Optimizing Conservative Parallel DE Simulation of

WANSs

B. Forgeau U. Killat
Department of Communication Networks
Technical University of Hamburg-Harburg - Germany
forgeau@tu-harburg.de killat@tu-harburg.de http://www.tu-harburg.de/et6

Abstract: A common problem encountered in the simulation of WANs is the huge amount
of data that the simulator handles. Especially with a parallel discrete-events simulation
scheme, this affects dramatically the performance because most of the data overloads the
list of pending events. We propose a simple algorithm which increases the performance of
parallel simulation by separating events according to their destination, and we verify the
performance speedup on a simple parallel simulation model.

Keywords: Conservative PDES, Event-List, Communication Network, WAN, Long Delays

1 Introduction Despite the diversity of communication

Simulation is often the only realistic way to
evaluate the performance of communication
networks. Their growing size and complexity
has increased the need for large-scale com-
puter simulations, which use timestamped
discrete-events (DE) as data entities. In such
simulation systems, the physical system is di-
vided into independent “Logical Processes”
(LPs) that receive and produce data, and
which are connected to each other via “links”
to reproduce the mesh of physical compo-
nents.

protocols, the different L.Ps typically used in
WAN simulations, and the simulation models
using these LPs, present similar character-
istics. Unlike VLSI simulations, which con-
sist of millions of simple components such
as gates or buffers exchanging binary in-
formations, communication networks models
contain a relative small number of heavy-
weight LPs and huge amounts of complex
data (called “packets”) traveling over long
links. These characteristics of long delays and
high rates have a great impact on the perfor-
mance of the simulation.

Another characteristic of communication
networks is their inherent parallelism. This
induces the idea of running large simulation
scenarios on parallel computers, thus open-
ing the issue of parallel discrete-events simu-
lation. In order to solve the problem caused
by the synchronization of processors running
the same simulation, two different strate-
gies have emerged: conservative and opti-
mistic [1]. While the second scheme is a very
active field of research, its requirements in
terms of data storage makes it hardly prac-
ticable for the simulation of WANs. For this
study, we assume that processors are synchro-
nized according to a conservative algorithm
similar to the ones found in |2, 3|.

In this paper, we first analyze the specific
issues of WANs simulation. Then we intro-
duce the “Link Event-Lists” as an algorithm
solving a typical problem of WAN simula-
tions. Finally we verify its impact on a simple
WAN model.

2 Problem Definition

In this first section, we show the influence
of long-delayed links on the performance of
sequential and parallel DE simulation.

2.1 Sequential Simulation

At first we need to describe the basics of
DE scheduling.An event is defined as a tu-
ple e = (d,t,1), where d is the data carried
by the event, ¢ is the simulation time at which
the event has to be processed (e.g. the times-
tamp), and [the input link of the LP that

should process this event.

A DE simulator basically stores all the
events in a globally stored “event-list”, where
they are sorted in increasing timestamp or-
der. At each simulation step, the event e with
the smallest timestamp is extracted from the
list and put on the destination link [, which
is an input link of the LP responsible for pro-
cessing e. Then the activation function of the
LP is called, which may produce new events
that come back in the event-list via the out-
put links.

We can consider the case of a “pure delay”
LP within a whole simulation model. Such
an LP has one input, one output, and its
sole function is to increment by d the times-
tamp of any event coming from its input link,
before putting it on the output link. Fach
produced event must wait for processing in
the event-list, while the events with smaller
timestamps are processed. More precisely,
the waiting time of an event is the difference
between its creation time and its timestamp,
which is 0. If we consider that links are mono-
tonic, e.g. that events on a particular link /
are produced in increasing timestamp order,
links can be seen as FIFO queues. Thus we
can apply Little’s result to express the num-
ber of events with the same destination link
[that are stored in the event-list: n = § x A,
where) is the event-rate on [.

This calculation can be generalized to an
output link of any LLP producing events whose
timestamps are bigger than their creation
time. Such LPs are needed in WANSs models,
for example to simulate transmission delays
over long wires or queuing delays. Because
the simulator must sort the events, the per-

formance of the simulation depends on the
size of the event-list, which in turn depends

on the products “rate times delay” of every
link.

2.2 Parallel Simulation

During the parallel execution of a DE simula-
tion, each processor uses an own local event-
list and runs an algorithm similar to the se-
quential one, with the difference that some
of the events are exchanged with other pro-
cessors as “messages” and that each processor
handles only a part of the whole simulation
mesh.

With a conservative algorithm, each pro-
cessor needs, at least periodically, to recom-
pute the value of the smallest timestamp
with which a future event may be gener-
ated |2, 4]. Because this value depends on all
the events stored in the event-list of a par-
ticular processor, the complexity of this re-
computation, along with the parallel simula-
tion performance, depends once again on the
size of the event-list, what depends on rates
and delays.

In this first section, we briefly explained
how the performance of WANSs simulation can
be influenced by links with big rates and long
delays. In the next section, we present a
simple optimization which is particularly well
adapted to parallel simulation.

3 Link Event-Lists

3.1 LELs algorithm

As we have seen, the number of events with
the same destination link [/, that are stored
in the global event-list, is mainly influenced
by the product of “rate times delay”. But the
first purpose of the global event-list in the DE
algorithm is to find one event for the next
LP to be scheduled. The remaining events
with bigger timestamps are also stored in the
global event-queue but not used for schedul-
ing purpose.

The time spent for sorting the events in the
event-list has a great impact on the perfor-
mance of the simulation. Many schemes have
been proposed to address this issue globally.
These algorithms consider the event-list as
a given set of independent prioritized items.
Our approach is to reduce the size of the
global event-list by distributing the events on
Link Event-Lists (LELs).

-«
-

Global
Event-List

LEL BC

Figure 1: Link Event-Lists

Each link has an event-list comparable to
the global one, and a variable size initialized
to 0. Figure 1 shows a representation of the

LELs for two links. The events with the same
destination link [are stored on the LEL corre-
sponding to [, except the one with the small-
est timestamp, which must be stored in the
global event-list of the processor, in order to
be used for scheduling. The Enqueue sub-
function is given in C+--like pseudocode:

void Enqueue(Event e) {
if (1ink(e) .size==0)
globalQueue.enqueue(e);
else
link(e) .queue.enqueue(e) ;
link(e) .size++;

¥

It is supposed that the links are mono-
tonic, then the link(e).queue.enqueue func-
tion has a complexity of o(1), for the events
just need to be put at the end of the LEL
without sorting. The complexity of the
enqueue function is then the complexity of
globalQueue.enqueue.

The monotonicity hypothesis is a needed
restriction for conservative PDES but does
not limit the design possibilities of most LPs.
LELs may be also used when the links are
not monotonic, but then the Enqueue func-
tion does need a real sort on the LEL. The
Dequeue function is given as:

Event Dequeue() {
Event e = globalQueue.dequeue();
if (linke(e) .size>1)
globalQueue.enqueue (
link(e) .queue.dequeue()) ;
link(e) .size--;
return e;

}

Because a dequeue function on an event-
list has a complexity of o(1), the complex-
ity of Dequeue is the same as the one of
globalQueue.enqueue. But with this algo-
rithm, at most one event per link is stored in
the global event-list. Thus the enqueue func-
tion on the global event-list must do at most
Nyinks Operations, where ny;,.s is the number
of links in the simulation model. As a result,
the complexity of Dequeue is also o(1), if we
take the total number of events in the simu-
lated system as parameter.

The obvious advantage of the LELs is that
the maximal number of events contained in
the global event-list is limited by the num-
ber of links in the simulation model. More
precisely, for each link [with a product rate
times delay bigger than 1, what means that
the LEL contains events, the only event with
destination [in the global event-list is the one
with the smallest timestamp.

3.2 Simulation Results

We verify the correctness and the perfor-
mance of the LELs on a typical WAN model
with long-delayed, intra-processor and inter-
processors links. The model is designed in
such a way that the rates do not depend on
the delays. We simulate the model over a
wide range of delays with and without LELs.

At first we can observe on Figure sim:size
the size of a local event-list on a particular
processor. As expected, the size increases as
the delay increases without LELs (“linear”),
and is limited with LELs.

We then observe on Figure sim:execpar the
execution time of the whole simulation. We

m 1000 :II T III T III T III T III ;:
N C A =
n - Linear + 4
7 i LELs X4 1
= [+
T

g 100 TS
L = + =
o - +F .
2 f % :
§ 'XX%%KX*** HORK X XRK X
< 10 II L III L III L III L III L

001 01 1 10
Delay

Figure 2: Size of the events-list

see a difference of behavior for long and short
delays. On the left side, we can observe
the effect of null-messages retransmissions [2].
On the right side, we see that the LELs make
the performance stable for long delays, what
is not the case with the normal scheduling
algorithm.

qE) 100
= Linear
c

S

5

o 10
x

L1

o

<

a

o 1

Delay

Figure 3: Execution time for various delays

In the context of WANSs simulation, where
the event-list is typically overloaded with
events coming from long-delayed links, the
LELs, which can be implemented apart from

any other optimization scheme, provide a sig-
nificant speedup.

4 Conclusion

This paper deals with parallel DE simulation
of communication networks. We first intro-
duced the influence of the product rate times
delay on the performance of parallel and se-
quential simulation. We then introduced the
Link Event-Lists as an optimized scheduling
algorithm and verified its performance in a
parallel simulation.

References

[1] David M. Nicol and Richard M. Fujimoto.
Parallel simulation today. Annals of Op-
erations Research, (53):249-285, 1994.

[2] J. Misra. Distributed discrete-event
simulation. ACM Computing Surveys,
18(1):39-65, 1986.

[3] Kenneth R. Wood and Stephen J. Turner.
A generalized carrier-null method for con-
servative parallel simulation. In Proceed-
ings of the 8th Workshop on Parallel and
Distributed Simulation (PADS °94), 1994.

[4] E. Naroska and Uwe Schwiegelshohn.
Conservative parallel simulation of a

large number of processes. Simulation,
(72):150-162, 1999.

