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Abstract: - In this paper a new method for linear problems resolution is presented. This method named Simplex 
Cosine Method (SCM) is based on the analysis of the angles between the gradient of the objective function and 
the gradient of each constraint; these angles are found by the application of the simple cosine function. As the 
traditional Simplex Method (SM), proposed by Dantzig, SCM selects one vertex of the feasible region as an 
initial point and applies a gaussian procedure, but SCM chooses this vertex using the smallest of those angles. 
The optimality condition analysis presented in the paper reveals that SCM start point is in the border of the 
optimal solution, so its number of iterations and its time for finding the optimum is lower than the classical 
simplex method. That situation is tested in this paper for a set of Klee-Minty problems showing substantial 
improvements in the computational performance of the algorithm. 
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1 Introduction 
 
The Simplex Method (SM) developed by Dantzig in 
1947 [1] marks the start of the modern era in 
optimization, because this method has made possible 
the resolution of many assignment problems, 
resulting on an improvement in the companies's 
efficiency. SM has been used in practically every 
human knowledge's area and has demonstrated to be 
very efficient in the resolution of linear problems. 
Even with the appearing of the interior point 
methods, proposed by Karmarkar in 1984 [2], the 
SM is still the most utilized method and its 
efficiency to resolve practical problems is 
undeniable. 
SM applies a gaussian procedure in every chosen 
vertex in order to calculate the objective function 
and all the basic variables; SM selects in each 
iteration, the adjacent vertex allowing it to improve 
the value of the objective function. In SM the initial 
vertex is defined using a set of slack and artificial 
variables of the linear problem like the basic 
variables. Note that the definition of the initial 
vertex, as well as the rule that determines the form to 
select the adjacent vertex (pivot rule) affects the 
efficiency of the method. The reason of that is the 
length of the sequence of adjacent vertices until the 

optimal solution depends on a good selection of 
these two elements. 
The SM requires an initial vertex that represents a 
feasible basic solution in order to assure the 
construction of a sequence of feasible basic solutions 
that allows to reach the optimal value when this one 
exists. The problem of finding a feasible initial point 
can be nontrivial and sometimes impossible for the 
classical simplex method (SM). In this case a 
common used approach is denominated the phase I 
of SM, where artificial variables are introduced to 
determine one first feasible basic solution. The 
solution of phase I is a feasible vertex that is used 
like starting point of phase II of the classical simplex 
method [1].  Alternatives approaches for the phase I 
were proposed by Wolfe [3] and Maros [4], and 
others try to improve the sequence of feasible basic 
solutions, defining different pivot rules ([5]-[7]) and, 
finally they are those very similar to SM [8]. 
In this paper SCM is presented; it is similar to SM 
but as we are going to see, it is more efficient. SCM 
has a new approach to determine the initial vertex 
based on the analysis of the angles between the 
gradient of the objective function and the gradients 
of the constraints. These angles are calculated 
through the theirs cosines; for this reason the method 
receives the name of  simplex-cosine method or 
SCM. 



 2 Relation between the gradients of 
the constraints and the gradient of the 
objective function 
 
The mathematical model of a linear problem is in its 
general form shown in (1). 
 

min z = f(x) = cTx 
     subject to    

                      ai
Tx  (≥,≤) bi         i:1,…,m 

x  ≥ 0 
ai,c and x ∈ Rn 

(1) 

 
Where c is the vector of costs, the vector x contains 
the decision variables, bi is the resource limit for the 
constraint i, and ai associates the use of each 
resource to each variable in the constraint i. 
 
2.1 Optimality conditions of one solution  
A form to define if a vector x produces a minimum 
for the problem (1) is using the concept of feasible 
direction. In [9] is defined that d is a feasible 
direction if the condition (2) is fulfilled, and 
applying the expansion of first order of the series of 
Taylor is defined the condition of feasible direction, 
showed in (3). 

 
f(x + d) < f(x) 
∇f(x)Td < 0 

(2) 
(3) 

 
Since x+d produces a smaller value for the objective 
function that with x, x is not a minimum. x+d is also 
feasible, since it satisfies the constraints. In order 
that x represents a minimum of a linear problem, the 
condition of feasible direction is not due to fulfill, 
that is, d does must not exist. 
Generalizing the notation of the constraints of the 
linear problem (1) with gi(x)≥0, the condition of 
feasible direction is defined as in (4). 

 
gi(x+d) = gi(x)+ ∇gi(x)Td ≥ 0 (4) 

 
If gi(x)>0, any direction d can satisfy (3) and (4), 
reason why if x is a minimum, satisfy ∇f(x*)=0. If 
gi(x)=0, then d must satisfy the inequality (5).  
 

∇gi(x)Td ≥ 0 (5) 
 
It is deduced that if x is a minimum, the 
vectors∇f(x*) and ∇gi(x) must lay for the same 
direction, that is, the condition (6) must be fulfilled, 
to µ*

i ≥ 0 (Figure 1). 
 

                       ∇f(x) =µi∇gi(x)                                (6) 
 
In order to group both cases (gi(x)>0 y gi(x)=0) is 
introduced the complementarity’s condition (8) in 
(7).  
 
               ∇f(x*) - µi

*∇gi(x
*) = 0, µi

*≥0                  (7) 
                         µi

*gi(x
*) = 0                                   (8) 

  
From this representation one classification of 
inequality constraints is derived: a constraint is  
active when its corresponding coefficient µi

* is 
positive, and is inactivate when µi

* is zero. 
 

 
Fig 1. In order to reduce the space where d can exist, 
the vectors ∇f y ∇g must be parallel and in the same 
direction. 
 
The relation (7) is interpreted geometrically as it 
follows: So that a value of x produces a minimum of 
(1) the gradient of the objective function must be a  
positive linear combination of the gradients of the 
active constraints, that is, this gradient remains 
within the convex cone represented by this active 
constraints (figure 2).  
 

 
Fig. 2. The point P is optimum because the gradient 
of objective function c lies in the cone spanned by 
the  gradients of the active constraints (a1 and a2). 
 
2.2 Angles between gradients 
Of the optimality condition based on the gradients of 
the functions of the mathematical model of the linear 
problem, it is observed that the angles between the 



gradients of the constraints and the angle of the 
objective function can provide information about the 
constraints: particularly we can know if a constraint 
is or not an active one. This premise is used for 
constructing the simplex cosine method. In figure 3 
the angles between the gradient of the objective 
function ∇f and the gradients of the constraints ∇gi  
are shown. In this figure, point x* is the optimum. It 
is observed that, in general, the smaller angles of this 
figure are formed by the gradients of the active 
constraints (g1 and g2). 
 

 
Fig. 3. The angles between the active constraints and 
the objective function are minors that those of the 
inactive constraints. 
 
Because this observation cannot be generalized for 
all the linear problems, since it is not a guarantee 
that the constraints with the smaller angles are active 
in the optimum, is not possible to generate a 
procedure that uses only this information for 
determining an optimal value. Nevertheless, the 
vertex where the constraints form smallest angles 
can be used like starting point of the SM. 
In order to determine the angle between two vectors 
the formula of the dot product of vectors used, that is 
shown in (9). 
 

        ∇f(x)⋅∇gi(x)=|∇f(x)||∇gi(x)|cosθ                (9) 
 
where θ is the angle between the vectors ∇f(x) and 
∇gi(x). 
 
2.3 Slack variables 
Another interesting observation is about the values 
that take the slack variables in the optimum, that is 
zero for an active constraint. This variables represent 
the nonbasic variables in the final tableau of the SM. 
For the problem represented by (10), the optimal 
solution  of  the  objective function is z =21 while 
the value  of  the  of  decision  variables  are: x1 = 3,  
x2 = 1.5, s3 = 2.5 and s4 = 0.5. Where si represents 

the i slack variable used in the i constraint. 
 
                    max              z=5x1+4x2              (10) 
       Subject to  
                            6x1+4x2  ≤ 24 
                              x1+2x2  ≤    6 
                               -x1+x2  ≤  1 
                                     x2   ≤  2 
 
Figure 4 shows the result of the last iteration for the 
SM, where the nonbasic variables are s1 and s2; these 
are the slack variables of the active constraints in the 
optimum. We adopt a binary codification to 
represent the basic and nonbasic variables, as it is 
shown in the third row in figure 4. That means that 
the representation of the optimal solution can be 
done: 1) As it is usually done by the set of values of 
the variables (3, 1.5, 0, 0, 2.6 and 0.5) or well by 2) 
our binary representation (1, 1, 0, 0, 1 and 1) that we 
proposed in our Simplex-Genetic Method [10].   
 
X1 x2 s1 s2 s3 S4 Variable

3.0 1.5 0 0 2.5 0.5 Value 
1 1 0 0 1 1 Binary 
141.340 128.650 4.960 24.770 96.340 51.340 Angle 
Fig. 4. The slack variables are zero for the active 
constraints in the optimum 
 
As it is observed in figure 4, the non-basic variables 
of the solution correspond the smaller angles 
between the gradients of the constraints and the 
gradient of the objective function. For the case of the 
original variables (x1 and x2) the angles are obtained 
from the constraints of non-negativity, and the slack 
variables are associated to each one of the 
constraints of the problem. 
The simplex cosine method uses these two 
observations to obtain a point in which the SM can 
initiate its search of the optimum value. 
 

3. The Simplex Cosine method 
 
The main idea of this paper is to find one basic 
solution of the linear problem using the angles 
between the gradients of constraints and the gradient 
of the objective function, for using this solution as the  
initial vertex for the simplex procedure and reducing 
the number of iteration for reaching the optimum. 
This angles are used for determining the basic and 
non basic variables of this basic solution, 
constructing one binary string that represents this 
vertex. This string is processed to construct the actual 
value of the B-1 matrix and the revised simplex 
method (RSM) applies their simplex procedure [1].  



In figure 5 the SCM algorithm is shown and in the 
next subsections, the principal aspects of this method 
are described.  
The main components of the SCM are the schema for 
the representation of one solution using the 
information of the angles between the gradients and 
the transfer scheme from this binary representation to 
RSM. 
 
 
 procedure Simplex_Cosine; 
 begin 
    {*** Cosine  phase ***} 
    θθ←Vector with the angles between each constraint  
          and the objective function; 
    s←Binary string with the representation of basic 
          and non basic variables. The angles in θθ with 
          the minor value  represent one non basic 
          variable (si=0). 
         For n variables and m constraints, n minor 
         angles represent the non basic variables. 
    {***Transition phase***} 
    Determine original B-1 (B-1

0 = I); 
    Ibasic←{i|i∈s∧( s)i=1}; 
    Construct a matrix T of A such that {Tj|j∈Ibasic}; 
    Apply i row operations in matrix [T|B-1

0] such  
    that Ti=I; 
    B-1

better← B-1
i, the right side of matrix [Ti|B

-1
i]; 

    Actualize C such that {cj=0|j∈Ibasic}; 
    Actualize b, xB and xNB with the i row operations; 
    {***RSM phase***} 
    optimality← feasibility← true;  
    while not optimality∧feasibility do 
       RN← CBB-1N – CNB; 
       if RN > 0 then optimality←true; 
       else begin 
           select k as the entering variable such that  
   (RN)k is the minimum; 
           select j as the leaving variable as in (6); 
           if xj not exist then feasibility←false; 
           else Update xB, xNB and B-1; 
        end 
    end 
    if optimality then z←CBxB; 
 end 

 
Fig. 5. The Simplex Cosine Method. 

 
3.1 Binary representation of solutions 
Each string represents a basic solution of a LP. A LP 
with n variables m constraints has m basic and n non-
basic variables. String length is m+n bits, where a bit 
1 represents a basic variable and a bit 0 is a non-basic 
variable. All strings have m bits 1 and n bits 0. Figure 

6 shows two examples of basic solutions for a LP 
with n=2 and m=4.  

 

 
Fig. 6. Two examples of basic solution codified as 
binary string: bits 1 represent basic variables and bits 
0 represent non-basic variables. 
 
3.2 Determination of one initial solution 
Using the problem represented in (10) the SCM will 
make the following calculations:  
 
Gradient of the objective function: 

   ∇∇f(x)= [ 5.00,  4.00] 
 

Gradient of the non negativity constraints: 

   x1 =[-1,  0] Cosine =-0.78 ( 141.34
0) 

   x2 =[ 0, -1] Cosine =-0.62 ( 128.65
0) 

 

Gradient of the constraints: 

   ∇∇g1(x) = [ 6.00, 4.00] Cosine = 0.99 (4.960) 

   ∇∇g2(x) = [ 1.00, 2.00] Cosine = 0.90 (24.770) 

   ∇∇g3(x) = [-1.00, 1.00] Cosine =-0.11 (96.340) 
   ∇∇g4(x) = [ 0.00, 1.00] Cosine = 0.62 (51.340) 

 
The value between parenthesis is the angle 
corresponding to the cosine calculated. In this case 
the number of basic variables is four and the number 
of nonbasic variables is two; this is the reason the two 
smaller angles were taken from the previous 
calculations (the values associated to the constraints 
∇g1(x) and ∇g2(x)). This criterion allows to construct 
the binary string that represents a possible basic 
solution of the problem. The resulting codification to 
apply the angles is: 110011. 
Before to apply the RSM, the solution is evaluated 
for determining if this represents a vertex of the 
feasible region. In this case the solution is feasible 
and optimal, producing the following values 
 

Objective function = 21.00 

Value of the variables 

3.00 1.50 0.00 0.00 2.50 0.50  

This is a feasible solution. 

 



The solution of this phase can be feasible or not, 
optimal or not, so it is possible to apply four schemes:  
1. Optimal Feasible Solution: This is the solution of 

the original problem.  
2. Non-optimal feasible solution: To apply the 

revised simplex method (phase II). 
3. Optimal infeasible solution: To apply the dual 

simplex method. 
4. Non-optimal infeasible solution: To apply the 

simplex method(phase I and II) or some other 
method (simplex genetic method [10] or simplex 
annealing method [11]). 

 
3.3 Transfer scheme from cosine phase to 
RSM 
The solution produced by the cosine phase will be the 
initial solution for the RSM. The cosine solution 
(binary string s in the algorithm shows in figure 5) is 
transformed as the initial elements for RSM (B-1

better, 
xB, xNB, C and b). The original B-1

0 is an identity 
matrix I (constructed for the coefficients of the slack 
variables in the restrictions). Matrix T is then 
constructed using several columns of the original 
matrix A, this selection is based on the binary string: 
an Aj column is used in T if the site in binary string is 
1. Matrix T is the actual Bbetter. Then, reducing T to I 
and applying the same row operations in the original 
B-1

0, the actual B-1
better is calculated. Formulas  (11)  

and  (12)  show  how  B-1
better can be calculated using 

this schema. Figure 7 shows an example of this 
schema. 
 

Bbetterx  = Ib = B-1
0b 

x  = B-1
betterb 

(11) 
(12) 

 
The value of new C is produced changing the cj 
values by zeroes, if j is the index of a new basic 
variable. Vector b is actualized applying the same 
row operations used in the T reduction process. 
Finally, vectors xB and xNB are actualized. This 
schema avoids the direct calculus of B-1

better.  
 

4  Experimentation and results  
 
In order to prove this approach based on cosines, the 
cube of Klee-Minty was used (MKd), a hard linear 
problem where the SM has an exponential behavior. 
This behavior was demonstrated by Klee and Minty 
in [12]. KMd represented in (13) is a deformed 
product of one d-cube.  The figure 8 shows a 3-
dimensional KMd using ε < 1/3. KMd has an 
exponential behavior for any deterministic pivot rule 
([13]-[15]).  
 
 

 
Fig. 7. An example of the transfer schema over the 
values of matrix B-1 and to calculate its new value 
that is passed to RSM. 
 

max xd 
                   subject to     

0 ≤ x1 ≤ 1 
εxj-1 ≤ xj ≤ 1-εxj-1 

for j:1,…,d and 0<ε<1/2 

(13)

 
The principal results obtained with the SCM run on a 
Intel Caleron with 800 Mhz and 64 MB en RAM and 
they are shown in figures 9, 10 and 11. Figure 9 
shows an exponential behavior of RSM with the 
number of variables, and the same for SCM; however 
the increased rate in the later is much smaller that the 
former. It is clear that SCM has a substantial 
improvement over RSM for KMd.  
 

 
Fig. 8.  The Klee-Minty cube for n=3 and ε < 1/3. 

 
Of the obtained results (figure 10) it is observed that 
the SCM executes in average 66% less iterations than 
the SM, reason why is clear the advantage to use this 
method. Figure 11 shows the percentage saving for 
the SCM over the RSM in several dimensions of the 
Klee-Minty cube. 
At the present time the method is becoming general 
to apply it to classic test problems, like those of the 
NETLIB [16], studying the impact of the use of the 
artificial variables in the development of the 



algorithm, but the behavior for this class of hard 
problems gives indications of its possible success in 
the resolution of these classic problems.  
 

Behavior of RSM and SCM
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Fig. 9. Behavior of SCM and RSM. 
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Fig. 10. The comparison between the RSM and SCM. 

 

 
Fig. 11. % saving obtained between RSM and SCM. 
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