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Abstract:  In this paper an application is presented of the wavelet packet method  for denoising 
of impulsive vibration signals. Vibration response of machines often includes signals with 
periodic excitation of resonances. The aim is to extract information regarding the physical 
mechanism which generates the impulsive characteristics of the signals. The signals are 
transformed using the wavelet packet method, and the resulting coefficients  are nonlinearly 
modified. The reconstructed time waveform  of the signal using the modified coefficients may  
reveal the impulsive characteristics, resulting in a safer identification of the source of the 
impacts.  The approach and its parameters are evaluated  on industrial  signals resulting from 
defective bearings.  

Key-Words: - wavelet packet,  vibration , impulsive signal,denoising  
 
 

1   Introduction 
The  Fourier analysis is widely used for the 

detection of  periodicities of  vibration signals. It is 
based on the assumptions of stationary signals, 
however, many signals contain numerous  transient 
characteristics. For example, the vibration response 
of rotating machines often includes impact 
generated transient signals, typical cases being the 
vibration  response of machines subjected to defects 
or wear of certain machine parts. In  those  cases  the  
the impact periodicity is usually the interesting 
information which characterizes the impact source,  
while the overall  frequency content of the signals is 
not significant.  

A common approach to   processing of vibration 
signals is to measure the vibration level  and  
generate the Fast Fourier transform of the measured 
signals. Often, frequency spectrum peaks  
characterizing the impact source are not easily 
observed, or may have multiple  interpretations.  

In order to overcome this problem a number of 
time domain and frequency domain methods have 
been proposed [1-4]. The  aim is to develop signal 
processing methods that are able to extract patterns 
that relate to the source of the impact mechanism.  
Joint time and frequency domain methods, such as 
the Short Time Fourier Transform, the Wigner-Ville 
Distribution and the Wavelet Transform, have been 
widely used in many signal processing areas.  

Wavelets have been established as a widespread 
tool, due to their flexibility and to their efficient 
computational implementation [5-8]. They have  
been introduced in vibrations [9] and there are 
specific case studies for bearing fault detection and 
for other machine components [10]. In many cases 
the application of wavelets has been combined and 
enriched by using additional features, such as 
Gaussian/exponential-enveloped functions [11], and 
de-noising methods [12]. 

The Wavelet Packet Transform is a 
generalization of the wavelet transform and has been 
used in signal processing  for denoising or 
compression of   signals  [13-14]. Applications in 
machining process have also been proposed [15]. In 
this paper a wavelet packet transform is used  as a 
tool for the denoising of vibration signals  with 
impulsive characteristics.  The aim is to extract the 
impulsive information and reject the unwanted 
information due to other factors. The unwanted 
information is assumed to exist as a part of each 
signal component. Thus, a nonlinear modification of 
the all the wavelet packet coefficients is applied and 
the signal is reconstructed.  In chapter 2, a brief 
review of the basics of the wavelet transforms is 
presented. In section 3, the wavelet based denoising   
and the parameters of the implementation are 
discussed. In section 4 the proposed approach is 
evaluated  on industrial measurements for two  types 
of bearing faults.  
 
 



 

2   Wavelet Transforms  
   
 2.1 The Continuous Wavelet Transform    

The continuous  wavelet transform (CWT) of a 
finite energy signal x(t) with the analyzing wavelet 
ø(t) is the convolution of x(t) with a  translated and 
scaled  wavelet : 
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The wavelet coefficient W(á,b) measures the 
similarity between the signal x(t) and the analyzing 
wavelet ø(t) at different scales as defined by the 
parameter a, and different time positions as defined 
by the parameter b.  
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Small values of a give a contracted version of the 
basic wavelet and allows the analysis of high 
frequency components, while large values strech the  
basic wavelet and allows analysis of  low frequency 
components of the signal. The factor á–1/2 is used for 
energy preservation.  
Equations (1) and (2)  indicate that the wavelet 
analysis is a time-frequency analysis, or, more 
properly termed, a time-scale analysis. The wavelet 
transform can be also considered as a special 
filtering operation.  At successively larger scales the 
frequency  resolution improves and the time 
resolution decreases.  

2.2   The Discrete Wavelet Transform 
   The discrete wavelet transform is performed          
by choosing fixed values  
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 where m,n are integers. The discrete wavelet 
analysis can be implemented: 
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An orthonormal basis can be constructed for a0 =2 
and b0=1  
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 A fast algorithm can be implemented by using the 
scaling filter which is a lowpass filter L related to 
the scaling function ö(t), and the  wavelet filter, 
which is a highpass filter H, related to the wavelet 
function ø(t).       

The computation of these filters and their properties 
have been widely analyzed in [5, 6].  
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Figure 1. Basic steps of discrete wavelet transform 
(a) Decomposition, (b) Reconstruction  

The fast wavelet algorithm  can be implemented  in    
two  opposite directions,   decomposition   and   
reconstruction. In the decomposition step in         
Fig. 1(a), the discrete signal s is convolved with a 
low-pass filter L  and a high-pass filter H, resulting 
in two vectors cA1 and cD1.  
The elements of the vector cA1 are called 
approximation coefficients and the elements of the 
vector cD1 are called detail  coefficients. The 
symbol �2 denotes  downsampling i.e. omitting  the 
odd indexed elements of the filtered signal,  so  the 
number of the coefficients produced by the basic 
step is approximately the same as the number of 
elements of the discrete signal s.  In the 
reconstruction step in Fig 1(b) a pair of filters LR 
and HR are convolved with  the vectors cA1 and cD1    

respectively. Two signals are produced  resulting in 
a reconstruction signal A1 called Approximation, and 
a  reconstruction signal D1  called Detail. The 
symbol �2 denotes upsampling e.g. inserting zeros 
between the elements of the vectors cA1 and cD1. An 
important property of this step is 

1 1= +s A D                                (6)  

The procedure of the basic step is repeated on the  
approximation vector cA1 and successively on every 
new approximation vector cAj. This idea is presented 
by means of a wavelet tree with J levels, where J is 
the number of iterations of the basic step.   

 



 

 

Figure 2.  An example of three level wavelet packet 
decomposition tree 

2.3  The Wavelet Packet Transform (WPT)  
The wavelet packet transform is a generalization 

of the wavelet transform. Let us define two 
functions W0(t)=ö(t), W1(t)=ø(t) where ö(t) and ø(t)    
are the scaling and wavelet functions respectively. 
Then in an orthogonal case we can write functions 
Wm(t), m=0,1,2,…, as 
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where j is a scale parameter and n is a time 
localization parameter. The analyzing functions 
Wj,m,n are called wavelet packet atoms.  

In practice a fast algorithm is applied by using 
the basic step  of Fig.1. The difference is that both 
details and approximations are split into finer 
components, resulting in a wavelet packet tree.  In 
Fig. 2 an example of a wavelet packet 
decomposition tree of three levels is  presented.  

3. Denoising  
3.1 Wavelet Based Denoising  
The wavelet decomposition allows searching an 

optimal decomposition among L trees if a signal has 
been  decomposed at L levels. Wavelet 
decomposition involves the selection of an optimal 
decomposition tree among 2L . Several criteria have 
been proposed for the optimization of the 
decomposition as the Shannon entropy.  

An application of the wavelet analysis is to 
remove  undesired components from the signal 
through a denoising approach. The linear  denoising 
approach assumes that the udesired components 
(noise) are located in certain scales  and the signal is 
reconstructed without those components. 

The nonlinear denoising assumes that the noise 
components exist in each coefficient vector  and 
involves a thresholding approach in order to remove 
those components.  
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or in a more generalized form [12] 
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where 0<q<1 and when q=0  hard  thresholding is 
applied, when q=1 soft thresholding is applied. 
There are several criteria for the selection of 
threshold [13]:  
Steins unbiased risk estimate (SURE)  is an adapted 
threshold selection rule. 

22log ( log ( ))hr et n n=              (10) 

where n is the number of samples of the 
decomposition level. 
Fixed threshold approach FIXTHRESH  

2log( )hrt n=                   (11) 

calculates the threshold with respect to the  length 
of the signal. 
The HEURISTIC SURE approach  a variant of the 
SURE approach 
 The MINIMAXI procedure 
 

0.3936 0.1829log( )hrt n= +              (12) 
 

These models assume noise distributed with zero 
mean and variance of 1 and have to be rescaled 
when dealing with unscaled noise.  

A method  proposed in [12] is based on the 
continuous wavelet transform using the Morlet 
wavelet. A simple inverse transform which requires 
only one integration is used [7] 
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and in a discrete form 
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 if A is the domain of a.   
 
3.2 Parameter selection 
 The purpose of this application is to isolate the 
impulsive components of the signal and reject the 



 

rest of the signal. These characteristics are assumed 
to exist in the  largest coefficient values of each 
coefficient vector.  

 The signal is decomposed using the wavelet 
packet transform. It is   decomposed at a specific 
depth L, for example L=3 results in 23 coefficient 
vectors. This decomposition has the advantage that 
the wavelet coefficients of different coefficient 
vectors, which belong to the same level L, are 
equivalent in terms of signal energy.  By selecting 
decomposition    which produces coefficient vectors  
which belong to the same level, the same threshold 
value for all coefficient vectors  can be  selected.  
The threshold is selected as a portion of the 
maximum  of the absolute value of the set of all the 
wavelet packet coefficients 
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Hard thresholding is applied because it was found to 
be more effective for the purpose of isolation of 
impact generated peaks of signals.  
A  variation of this method is also proposed. 
According to this variation the coefficients y are 
modified  according to the formula: 

| | sign( )mk
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 where km integer. This nonlinear approach modifies 
the coefficients in a way that coefficients with larger 
absolute values contribute more in the 
reconstruction of the final  signal. The RMS  level of 
the signal is modified because of Eq. 16.This is a 
qualitative process aiming at isolating of impulsive 
characteristics. 

4 Results and evaluation 
 The method is  tested on impulsive vibration 
signals resulting from defective rolling element 
bearings.  
 Defects or wear cause impacts at frequencies 
governed by the operating speed of the unit and the 
geometry of the bearings, which in turn excite 
various machine natural frequencies. 
For example the characteristic defect frequency fo of  
a bearing with an outer race fault is 
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where  d is the roller diameter, E is the pitch 
diameter , z is the number of rolling elements, a is 
the angle of contact. 

 The general assumption with rolling element 
bearing faults is that a measured signal contains a 
low-frequency phenomenon that acts as the 
modulator to a high-frequency carrier signal. In 
bearing failure analysis, the low-frequency 
phenomenon is the impact caused by a defect of a 
bearing; the high-frequency carrier is a combination 
of the natural frequencies of the associated rolling 
element or even of the machine. The goal of 
denoising is to suppress the oscillation caused by 
each impact and isolate an impulse sequence.  

Two characteristic industrial cases are  presented. 
Both signals were supplied by Alouminum of 
Greece S.A sampled at 8.33 kHz. The bearing 
examined in Case A is of type  22228cck/w33  
manufactured by SKF. In case B the type of the 
bearing is1218C3. In both cases the signals were 
wavelet packet decomposed up to the level L=3, the 
Daubechies  wavelet db4 was used. k th=1.5 and km=5 
were selected. 

 In case A, an extended outer race fault (fluting) 
was created on the outer race by electric arc caused 
by electric welding in the background of the bearing. 
In Fig. 3 the measured time waveform is illustrated. 
The signal is denoised by applying Eq.(15). The 
resulting waveform is illustrated in Fig. 4. Peaks 
spaced at the characteristic outer race defect period  
(approximately 5.2 ms) are observed and the shaft 
rotation frequency modulation becomes  clearer.  
In case B the defect was on the outer race,  but it has 
a localized  shape. The time domain shape in Fig. 5 
does not reveal clear impulsive characteristics.  In 
Fig. 6 the denoised signal applying Eq. (15) is 
presented. Peaks spaced at  the characteristic outer 
race defect  period (approximately 6.4 ms) are 
observed. 

In Fig. 7 the denoised signal applying Eq. (16) is 
presented. Peaks spaced at  the characteristic outer 
race defect period are also observed. 

Spacing of the impacts is approximate due to 
speed variation and sliding effects. 

5 Discussion - Conclusion 
 Denoising of vibration signals by modifying 
wavelet packet coefficients was presented.  
It offers a better visual inspection of the impulsive 
content of the time domain signal.  The wavelet 
packet denoising can be helpful when used in 
combination  with the traditional frequency domain 
methods.  It makes  diagnosis of faults  safer, since 
the interpretation of peaks in the frequency spectrum  
may have multiple interpretations. Hard 
thresholding  was applied. Daubechies wavelets 
were used.   
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Figure 3.  A vibration signal measured on a bearing with an extended outer race fault (case A) 
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Figure 4.  Denoised signal of Fig. 3 by   thresholding WP coefficients. 
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Figure 5. Vibration signal from an outer race localized defect (case B) 
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Figure 6. Denoised signal of Fig. 5 by thesholding WP coefficients  
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Figure 7.   Denoised signal of Fig. 5 by modifying WP coefficients using Eq.(16) 

It was observed that the use of  lower order wavelets 
results in more poor representation of the frequency 
content  of  each impact  response,  but results in a 
more  clear detection of  the presence of impacts.  
The wavelet packet method is simpler  than the 
Morlet denoising method a characteristic of which is 
redundancy.  The   Morlet based denoising method 
seems to be more effective than the wavelet packet 
denoising method in  extracting the frequency 
content  of each impulse response. However, in the 
tested cases the interesting diagnostic information is 
the periodicity and the intensity of the impacts rather 
than the frequency content of each  impact response. 
In several cases, hard thresholding  seems to be 
more effective than soft thresholding in terms of 
intensity of the impacts.  
The selection of thresholding level  was selected as a 
fixed portion of the maximum absolute value of the 
coefficients making this choice simpler. However, 
the selection of threshold affects directly the 
resulting time waveform. The choice of  threshold 
remains an open matter and should be the subject of 
future work.  
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