) was among the first to 
consider extremum principles with domain 
boundary variation.  He encountered 
difficulties in the treatment of what he 
termed the degenerate case where the 
functional had linear dependence on the 
unknown solution of the boundary-value 
problem.  These difficulties prevented the 
derivation of lower bounds on the 
minimum drag on a body in slow viscous 
flow. 
   This paper commences with a discussion 
of the well-known fundamental problem of 
the calculus of variations extended to 
consider variable end points satisfying the 
isoperimetric constraint. A complementary 
variational principle is derived in the 
general case.  An example is discussed.  
Then the analysis is extended to consider 
the degenerate case where there is at most 
linear dependence on the unknown 
solution of the underlying boundary value 
problem.  An example is presented. 
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   We discuss the generalisation of the 
method to consider problems of higher 
dimensions, arbitrary rather than 
isoperimetric constraints, and the 
derivation of sufficient conditions for 
optimality.  
 
 
2  Fundamental Isoperimetric 
Problem 
Let us define a functional 
 

[ ] ∫ ′= dxuuxFbauI b
a ),,(,; ,     (1) 

 
where u = u(x) is a twice differentiable 
function defined in the interval [a, b], the 
superscript prime denoting differentiation 
with respect to x.  Suppose these endpoints 
are allowed to vary subject to the 
constraint that the length of the interval 
remains constant.  Thus 
 

b – a = k ,                       (2) 
 
where k is constant. 
   Consider the following minimisation 
problem: minimise I [u; a, b] subject to the 
constraint (2) and the boundary conditions 
 

u = U(a)  at  x  =  a ,     
u = U(b)  at  x  =  b               (3) 

 
Application of standard techniques of the 
calculus of variations yields necessary 
conditions satisfied by a solution 
 

u = uo,  a = ao,  b = bo,          (4) 
 
producing a minimum value do. The 
function uo satisfies the well-known Euler 
equation 
 

( ) OF
dx
dF

oo uu =− ′ ,          (5) 

 
holding in [ao, bo], and is subject to the 
boundary conditions 
 

uo(ao) = U(ao)  ,          (6) 
 
and 
 

uo(bo) = U(bo)  .         (7) 

 
In equation (5) the subscripts uo, u′o denote 
partial derivatives of F with respect to u 
and u′ respectively, evaluated at the 
solution u = uo. 
   The necessary condition 
 

Oob =′′+ ′ oo auoo ]F )u  -U(  [F ,   (8) 
 
must also hold, where Fo denotes the 
function F(x, uo, uo′) and the square 
brackets denote the difference between 
their content evaluated at bo and ao.  It 
must be noted that a solution (4) of 
equations and conditions (5) to (8) is not 
always available.  For certain forms of the 
functions F and U constraints on allowed 
values of a or b or the form of the function 
u may be present and the minimum value 
of I may occur where one or more of these 
constraints apply. 
   We do not address this situation here, 
but are concerned with the case where the 
solution (4) can be found by solving 
conditions (5) to (8).  This is not a severe 
limitation, because in many physical 
problems such extremum principles do 
exist. 
   Consider the following example.  Let 
 

F(x, u, u′) = 
2

u′  + u2 – 2u + x2 + 1  , 
 

  U(a) = U(b) = 1,  
 
and 

k = 1  .    
 
The Euler equation (5) is  
 

uo
′′ = uo – 1  , 

 
subject to the boundary conditions 
 

uo(ao) = 1  , uo(bo) = 1   . 
 
Equation (8) yields 
 

O1x2uuu
o

o

b

a

2
o

2
o

2

o =



 ++−+′−      .(9) 

 
It is easy to show that the solution uo = 1 
satisfies the Euler equation and boundary 
conditions.  The condition (9) becomes 
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bo

2 – ao
2 = O. 

 
This may be solved with the isoperimetric 
constraint (2) to yield the solution 
 

., 2
1

2
1 =−= oo ba  

 
The minimum value of I, do, is then 
readily evaluated as .12

1=od . 
   It is apparent that the condition (8) 
supplies the second relationship between 
the interval limits if the solution of the 
Euler equation can be explicitly expressed 
in terms of them. 
 
 
3  Complementary extremum 
principle 
In seeking a complementary extremum 
principle we extend a method for the case 
of a fixed interval presented by Courant 
and Hilbert [19]. 
 
Let us define a new functional 
 

[ ] ∫ 







−′+

=
b

a
dx

pu
puxF

bapuI
)(

),,(
,;,,*

λ
λ , 

(10) 
 

with the function F being the same as in 
equation (1).  It is clear that setting p = u' 
in equation (10) recovers the original 
functional I.  Suppose we do not apply this 
constraint and minimise I* with respect to 
its arguments u, p, a, b subject to the 
isoperimetric constraint (2) and boundary 
conditions (3), obtaining the minimum 
value dλ.  It must follow that 
 

dλ < do  ,                  (11) 
 
because the minimisation has been 
undertaken over the wider set of functions. 
   We seek the value of dλ by application 
of the standard technique of the calculus of 
variations to obtain the solution 
 

u = uo
*  , p = po

*  , a = ao
*  , b = bo

*. (12) 
 
The Euler equations are 
 

O
dx
dF

ou =−
λ

*   ,           (13) 

 
and 
 

0=−∗ λ
opF   ,            (14) 

 
to hold in [ao

* , bo
*] , subject to the 

boundary conditions 
 

)()( * ∗∗ = ooo aUau   ,        15) 
 
and 
 

)()( ∗∗∗ = ooo bUbu   .       (16) 
 
Here the subscripts denote partial 
derivatives of F with respect to u and p 
evaluated at the solution.  The Euler 
equation and boundary conditions are to 
be solved with the necessary condition 
 

[ ] OpUF o

o

b
aoo =−′+
∗

∗

∗∗ )(λ   ,  (17) 

 
where Fo

* denotes F(x, uo
*, po

*). 
   A proof that the minimum dλ exists and 
is given by the solution (12) if the solution 
(4) exists is not presently available to us.  
No counter-examples have been found.  It 
is possible that the imposition of suitable 
conditions on the forms of the function F 
and the boundary condition function U 
would allow an existence proof. It is our 
intention to address this aspect of the 
problem in subsequent work. 
   Let us return to the example considered 
in the preceding section.  We have 
 
( ) 12 222 ++−+= xuuppuxF ,,  , (18) 

 
so that equation (13) becomes 

 

dx
duo
λ

=−∗ )( 12   ,          (19) 

 
while equation (14) reduces to 
 

λ=∗
op2 .               (20) 
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Let λ be an unknown constant.  Then 
equation (19) gives uo

* = 1, which satisfies 
the boundary conditions (15) and (16).  
From equations (18) and (20) 
 

22
4
1 xFo +=∗ λ   ,            (21) 

 
and substitution of this relation into the 
condition (17) gives 
 

Oab oo =− ∗∗ 22

  .             (22) 
 
Combination of this with the isoperimetric 
constraint (2) yields the solutions 
 

2
1

2
1 =−= ∗∗

oo ba ,   .       (23) 
 
The minimum value of I* is readily 
calculated as 
 

12
12

4
1

12
1 =≤−= odd λλ   ,      (24) 

 
the exact solution being recovered when 

.O=λ   Thus for every value of λ a lower 
bound on do is generated. 
   The simple nature of the above example 
has allowed us to derive a family of lower 
bounds, the maximum of which happens to 
coincide with the exact solution of the 
original problem.  Under most 
circumstances it will not be possible to 
generate solutions satisfying the boundary 
conditions (15) and (16) so readily.  The 
choice of suitable trial functions λ will be 
guided by the individual problem under 
consideration.  Note that there is no 
requirement to solve differential equations 
in calculating the bound: only the need to 
solve the functional relationships (13) and 
(14) for uo

* and po
*. 

    The above is an example of the general 
case where uo

* and po
* can be evaluated 

from the pair of equations (13) and (14).  
In the next section we consider the 
degenerate case where this is not possible. 
 
 
4  Degenerate case 
In the degenerate case the function F takes 
the particular form 
 

uxhuxGuuxF )(),(),,( +′=′   ,   (25) 
 
where G and h are differentiable functions.  
The Euler equation (13) in this case 
reduces to the degenerate form 
 

( ) O
dx
dxh =−
λ

  .           (26) 

 
Thus, if minimisation of I* is to be 
accomplished, the functional form of λ is 
constrained to within a constant by 
equation (26).  After integration, 
 

∫ +=
λ

λ Cduxh )(  ,       (27) 

 
where C is a constant.  Note the contrast 
with the non-degenerate case where any 
form of the function λ is acceptable 
provided it is compatible with the 
boundary conditions (15) and (16).  The 
solution po

* is expressed in terms of λ and 
hence C by means of equation (14).  Then 
condition (17) can be written in terms of 
C, ao

*, and bo
*.  With the isoperimetric 

constraint, ao
* and bo

* may be expressed in 
terms of C.  The minimum value dλ is 
given by 
 

∫ 







−′+

∗+
=

*

* *)*(
)(*),(o

o

b

a
oo

oo dx
pu

uxhpxG
d

λλ  . 

.(28) 
 
After an integration by parts, this may be 
reduced to 
 

( )∫ +−= ∗∗
*

*
),(o

o

b

a oo dxppxGd λλ

*)(*)(*)(*)( oooo aUabUb λλ −   ,   (29) 
 
following use of equation (26) and the 
boundary conditions (15) and (16).  The 
right hand side of equation (29) is a 
function of the constant C; thus 
 

( )Cgd =λ  .                 (30) 
 
The maximum value of )(Cg  with 
respect to C coincides with do.  Thus, in 
the degenerate case the complementary 
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extremum principle is replaced by the 
problem of maximising a function of a 
single variable.  This offers a simpler 
approach to the evaluation of the solution 
of the original isoperimetric minimization 
problem.  This is illustrated by the 
following example. 
   Let 
 

( ) ( ) ( ) 22
2
1 1 xxUxhuuxG ==′=′ ,,, . 

 
Equation (26) becomes 
 

1=
dx
dλ

  , 

 
with solution given by equation (27) 
 

Cx +=λ  .                  (31) 
 
Equation (14) yields 
 

Opo =−∗ λ  .               (32) 
 
Condition (17) is  
 

( ) ( )[ ] OpUUxhp
o

o

b

aoo =−′++
∗

∗
∗∗ λ

2

2
1  , 

 
which reduces to 
 

( ) OCab oo =++ ∗∗ 25   . 
 
Use of the isoperimetric constraint yields 
 

2
1

52
1

5 +−=−−= C
o

C
o ba ** ,  .   (33) 

 
Substitution of relations (31), (32) and 
(33) into equation (29) yields 
 

24
5

5
3

24
5 2

=≤−== o
C dCgd )(λ   ,   (34) 

 
the exact solution being recovered when C 
= O in this case.  It is apparent that 
whatever the value of C chosen, dλ is a 
lower bound on do. 
   In this particular example it has been 
straightforward to express ao

* and bo
* in 

terms of C explicitly as a result of the 
simple form of the function G(x, u′).  It is 
likely in the general case that numerical 

solution of the equations would be 
required.  However, note also that 
equation (14) is not a differential equation 
in po

* : it expresses po
* as a function of λ, 

whether implicitly or explicitly.  The 
function λ selected must satisfy the 
differential equation (26) and numerical 
integration may be necessary to evaluate 
it. 
 
 
5  Discussion 
We have demonstrated how lower bounds 
on the minimum value of a functional 
defined over a one-dimensional domain of 
constrained length but with variable end 
points may be obtained.  This is an 
application of the theory for the 
fundamental problem of the calculus of 
variations with variable end-points.  The 
present paper has sought to describe the 
basic theory in a simple manner.  In a 
subsequent paper it will be shown that the 
method may be extended to consider 
problems of higher dimensions and greater 
physical interest where e.g. a surface area 
or volume is to be held constant.  More 
generally it is expected that the 
isoperimetric constraint may be replaced 
or supplemented by an arbitrary constraint 
in which there is dependence on the other 
arguments of the functional. 
   Although the technique is at present 
confined to problems with an existing 
variational extremal principle, the range of 
such problems is wide in engineering.  
Methods of bounding quantities can 
provide useful estimates and offer a 
valuable quality check on numerical 
calculations.  We aim to illustrate this by 
extension of the basic theory presented 
here to address an example from slow 
viscous flow in a subsequent paper. 
   A mathematical problem of interest is 
that of determining sufficient conditions 
for the equations (4) to (8) inclusive to 
yield a minimum do of the functional (1).  
Similarly it is of interest to determine 
sufficient conditions for equations (12) to 
(17) or (12), (26), (14) to (17) to yield a 
minimum value of dλ in the non-
degenerate and degenerate cases 
respectively.  In the case of fixed end-
points a and b it is simple to show that 
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joint convexity of the function F in u and 
u′ is sufficient.  One or more conditions on 
both F and U will be required to derive the 
sufficient conditions for the case of 
variable end points. 
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