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Abstract: Separating vibration signals generated by defective rolling bearings is of major importance 
for rotating machinery health monitoring, since rolling bearings of the same type are quite 
frequently encountered in the industrial environment, especially in large machines, critical in the 
production process. For this reason, Blind Source Separation (BSS) is considered for application on  
vibration signals, which may include characteristic simulated defective bearing responses under 
different types of bearing faults. It is demonstrated that the BSS method, properly implemented, is 
quite able to decompose the measured signal into a number of independent components, each one 
corresponding to the vibration induced by an individual bearing. 
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1   Introduction 
 
Bearings are the most important components in the 
vast majority of machines and exacting demands are 
made upon their carrying capacity and reliability. 
Therefore it is quite natural that rolling bearings 
should have come to play such a prominent part and 
that over the years they have been the subject of 
extensive research. 

It has been found that defects in rolling 
bearings can be identified and quantified with 
vibration analysis. Bearing defects cause bearing 
impacts at frequencies governed by the operating 
speed of the unit and the geometry of the bearings. 
Excessive wear and defects cause the bearing to ring 
at its natural frequencies, a phenomenon utilized in 
high-frequency demodulation (enveloping) 
techniques [1]. 

However, although monitoring and fault 
diagnosis of rotating machines based on their 
vibratory and acoustical response is the dominating 
industrial practice, many practical problems are 
encountered, since the vibration and especially the 
acoustical response is usually corrupted by other 
interfering sources and noise. 

A frequently encountered industrial case is the 
separation of vibration responses of the same type of 
bearings inside the same machine, mounted for e.g. 
on the same shaft. In this case, methods for the 
decomposition of the measured the signals into a 

number of independent components is quite 
important, so that the individual bearing sources can 
be analysed separately. 

An ideal canditate for this reason, are Blind 
Source Separation methods, already used in 
statistical signal processing [6, 9, 10, 11, 12, 13].  

They first emerged as an extension to the 
well-known principal component analysis (PCA) by 
Comon [2]. Comon“s original studies were not 
specially on source separation but on finding 
domain decompositions producing basis sets that are 
statistically independent. In this approach, first, 
PCA is used to achieve independence up to second-
order statistics, then higher order cumulants are 
calculated, such as the third and fourth order 
cumulants. 

 Herault and Jutten [3] introduced a 
neuromimetic approach. Their algorithm worked as 
a neural network, in which certain weights were 
trained. A specific constraint on the network is the 
requirement that the inputs should have a zero 
mean. 

Bell and Sejnowski [8] have developed an 
unsupervised learning algorithm based on entropy 
maximization in a single-layer feed forward neural 
network. The algorithm is effective in separating 
sources that have super-Gaussian distributions. The 
self-organizing learning rule maximizes the 
information transferred in a network of non-linear 
units. 
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Amari et al. [7] derive a new on-line learning 
algorithm that minimizes a statistical dependency 
among outputs for blind separation of mixed signals. 
The dependency is measured by the average mutual 
information of the outputs. The Gram-Charlier 
expansion instead of the Edgeworth expansion is 
used in evaluating the mutual information. The 
natural gradient approach is used to minimize the 
mutual information. A novel activation function is 
proposed for the on-line learning rule. 

Cichocki et al. [5] present several 
modifications of blind separation adaptive 
algorithms, which have significant advantages over 
the Herault-Jutten learning algorithm in handing ill-
conditioned signals. The proposed algorithm is more 
stable and converges to the correct solutions in cases 
where previous algorithms did not.  

In this paper the sources of interest are 
separated, using the learning algorithm proposed by 
the quite recent algorithm of Te-Won Lee et al. [4], 
due to its general application. 

In section 2, an introduction on the principles 
of Blind Source Separation is performed, followed 
by the proposed learning rule. In section 3, signals 
resulting from the simulation of defective rolling 
elements of the same type are examined, in order to 
check the validity and performance of the learning 
algorithms. 
 
 
2 Principles of Blind Source 
Separation 
 

Blind Source Separation is critically related to 
Independent Component Analysis (ICA), a recently 
developed signal processing technique for analysing 
noisy mixtures of signals as a linear combination of 
statistically independent signals. This method is a 
class of signal processing methods by which 
unobserved signals (sources) are recovered from the 
observation of several mixtures. The observations 
are obtained as the output of a set of sensors, where 
each sensor receives a different combination of 
source signals. The adjective ’blind… indicates that 
the source signals are not observed and also that no 
information is available about the mixture. The 
basic assumption is that the mutual independence of 
the sources compensates the lack of knowledge 
about the mixture and the sources. From the 
mathematical point of view, the solution to the BSS 
problem is a separating matrix A which transforms 
the mixture signals into signals with a maximal 
degree of independence estimating the original 
source signals.  

The simplest BSS model assumes N unknown, 
independent signals s1(t), s2(t), τ , sn(t). These 
sources are instantaneously mixed with an unknown 
linear NxN matrix A, which produces observation 
signals x1(t), x2(t), τ , xn(t). 

Source signals are denoted by a Nx1 vector: 
 
s(t)=[s1(t), τ  , sn(t)]T, t=0,1,2,τ   (1) 
 

and it is assumed that each component of s(t) is 
independent of each other. The independence of the 
sources is defined by: 
 

p[s1(t), τ ,s1(t-Π),s2(t), τ ,s2(t-Π)]= 
 
=� p[si(t),si(t-1),τ ,si(t-Π)] (2) 

 
for any Π. Equation (2) implies that the joint 
distribution of signals can be factored by the 
propability functions used. The source signals s(t) 
are assumed to be of zero mean. 

Observations are presented by a vector: 
 
x(t)=[x1(t), τ  , xn(t)]T, t=0,1,2,τ   (3) 

 
They correspond to the measured signals. In the 
basic BSS problem, the observed signals are linear 
mixtures of the source signals: 
 

            x(t)=A*s(t) (4) 
 
where A is an unknown linear operator. 

The goal of the Blind Source Separation is to 
find a linear NxN separating matrix B such that the 
components of the reconstructed signals: 

 
          y(t)=B*x(t) (5) 

 
are matually independent, without knowing the 
matrix A and the probability distribution of the 
source signals s(t). 

The source separation criterion focuses on 
finding the spatial diversity of signals that are 
gathered from several different sensors. The time 
structure is ignored and the goal is to determine the 
probability distribution of vector x, given a sample 
distribution. The mixing matrix A is assumed to 
have linearly independent columns, which allows 
one to define algorithms with uniform performance 
whose behaviors are independent of a specific 
mixture. The input sources are taken to be matually 
independent, meaning that signal si(t) is not 
influenced by sj(t). The techniques for separating 
such sources are widely available. These techniques 
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vary depending on the assumptions of the source 
distributions.  

The separating technique that is chosen for 
implementation, is an extension of the infomax 
algorithm of Bell and Sejnowski [8], which is able 
to blindly separate mixed signals with sub- and 
super-Gaussian source distribution [4]. This is 
achived by using a simple type of learning rule, first 
derived by Girolami [4] by chosing negentropy as a 
projection pursuit index. Probability distributions 
that have sub- and super-Gaussian regimes are used 
to derive a general learning rule that preserves the 
simple architecture produced by Bell and 
Sejnowski. The method is optimized using the 
natural gradient by Amari [7], and uses the stability 
analysis of Gardoso et al. [14] to switch between 
sub- and super-Gaussian regimes.  

The learning rule for strictily sub-Gaussian 
sources is: 

 
dB/dt=[1+tanh(y)yT-yyT]B (6) 
 
The learning rule for super-Gaussian sources 

is: 
 
dB/dt=[1-tanh(y)yT-yyT]B (7) 
 
The difference between the sub- and super-

Gaussian leaning rule is the sign before the tanh 
function and can be determined using a switching 
criterion. 

The switching between the sub- and the super-
Gaussian learning rule is: 

 
 

               dB/dt=[1-ktanh(y)yT-yyT]B (8) 
 
and: 
  
                  ki=1: super-Gaussian 
                  ki=-1: sub-Gaussian (9) 
 
where: 
 
ki are elements of the N dimensional diagonal matrix 
K. 

In order to ensure that the elements: 
 
ki>0                                                            (10) 
 
the learning rule of equation (8) is used, 

where the elements ki are defined as: 
 

Ki=sign{E[sech2(yi)]E(yi
2)-E[(tanh(yi))yi]} (11) 

 

3   Analysis of bearing vibration 
signals 
 

A wear on a rolling element bearing 
component produces a train of impacts that occur 
periodically at frequencies characterized by the 
nature of the bearing defect, the bearing geometry 
and the rotation speed. The impacts cause 
resonances at the natural frequencies of the installed 
rolling element bearing or even of the entire 
machine. When the wear progresses, more 
frequencies around these resonances appear, which 
are sidebands of the machine rotation speed, as well 
as modulating peaks, spaced at the characteristic 
bearing defect frequencies. 

In order to check the validity and the 
performance of the above adaptive algorithms, as 
defined by Eqs. (8), (9), (10) and (11), simulated 
signals are used, corresponding to the above 
characteristic vibration response, resulting from the 
same type of rolling elements under a different 
defect, which are assumed to operate inside the 
same machine (for e.g. mounted on the same shaft). 

The first signal s1(t) corresponds to a typical 
response of a bearing with an outer race defect. The 
ball passing frequency outer race of the bearing 
(BPFO) is chosen equal to 74 Hz and the structural 
natural frequency w, assumed to be excited, is 
chosen equal to 1186 Hz. The sampling frequency 
of the simulated signal is 10 KHz, its length is equal 
to 4096 samples and the sfaft rotation speed fshaft is 
assumed to be equal to 22 Hz. 

Figure 1(a) illustrates the waveform of the 
signal, and Fig. 2(a) presents its Power Spectrum. 
The highest peak in the spectrum is the 
eigenfrequency w, which is surrounded by 
sidebands of the BPFO defect frequency. This 
pattern in the Fourier analysis of the signal provides 
an initial evidence of the modulation of the natural  
frequency by the bearing defect frequency BPFO. 

The second signal s2(t) presents a typical 
vibration response, generated at a rolling element 
bearing with an inner race fault. The sampling rate 
of the simulated signal is 10 KHz, its length is equal 
to 4096 samples, the rotation speed fshaft is 22 Hz, the 
eigenfrequency z is 2385 Hz and the defect 
frequency BPFI is equal to 113 Hz.  

Figure 1(b) presents the waveform of the 
signal, and fig. 2(b) displays the spectrum analysis 
of this signal. The spectrum presents sidebands of 
the defect and the rotational frequency around the 
eigenfrequency z. This frequency pattern could be 
indicative of a modulation effect, present in the 
signal. 
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Figure 1: Waveforms presenting simulated signals of the 
response of a rolling element bearing with (a) an outer race 
defect and (b) an inner race defect, and (c) white noise. 
 

The last simulated signal s3(t) represents 
noise, generated accidentally by other interfering 
sources. This signal is assumed to corrupt the 
bearing fault signals. The sampling rate of the 
simulated signal is also 10 KHz and its length is 
equal to 4096 samples. Figure 1(c) presents the 
waveform of the noise, and fig. 2(c) illustrates the 
spectrum analysis of this signal. 

In all cases the code of the algorithm that is 
used for the computation of the simulated signals 
has been developed under the MATLAB 
programming environment. The Blind Source 
Seraration analysis of the simulated signals was also 
implemented with the aid of the MATLAB signal 
processing toolbox. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Power Spectral density (PSD) of the signals in Fig. 1.  
 

The mixing matrix A is chosen to be nearly 
singular: 
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It was assumed that only the combined sensor 

signals x1(t), x2(t) and x3(t) are observable. The 
observed signals are shown in figure 3. The sensors 
that measure the signals x1(t) and x2(t) are mounted 
close to the sources that transmit the signals s2(t) 
and s1(t) respectively, whilst the sensor that 
measures the signal x3(t) is mounted close to the 
source that transmits the noise signal s3(t).  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3: Waveforms presenting the measured signals (a) x1(t), 
(b) x2(t) and (c) x3(t). 

 
The frequency analysis of the observed signal 

x1(t) is shown in figure 4(a). Several peaks appear at 
the power spectral density of the signal. As an 
experienced analyst might recognize, the most 
important ones correspond to the sidebands around 
the natural frequencies of w =1186 Hz and z=2385 
Hz, and the defect frequencies BPFO and BPFI. The 
spacing between the frequency components, that 
surround the eigen-frequencies w and z, is equal to 
the defect frequency BPFO and the shaft speed fshaft. 
Therefore, this frequency pattern could be indicative 
for modulation effects present in the signal and 
characterizing an outer and inner race fault of the 
bearing.  

The frequency analysis of the other odserved 
signals x2(t) [fig. 4(b)]and x3(t) [fig. 4(c)] present 
similar results to the ones mentioned above. It 
should be noted, that the weak source signal (BPFI) 
is not clearly visible neither in the observed signals 
nor in their frequency analysis. Additionally, it is 
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difficult to recognize the bearing with the inner race 
defect and the bearing with the outer race defect, 
since they are of the same type and assumed to be 
mounted on the same shaft.   

The Blind Source Separation algorithm of the 
observations x1(t), x2(t) and x3(t) of fig.3 is then 
implemented in order to separate the source signals 
s1(t), s2(t) and s3(t), and to identify the defect type of 
each bearing. The BSS algorithm has converged to 
the desired solution almost immediately, only after 
500 iterations. As illustrated in figure 5, the source 
signals are successfully and completely retrieved.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 4: Frequency analysis of the observations (a) x1(t), (b) 
x2(t) and (c) x3(t). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 5: Waveforms presenting the serarated source signals (a) 
y1(t), (b) y2(t) and (c) y3(t). 

Additionally to the separation of the 
individual signals, the method is also able to 
identify their spatial source, using the calculated 
scale factors of the mixing matrix A. They are 
indicative of the distance between the sensor and the 
source. The closer to the source, the greater is the 
scale factor. 

The first output signal [fig. 5(a)] of the BSS 
analysis corresponds to a typical response of a 
bearing with an inner race defect, and has been 
contributed by the rolling bearing that is closer to 
the sensor measuring the observation x1. 

 The second output signal [fig. 5(b)] 
corresponds to a typical response of a bearing with 
an outer race defect, and has been contributed by the 
rolling bearing that is closer to the sensor measuring 
the observation x2. 

Likewise, the last signal, shown in figure 5(c) 
corresponds, to the added noise and has been 
transmited by other interfering noise sources, which 
are closed to the sensor measuring the observation 
x3. 

Figure 6 presents the frequency analysis of the 
output signals and confirms the results of the 
implementation of the BSS algorithm, regarding the 
sourse signals. 

As derived and confirmed by the numerical 
simulations, the BSS algorithm can provide 
solutions in the case where we cannot obtain 
measurements close enough to the source. BSS is a 
technique that allows the recovery of source signals 
and the detection of the source from observed 
signals in the case where bearings of the same type 
are mounted inside the same machine, or even on 
the same shaft. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 6: Power Spectral density (PSD) of the output signals of 
figure 5. 
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4   Conclusion 
 

The problem of separating fault signals 
generated by defective rolling bearing bearings of 
the same type, and which are mounted inside the 
same machine is successfully adressed, using the 
Blind Source Separation technique. This method, is 
able to recover the contribution of different physical 
sources from a finite set of observations, recorded 
by sensors, independent of the propagation medium 
and without any prior knowledge of the sources. 
The learning algorithm has the capability not only to 
separate the source signals but, also, to detect the 
sources where each signal is emitted. 

Thus, the implementation of the proposed 
method is an efficient and significant tool that aids 
and enhances the application of the other signal 
processing methods. 
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