
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 Introduction 
Autonomous robots must be able to learn and 
maintain models of environments, particularly when 
robots operate in dynamic environments. To navigate 
in indoor environments and build a good model of 
the environment, the mobile robot must know where 
it is. Certainty grids are a probabilistic finite-element 
representation of robot spatial knowledge. These 
grids allow the efficient accumulation of small 
amounts of information from individual sensor 
readings into increasingly accurate and confident 
maps of robot’s surroundings [8]. 
 
Ultrasonic range sensors are simple in construction, 
simple in operation and mechanically robust 
providing a very low cost process for environment 
perception. These sensors provide distances to 
surrounding obstacles located within their radiation 
cone. The time elapsed between the transmission of a 
wave and the reception of its echo allows the 
computation of a range reading. However, these 
sensors have some properties that make map 
building a non-trivial process. These sensors have a 
very poor angular resolution, and exhibit specular 
reflections. Experimental based models derived from 
data collection have been presented in [7,10]. The 
ultrasonic pulse may not be reflected back to the 
sensor, therefore some surfaces may appear to be 
invisible and the mobile robot can collide. To 
overcome sonar limitations a probabilistic model in 
occupancy grids with a Bayesian cell’s updating 
formula was adopted in our work. In order to 
minimize errors, sensor’s readings are interpreted by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
means of a neural network before the Bayes’s 
update. This paper extends our previous work on 
grid map building [6] by exploiting the performance 
of three neural network configurations. The 
knowledge of the surroundings provided to the 
mobile robot controller, acts as a safety device, and 
can ensure a navigation free of collisions. 
Additionally local maps allow trajectories and 
manoeuvres planning.  
 
The paper is organized as follows. Next we present 
previous work in map building. Section 2 describes 
the map building architecture. Section 3 describes in 
detail the grid map building algorithm. Experimental 
results are shown in section 4. Some conclusions are 
reported in section 5. 
 
 
 
1.1 Related Work 
Occupancy grid mapping was proposed by Moravec 
and Elfes [4], and since then has been adopted in 
numerous robotic systems. Sonar readings are 
interpreted through probability profiles to determine 
empty and occupied areas. In the map, beyond empty 
and occupied cells (areas), unknown areas were 
explicit represented. Borenstein and Koren [1] 
applied the occupancy grid map representation in 
fast obstacle avoidance. A good performance was 
achieved with a simple and fast method for update 
cell´s value. In [9] is described a stereovision based 
mapping and navigation for mobile robots. The 
algorithm  integrates   stereovision,   occupancy  grid 
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mapping and potential field path-planning 
techniques. Another way of building maps was 
presented in [11], where occupancy grid is associated 
with fuzzy logic theory. Chow et al. proposed in [3] 
a probabilistic grid mapping where the probability 
distribution function is tuned by fuzzy rules. A 
method to build topological maps using grid-based 
maps is presented in [12] where the information of 
environment is acquired by sonars and stereovision.  
 

 
 
2 LOCAL MAP-BUILDING 
PROCESS 
Figure 1 shows the map building architecture. The 
updating process of a given cell (x,y) starts with the 
Sensors Selector module that chooses two (or three) 
sensors with orientations closest to the orientation of  
the cell. The range readings of the selected sensors 
are provided to the neural network. The function of 
the neural network (figure 2) is to provide the 
conditional probability P(cxy|o) given actual sensory 
observation o. The cell is finally updated by using 
the Bayes update formula. In next sub-sections this 
procedure is explained in more detail. 
 
 
 
2.1 Neural Networks 
In the map building architecture a feedforward 
neural network is used to determine de probability 
P(cxy|o) of a cell (x,y) being occupied given actual 
sensory observation o. In this paper we compare the 
map building method using three different 
feedfoward neural networks: NN1, NN2 and NN3. 
For a given cell (x,y), the input layer of the neural 
networks consists of: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NN1 (Figure 2a) 
1) The observation o1=(s1, s2) of the two sensors 

oriented in the direction of cell (x,y); 
 

2) The distance of the center of the cell (x,y) with 
respect to the mobile robot coordinate system, 
as illustrated in the example of figure 3 for a 
circular mobile robot used in the experiments.  

 
NN2 (Figure 2b) 
1) The observation o2=(s1, s2, s3) of the three 

sensors oriented in the direction of cell (x,y); 
 
2) The distance of the center of the cell (x,y) with 

respect to the mobile robot coordinate system. 
 

NN3 (Figure 2c) 
1) The observation o3=(s1, s2) of the two sensors 

oriented in the direction of cell (x,y); 
 
2) The polar coordinates (distance and angle) of 

the center of the cell (x,y) with respect to the 
mobile robot coordinates system. 

 
Therefore, the input layer of the neural network 
has three nodes when we use two sensors (NN1) 
and has four nodes if we use three sensors 
(NN2) or two sensors and the polar coordinates 
of the center of the cell (NN3). The output layer 
has only one node which produces P(cxy|o). In 
each case the network was trained off-line with a 
back-propagation algorithm [5]. The training 
examples were generated with the mobile robot 
simulator. Placing the robot in a known 
environment, a set of examples was made 
recording sensor readings at various situations 
and for adequate ranges according to the cell’s 
size and the size of the grid maps. After training, 
the network gives values in the range [0,1] that 
can be interpreted as probabilities of occupancy. 

Fig. 1. Map-building architecture. 
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Since the neural network is trained based on 
examples, it can easily be adapted to new 
situations. Another advantage is its capacity to 
interpret several sensor readings simultaneously. 
Interpreting sensor readings in context of their 
neighbours generally yields more accurate 
results [12]. 

 
 
2.2 Bayesian-based cells updating 
The local mapping consists of estimating the 
occupancy of a specific area around the robot that 
moves with it. Let cxy denotes “cell (x,y) occupied”. 
So cxy denotes a discrete random variable with events 
in the universe {0, 1}, i.e cxy = 1 stands for cell 
occupied, and cxy = 0 stands for cell free. The 
mapping can be seen as the problem to estimate the 
conditional probability: 
 

P(cxy|o(1),....., o(N)) 
 
where o(1), denotes the first (in time) observation and 
o(N) the last observation. Based on Bayes theorem, we 
can express the conditional probability of cell (x,y) 
to be occupied, given a sequence of observations, as 
follows [2]: 

 
 

P(cxy|o(1),....., o(N)) = 
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Applying the concept of “odds of cell (x,y) to be 
occupied” [8], under the assumption  of statistic 
independency of sonar readings, obtained at different 
instants of time, and with mathematical manipulation 
we can express the conditional probability as 
follows: 
 

 
 
P(cxy | o(1),....., o(N)) = 1-(1 + b)-1      (2) 
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In equations (2) and (3) P(cxy|o(N)) is given by the 
neural network, P(cxy) is the initial probability of 
occupancy of cell (x,y), (equal to 0.5), and P(cxy | 
o(1),....., o(N-1)) represents the probability before the 
actual update. Using equation (2) we can evaluate 
iteratively the probability of occupancy of each cell, 
which means that only one value per cell needs to be 
stored in the local map. 
The value of the map cell (x,y) represents the 
probability of the corresponding space to be 
occupied (near 1) or free (near 0). Initially all cell 
values are set to 0.5, i.e. unknown case. Every time a 
cell seems to be occupied, its value increases, on the 
contrary, its value decreases. Due to the 
mathematical characteristics of the update equations 
(2) and (3), if the cell value is 1 or zero, in the 
following iterations, the result remains always 1 or 
zero respectively, independently of the value of 
P(cxy|o(N)). In the experiments described in section 4, 
it was used the range [0.01, 0.99]. 
 

 
3 LOCAL MAP BUILDING 
The occupancy grid approach has the following 
advantages: simplicity, robustness and adaptability to 
several environments. In this method, the 
environment is shaped as a 2D discrete grid. As 
explained in section 2.2, the value of the cells should 
be limited to the range ]0, 1[. 
 
 
3.1 Cell Update Algorithm 

 
1. Initialization: P(cxy ) = 0.5 
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Fig. 2. Feedforward neural networks a) NN1; b) NN2; c) NN3. 



 
Fig. 3. The mobile robot and sensor’s orientation.  
Each Si represents a sonar sensor. {M} defines 
the robot’s coordinate system. R and θ are the 
polar coordinates for the cell (x,y) related to {M}. 

 
 

2. For each cell (x,y) and for each new observation 
o(N) (selected for this cell) the neural network 
gives as output P(cxy|o(N)). 

 
3. Cell’s value update: 
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where P(cxy)[k] denotes the actual cell’s value, that is 
P(cxy)[k]= P(cxy|o(1),....., o(N)). Equation (4) is 
equation (2) after the following operation. Since in 
equation (2) P(cxy) denotes the cell’s initial value that 
is 0.5, then: 
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3.2 Selecting Sensor Readings 
Whenever a cell (x,y) is proposed to be updated, it is 
necessary to find the sensors more adequate to 
provide   information    about    distances,    in   cell’s 
direction. We use the angle of the polar coordinates 
of each cell (x,y) to choose the two (or three) sensors 
whose orientations are the nearest to the cell’s 
orientation. 

 
 

3.3 Local Maps 
When the robot is in motion, a window (grid of cells) 
is moving with it, therefore, it is necessary to have a 
relative position estimation, in order to update 
correctly the cells in the local map.  In the local map 
the position of  the robot  relative  to  the  window of 

 
Fig. 4. Simulation environment. 

 
 
 
cells is fixed (at the centre). When the robot is 
moving we take into account the displacement of the 
robot in cell’s updates. The odometry information 
plays an important role in this point. This 
information allows the correct slide of the window of 
cells (local map) according with the movements of 
the robot. 
  
 
4 EXPERIMENTAL RESULTS 
The following results were obtained using the 
Nomad 200 simulator and its 16 sonar proximity 
sensors. The sensors are disposed around the robot as 
described in figure 3 (top view of the robot). The 
simulation environment is depicted in figure 4, 
which consists of an area of 12x12m2. Figure 5 
shows three local maps obtained by the map-building 
architecture using the different neural-network 
configurations: NN1 on the left side map; NN2 on 
the centre map; NN3 on the right side map. The 
square frame around the robot (small circle) shown 
in figure 4 represents the portion of space mapped in 
the local maps of figure 5. The local grid map has 
3600 cells, each one representing an area of 5x5 cm2. 
As can be observed the grid maps are very 
representative of the local space. 
In figure 6, a comparison of the errors of the local 
grid maps of figure 5, for some directions, is shown. 
We can observe that the NN2 generates errors 
between 1.5 cm and 34.7 cm, which are in some 
cases slightly above to the corresponding errors 
generated by NN1. NN3 generates the smallest 
errors. The map-building method, for the three NN 
cases, was also analysed according to the following 
properties: robustness, adaptability and the impact of 
robot rotations. The robustness was analysed for a 
static  environment  observing  the  map  after  initial 
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      Fig. 6. Error analysis for the three approaches. 
 
 

updates (the map is initialised with all cells with 
value 0.5) and observing the map after multiple 
updates. The robustness is inferred by comparing the 
two local maps. The robustness is higher as much as 
the similarity is higher. All the neural networks 
proved to have high robustness with results 
marginally better for the NN3. Adaptability was 
analysed as follows: first an object is introduced in 
the environment (in the surroundings of the robot), 
next the reaction of the method was analysed for the 
first update and after 15 updates of the map. The 
procedure was repeated when the object was 
removed. If the method adjusts the local map quickly 
to the changes in the environment then the method 
shows good adaptability. It was observed that the 
method for the three NN cases reacts quickly to 
environment changes. This property is very 
important particularly when the robot operates in 
dynamic environments. The impact of robot rotations 
was analysed by rotating the robot a few degrees and 
observing the changes in the local map. When the 
robot rotates, sensor’s orientation changes and 
naturally the distance information provided by each 
sensor may change. Sometimes these changes are 
enough to make a local map quite different from the 
correct local map. The method with NN2 proved to 
be less sensitive to robot rotations and the method 
with NN3 achieved slight better results than NN1. 

Since NN2 uses information from three sensors it 
integrates better the changes derived by  the rotations 
 

 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 7. Real environment. 
 

than the other neural networks that make use of only 
two sensors. However, for example, increasing the 
number of sensors this problem can be minimized. 
Extensive simulations were performed and in general 
the local map-building method with NN3 achieved 
the best results.  
In order to test this method in real environments we 
used the Nomad’s Scout II mobile robot. Figure 7 
shows an example of a real environment used in the 
experiments with the mobile robot. A local map built 
using real sonar data, with the top view of the real 
environment superimposed, is shown in figure 8. 
Observing this figure we can conclude that the 
method has good performance real situations with 
good adaptability and robustness. Figure 9 shows a 
local map, in a real situation, where one of the small 
objects near the robot is not detected due to a robot 
rotation of 66º, in clockwise direction.  
 
 
5 CONCLUSIONS AND FUTURE 
WORK 
The paper describes a method to build local grid 
maps. The map building process uses neural 
networks to interpret the readings of sonar sensors, 
and a Bayesian rule for cell’s updating. A 
comparative analysis was made for three different 
architectures  of   neural  networks,   in  a  simulation 

Fig. 5. a) Local map using NN1; b) Local map using NN2; c) Local map using NN3. 
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Fig. 8. Local map superimposed with top view 

of the real environment. 
 
 
environment, in terms of accuracy, robustness, 
adaptability and impact of robot rotations. The 
method using NN3 generates local maps with the 
smallest errors, with good adaptability and 
robustness. This method was tested in a real mobile 
robot showing good results as well. However, in 
some cases, the impact of robot rotations in local 
maps can be high as mentioned in section 4. 
The architecture proposed (figure 1) to build grid 
maps uses a set of sensors to update cell’s value. The 
sensor with smaller distance predominates in the 
presence of sensors with greater distances. 
Therefore, it may arise high errors when a set of 
sensors used to update the cells gives measures with 
significantly disparate values.  
The map-building algorithm will be further 
investigated in the following directions: 1) 
integration of other sources of sensory data; 2) 
application of the algorithm in the navigation of a 
real mobile robot; 3) building an indoor global map 
by integrating local maps information. 
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