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Abstract: - The complex object recognition tasks are still one big problem in neurocomputing today. This
paper presents a method of detecting and recognizing complex objects, in cluttered environment, in a purely
feed-forward way, being able to account for ultra-rapid visual categorization. We used a retinotopic architecture
of simple spiking neurons with different types of receptive fields, organized in a hierarchical fashion similar to
the mammal visual path. Fast shunting inhibition had been implemented using a rank-order coding similar to
that described by S. Thorpe. The main advantage of the neural model proposed is that it accepts a very small
number of training examples (4-7) being able to generalize very well. The model has been used to detect faces
and automobiles in complex intensity images.
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1. Introduction

Numerous studies on the mammal visual
cortex had shown a general structure and
architecture, which can account for the ability to
recognize objects. The biological model is a
hierarchical one, each layer having a well-
determined structure and function.

Most of the models created before 1990 were
based upon the assumption that neurons transmit
information using pulse rate coding. These models
may be consistent, but they have one big problem:
they are too slow to be realistic and biologically
plausible in rapid visual categorization.

Recent studies however, had shown that ultra-
rapid visual categorization is possible, in a time
magnitude under 150 ms in human visual
neocortex. This is exactly the timing necessary for
the information to reach the infero-temporal (IT)
cortex neurons responsible for object recognition
[6].

Under such circumstances, a natural question
arises: how can the brain recognize objects (mainly
unfamiliar objects, presented only few times to
subjects) in a scale and position independent
manner since there is no time for pulse
synchronization to occur?

As well, a very important observation is that
usually realistic neural systems such as the
neocortex do not require a long training phase

before being able to generalize in a powerful
manner. The second natural question is how can the
brain achieve such generalization performance
under such a short period of training (visual
analysis)?

In the next sections we describe a general
model based on the biological ventral visual path.
This general model had been used to recognize
complex objects from intensity images, under the
constraint of very small number of training
examples (4-7).

2. Methods

For testing reasons and modeling, we
implemented a neural simulator based on the
retinotopic organization of the visual cortex. The
simulator, named "RetinotopicNET" can
successfully trace networks with millions of
neurons and a magnitude of 1010 synapses in a
matter of seconds. This high performance is due to
the event-based type of simulation.

Neurons were simple integrate-and-fire cells
with fast shunting inhibition implemented as
exponential modulated synapses [7]. No leakage
has been included in the model since the amount of
current leak, in the short period the neuron's state is
pooled, can be neglected (no rate based coding is
present).
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Each time an afferent neuron spiked, the
sensitivity of the synapses had been decreased by a
modulation factor as follows:

Sensitivity ← Sensitivity * Modulation
where:
- Sensitivity represents the synaptic sensitivity

over all synapses
- Modulation is a number in the range [0..1]

The architecture of the model contains 6 levels
of processing, following the retinal, V1, V4
pathway up to the infero-temporal cortex.

2.1. Architecture

The six layers of processing correspond to an
ascending feed forward processing with lateral
interactions at some of the levels (Figure 1). The
only information used at this time is contour
information but blob-type cells could also be
included to account for color or intensity patches,
as well.

Level 1 : Retinal processing

At the first layer of processing the retinal
ganglion cells process the incoming image
intensities (only 8 bit grayscale images were used).
The ON-OFF effect has been achieved by using a
classical difference-of-gaussians (DOG), center-
ON-surround-OFF and viceversa filter with a ratio
of 1 to 3. Then, the image intensity for the two
maps has been converted into spike latency and
spikes were fed into the "RetinotopicNET"
simulator.

Level 2 : V1 Area

The second layer of processing corresponds to
the V1 primary cortex area where a model of
oriented contrasts is created. Oriented Gabor-like
receptive fields select orientations. These are the
corresponding simple cells, which detect different
orientation contrasts.

One key feature is the lateral connection
within each orientation map. We have used a
butterfly-like lateral connection, which has the
property of improving contours. This is a form of
primitive contour-integration, but due to the lack of
iterative loops only a feed forward contour

completion is achieved. Important work on this
matter had been conducted by Zhaoping Li [3].
Further improvement on the system may be
achieved by implementing a stronger contour
integration mechanism.

The Gabor patches were all at the same scale
and had a spatial frequency of 0.5 pixels. They
covered the range of 0 to 180 degrees spanning
over a total of 8 orientations.

Level 3 : Multiscale downsample

The third layer of processing is responsible for
bringing every detail to the same level of spatial
importance. We used here a simple neural scaling
model. Scaling is achieved by different sizes of the
receptive fields. The receptive fields are not
overlapping and the neurons in this layer act as
'OR' functions. This type of behavior is due to the
synaptic weight, which is sufficient to determine
that a single afferent spike can drive the neuron
into the critical area.

Five levels of scales had been used, a larger
number offering a better scale independence (1:1 to
1:1.68).

Different strategies are used in learning and
matching operations. Learning is supervised and an
appropriate scale map is selected by specifying one
of the object's dimensions. The rest of the scales
are inactive during learning. In the process of
recognition, the maps are sequentially activated
until all the scales had been tried or the target
recognized (final map fired).

The neural downsampling is achieved by using
window-like receptive fields which could be
associated with center-ON surround-OFF receptive
fields in area V4, taking into account the fact that
the surround-OFF is a very silent small inhibition
which could be used for stability and normalization
purposes.

Fig. 2. Multiscale neural downsampling for 5
levels of scale
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 Fig. 1. Model architecture
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Level 4 : Uniform map size

At the next layer, at each orientation, the
downsampled-oriented maps are brought to the
same size. The size should be the same with the
one for the next layers because, after selecting the
scale (for learning or matching) the model of scaled
orientations should only be committed to stimulus
property. In this way, the next level can treat all the
scaled versions uniformly. Moreover, the
appropriate positioning in the original image is
done at this level. This is because the original
object should be correctly positioned, even after
being scaled to a standard size.

Level 5 : Independent orientations

The fifth layer is used for adaptive selection of
scales. The levels 3 to 5 achieve a uniform scale, at
the last level. For this particular reason, in learning,
one of the 5 scales is gated from the fourth level
and drives the corresponding neural map at the fifth
level. The mechanism described allows different
scaled original stimulus to be learned at the same
final scale (scale independent learning).

During recognition, the five scales are gated in
a sequential way, until one of the scales best
matches the standard scale learned. By analyzing
the disproportion between standard scale and the
map gated from the previous stage, one can even
determine the scale of the object in the original
image.

Level 6 : Infero-Temporal Cortex

The infero-temporal cortex is responsible for
object recognition. In the architecture presented,
learning is performed by increasing the synapse
strength with the current sensitivity value as
resulted from successive modulator effects
generated by the firings in the level 5 map. This
mechanism is similar to the one used by Arnaud
Delorme [1]. Every neuron in the final IT map has
a retinotopic type of receptive field, covering most
of the level 5 map. The synaptic strengths are
shared among all neurons, yielding good position
independence.

2.2. Learning

Supervised reinforcement learning is done at
the last level of the model (infero-temporal cortex).
Two types of information are used for training
purpose: position and scale. The user should select

three main points on the original object (the upper
corners and the bottom center point). Using these 3
points, the center of the triangle is computed and
considered the center of the object. Furthermore the
distance between the upper two points is compared
to a standard, fixed size. The comparison process
yields the relative scaling necessary for achieving
standard scale at the fifth level of the model. Based
on this information, the selection of the appropriate
fourth level map is done.

Position is used to determine the neuron that
should be trained in the infero-temporal map. After
selecting such a neuron, reinforcement learning is
done using the instantaneous sensitivity level of the
neuron.

2.3. Recognition

The process of recognition has to determine
three types of information: the object's presence or
absence, then its position and finally its scale.

Recognition starts with propagating the spikes
in a feed-forward fashion and monitoring the
infero-temporal spikes. One spike in the infero-
temporal map is associated with target recognition
(target hit). The position of the neuron that spiked
corresponds to the position of the object's center (as
defined by the three points selected on learning).

At the fifth level, for each trial, one scaled
map is selected from below and gated to drive the
fifth level map. The selection is done in a
sequential way. On a spike event in the IT map,
scale can be determined using the gated map's size.

Fig. 3. Face recognition. A. Original image. B.
Infero-temporal spike. C. Selectivity of intero-temporal
neurons.

3. Results

Using the "RetinotopicNET" simulator we
calibrated the system for face detection (and
recognition) and vehicle detection. The test
database had been generated using a QuickCam
web camera and consisted of the faces of 43
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different persons with different face expression.
The ORL face database had also been included for
testing.

Image sizes were fixed at 92 x 112 grayscale
bitmaps and the faces were scaled in a range 1:1 to
1:1.58 the original scale.

At the infero-temporal level, a strong shunting
inhibition had been used to provide enhanced
selectivity on learning (for the face recognition
case).

The first objective was to determine the ability
of the model to generalize after only a small
number of training examples. It proved that
important generalization capability emerged after
only 3 to 5 training examples for the face
identification case and 5 to 7 for the vehicle
detection problem.

The capability of generalization has been
tested using only 5 training examples and then
testing against 18 novel targets (face identification
case). The medium activation of IT neurons has
been determined (the model uses a resting potential
of -65 mV and a firing threshold of -45 mV) (see
Fig. 4).
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 Fig. 4. Medium activation of IT neurons over 18
novel targets for different number of training sessions.

The next step was to determine the ability of
the model to recognize faces. The training set of
examples had been mostly chosen in a random
fashion, using only 4 examples (3 of them
randomly chosen and 1 as being the next most
distant image - in terms of IT activity) (Fig. 5).

The non-target database consisted of 40 test
images of 27 persons.

For the face identification task, the model
made only 1 mistake (false prediction) and 2
recognition misses (one due to interscale size and
one because of non-uniform environment).

Fig. 5. Train examples (upper 4) and novel target
set of images.

The required background environment for
correct identification hadn't been used in one case,
this leading to one additional target miss (the first
is due to scale). The interscale miss can be
eliminated very easily, by increasing the scale
domain.

Images No. True
pos.

True
neg.

False
pos.

False
neg.

Target 18 16 - - 2

Non-
target

40 - 39 1 -

Table 1. Testing results for the face identification
task.

The results were analyzed and the general
accuracy, sensibility and specificity of the method
(on the database used) had been determined.

G.A. SE. SP.

94.8% 88.8% 97.5%

Table 2. General accuracy, sensibility and
specificity for the face identification task.

As mentioned, the face identification task
requires a uniform background for correct
identification. We tested then the ability of
recognizing complex objects from cluttered
environment, disregarding the background. For this
purpose car recognition task has been developed.

For a good generalization, a set of 7 training
examples had been presented to the system. The
target images were 19 frames from a highway-
recorded video.
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Fig. 6. Car detection at a fixed scale.

The car detection process took no advantage
of scale independence, using only one scale (for
speed purpose) and only a fixed scale car had been
considered as target.

From 19 frames, the system made only one
mistake, due to the lack of scale independence. On
a Pentium® 4 processor, recognition had been
achieved under 400 milliseconds.

The given results are surprisingly good, taking
into account the limited scale levels used.
Increasing the number of the scale levels (to cover
a wider field of scales) can increase accuracy of
recognition. At the same time, we expect that the
usage of more orientations can increase accuracy
because of the better localized detection at the
second level of the architecture.

Complex objects can be recognized using this
general architecture and no background constraint
is necessary for general visual categorization.

The participation to the Conference was
supported by Nivis (www.nivis.com).
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