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Abstract- In this report  a complete analytic description for the temperature dependence of the
majority carrier in a single impurity doped  equilibrium semiconductor is proposed. This model
should provide an attractive alternative to commonly used rules predicting the temperature
boundaries for the exhaustion regime. This model is used to provide a confidence test for a less
restrictive robust numerical model  recently proposed in the literature. Both the analytic description
and results for the numerical algorithm are compared under a variety of  assumed conditions
including band-gap narrowing. Limitations of the analytic model are also clarified.
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1. Introduction
Integrated Circuits are specified to operate
between   designated temperature limits. The
circuit designer selects the doping level or
levels and typically assumes that the dopants
are approximately 100% ionized, i.e. exhaustion
and the   temperature is not too high. There can
be a significant   impact on the value of   a
plethora of device parameters such as
depletions widths and/or FET threshold
voltages   if   the assumption is violated.  In the
domain that the temperature is too low the
percentage ionization of dopant or dopants will
be significantly less than 100%.  The value for
the majority carrier concentration is depressed
significantly below the design value. On the
other hand if the temperature is too high the
thermal generation effect causes the majority
carrier concentration to become excessively
higher than the design value in what is called
the intrinsic temperature regime. The
exhaustion regime lies between this two
extremes, intrinsic and freeze-out.  It is well
known that for   a multiple impurity dopant
process this "simple" three regime description
can be inadequate.  What is important to the
designer is the plot of the majority carrier
versus the temperature, or what is more

commonly done, a plot of majority carrier
concentration versus reciprocal of the
temperature.

To-date most "analytic" methods for
determining dominant features in such plots
make use of multiple ad-hoc arguments, which
taken one at a time, applies in only two  of the
three regimes mentioned above.  Numerical
methods based on one-dimensional analysis are
applicable and provide significant flexibility in
terms of making predictions when there are
multiple dopants and when taking into account
2nd order effects. It can be argued that numerical
methods are generally going to be applicable
over a wider range of problems than what can
be solved with exact analysis. On the other hand
analytic  solutions are extremely useful for at
least two reasons. First, they provide limited but
essential checking of more  flexible numerical
algorithms. Second, they are more amenable to
sensitivity analysis. The analytic model
developed here will be applied to test just such
a   recently proposed numerical algorithm  [1],
[2].

2. Basic Analysis
The physical basis [1] for analysis assumes that
there is sufficient spatial uniformity in the



doping profiles in order to apply the condition
of  local charge neutrality,

( ) 0o o a dP T p n N N− += − − + =∑ ∑           (1)

where T is the Kelvin temperature, po and  no
are the equilibrium hole and electron carrier
concentrations respectively, while aN −  and dN +

are the ionized acceptors and donors atom
concentrations respectively. The summations
run over the numbers of impurities. The
approach presented is facilitated by defining the
parameter Z where:

( )exp /Fi FZ E E kT= −       (2)

where k is Boltzman's constant, EF is the Fermi
level and  EFi is the intrinsic Fermi level. In
nondegenerate cases, i.e. where the Boltzman
approximation can  be applied to simplify the
exact expression for the carrier concentrations,
the Z parameter is directly proportional to the
equilibrium hole concentration. The constant of
proportionality is the temperature dependent
intrinsic concentration. It turns out that Eq. (1)
can be expressed as P(Z).    Numerical methods
based on successive substitution in solving for
the zeros in expression (1) were found to be
unreliable in producing a convergent solution.
However the method proposed here is derived
from the numerical scheme known as interval
bisection [3] and it was found work well with
variety of combinations of profiles and other
nonstandard conditions. Figure 1 provides a
flowchart describing the salient numerical
features of the calculation. The basic scheme
had to be modified due to the extremely large
dynamic range in the P(Z). See for example,
Fig. 2a, which shows that the range of values in
P(Z) can cover 50 decades of variation. In
order to efficiently apply the method of interval
bisection a rough estimate for the zero in P(Z)
is needed  for each temperature of interest. This
is obtained in a simple way through use of the
'sign' and 'diff' vector operations as illustrated
on Figs. 2b and 2c, respectively.  This initial
rough estimate for where the zero in P(Z)
occurs will serve as a seed  for the interval
bisection method. This 2nd step produces a

smooth convergent solution using only one
decade of dynamic range centered on the seed.
Although this numerical algorithm can in
principle be applied  in  conditions  for which
the Boltzman approximation is invalid[2,4],
those details  are not essential to the main point
and will be excluded here to conserve space.
    The effective density of states, which is
derived in most introductory semiconductor
texts, is given by:
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where m* is the effective mass for the
respective bands [4].  In order to facilitate
casting Eq. (1) into a form dependent on the Z-
parameter the well known [4] relations for
intrinsic concentration and Fermi level are
used.
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Following the standard methods [1,4]of
expressing carrier concentrations in terms of
intrinsic parameters Eqs(4-5), it follows that:
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Making use of the Fermi probability
distributions[4] to predict ionization levels of
the donors and acceptors, i.e., aN − and dN + ,  and
substitution of  Eqs(6)  Eq. (1) and then dividing
by the intrinsic concentration [1] leads to a
condition on  P(Z,T):
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in which the temperature dependent constants,
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are needed to  characterize partial ionization.
Also Ma and Md are the numbers of impurity
components, and ga (4 typical for Silicon) and gd
(2 typical for Silicon) are the occupation
degeneracies, for acceptors and donors,
respectively. The donor and acceptor
concentrations with the over-bars are
normalized by the intrinsic concentration. The
energy levels for the impurities Ea, Ed are
defined relative to the valence band, i.e.,

                '
d c dE E E= −                        (9)

where '
dE  is the standard cited value for donors

measured with respect to the conduction band.
The polynomial P’(Z,T) as defined by Eq(7) is
used in the numerical algorithm Fig 1. This
analysis will also be the basis for an analytic
description provided in the next section.

3.  Analytic Solution, single impurity
Situation is described by the special case that
Ma=1 and Md=0 the summation subscript in
Eq(7) can be dropped to lighten the notation.
Straight-forward algebra leads to a cubic
equation in Z.
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The corresponding result for a single impurity
N-type is exactly the same form, producing a
cubic in Y=1/Z  revised  coefficients  obtained
by  letting the ‘a’ subscript (for acceptor) be
replaced with the ‘d’ subscript (for donor).  The
solution can be defined in terms of coefficients
for the reference cubic equation:

3 2
1 2 3 0x a x a x a+ + + =                (11)

To facilitate representation of the solution the
following intermediate parameterization of the

problem is commonly taken[5].
   2

2 1(3 ) / 9Q a a= −            (12a)

  3
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  3 2D Q R≡ +                             (12c)

where, D,  which is referred to as the
“discriminant”  for the cubic problem
will dictate the type of solutions possible. As
per the fundamental theorem of  algebra there
will be three roots.  For  D  negative all roots are
real while for D positive only one root is real
while the other two are complex conjugate. If D
is zero there will be repeated root.  For the
problem being evaluated it can be shown using
symbolic mathematical methods that Q and  D
will always be negative. Furthermore it can then
be shown that of the three roots only one is
positive and therefore physically acceptable.
That root will be predicted  by the  following
recipe [5] ,

1
12 cos( / 3)
3

Z x Q aθ= = − −             (13)

where  ( )1 3cos /R Qθ −= − .   Once Z is

determined the majority carrier concentration,
po, can be predicted from Eq(6b).

4.  Examples
 The first example should illustrate the
agreement in both the numerical method (as per
algorithm described in Fig 1) and the analytic
solution the following tests were performed.
Specifically it should prove interesting to apply
solution approaches to the situation in which
there is band-gap narrowing [6].
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where for Silicon recommended  values for α
and β  are provided on the Figure(3). Figure (3)
also shows both the comparison of solution
approaches for a test with bandgap narrowing
(BGN) and a test without.  The first observation
is that the numerical and analytic solutions are
in perfect agreement. Furthermore, as expected



the  impact of BGN  is  apparent in the curves at
the higher temperatures.
    As a second example the analytic solution is
tested on a number of  cases in which the doping
level is  changed.  Details for the examples are
provided  on Fig 4.  The break point lines were
generated with  typical “rules of thumb” [7],
which  depend on the temperature dependent
intrinsic concentration and effective density of
states. Reliable results are obtained  with an
iterative process. The disadvantage of this
method is clarified by noting that it was not
unusual for the number of iterative cycles to ran
over twenty for the break points shown on
Figure (4).
    The third example tests a situation in which
there are multiple donors. This situation  does
now fall in the umbrella of problems the cubic
analytic solution can handle. The details of the
problem are specified on Fig 5 and the results
shown demonstrate a number of points.  First,
the numerical method is a two step method with
the first “rough ”  solution serving as a seed for
producing a more accurate smooth solution.
Second,  this example illustrates the fact that
with multiple dopants the  standard 3 regime
description for  majority carrier concentration
temperature dependence no longer applies.  One
can identify 2 exhaustion regimes associated
with 1017/cm3 and    1016/cm3 .

5. Conclusions
An analytic formulation of the freezeout,
exhaustion problem has been proposed.  It   can
describe all three regimes for a single impurity
dopant.  The advantage of  the analytic approach
is that it provides a reliable but limited test for
the more robust and flexible numerical
algorithm also described here.  Both approaches
also agreed for the situation that temperature
dependent  band-gap narrowing is included
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Figure  1  Flow Chart for  Numerical Algorithm
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Figure 2, Finding Approximate
 zeros for P(Z)

Figure 4, Examples for Analytic Model

Figure 3, Comparison of  analytic equation with
numerical algorithm with and without band-gap
narrowing (BGN).

Figure 5 Multiple dopant test of  numerical
algorithm for which  analytic model  does  not
apply.


