
Application of an Improved Diploid Genetic Algorithm for
Optimizing Performance through Dynamic Load Balancing

A. SIMA UYAR, A. EMRE HARMANCI
Computer Engineering Department

Istanbul Technical University
Maslak, Istanbul TR80626

TURKEY

Abstract: - The dynamic load balancing problem which can be defined as the effective redistribution of work-
load among the system processing units during execution time, is dynamic in nature where the load and the
processing power of the system may change in time as units of work enter and leave the system and processing
units are added to or removed from the processing pool. To address this problem, genetic algorithms are used in
literature in different ways. In this study, promising results of applying an improved diploid genetic algorithm
for load balancing a simulation of a network of processing units are reported.

Key-words: Load balancing, changing environments, evolutionary optimizaton, genetic algorithms, diploid ge-
netic algorithms.

1 Introduction

Genetic algorithms have been applied to a diverse field
of problems with promising results. While most of
these mainly address stationary problems, there’s an-
other group where the problem is dynamic and is rep-
resented by a changing fitness function. This class
of problems are characterized by a need for a mech-
anism to adapt to the change. Different characteristics
of changing fitness functions can be exploited in dif-
ferent ways to obtain a near optimal solution.

One issue that plays an important role in dis-
tributed system performance is the effective distribu-
tion (scheduling) of workload (tasks or jobs) among
the system processing units (PU) with the aim of im-
proving system performance. Dynamic scheduling is
often referred to as dynamic load balancing which can
be defined as the redistribution of tasks among the PUs
during execution time. The load balancing problem is
dynamic in nature where the load and the processing
power of the system may change in time as jobs enter
and leave the system and processing units are added to
or removed from the processing pool. To address this
problem, new methods are explored with adaptability
to the change as the main focus. Genetic algorithms
have been used in different ways for dealing with the
different aspects of the dynamic load balancing prob-
lem [1], [2], [3], [4], [5], [6]. In this study, a diploid

genetic algorithm with an adaptive dominance mecha-
nism for genotype to phenotype mapping, a meiosis-
like process for reproduction and overlapping popu-
lations with replacement of individuals based on an
aging mechanism is used. This algorithm will be re-
ferred to as damGA (diploidy-aging-meiosis Genetic
Algorithm).

2 System Simulation
The system to be load balanced consists of a number
of PUs connected over a network. One processor is
dedicated to load balancing operations. damGA, which
serves as the central load balancer, runs on this proces-
sor. Load information from all PUs are sent to the cen-
tral processor when a change occurs. This information
is used by damGA to find a better distribution of jobs
on the PUs. When a more efficient load distribution
is found by the damGA load balancer, all PUs in the
system are notified to initiate the necessary job trans-
fers. Task transfers among PUs cause overheads which
penalize the performance value for that distribution in
proportion to the number of task transfers needed and
the sizes of the tasks to be transferred.

The load balancing algorithm works on an event driven
simulation of the defined system. Events occur with
interarrival times according to a Poisson distribution.

There’re four types of events in the system, namely the
new job event, the finished job event, the new PU event
and the removed PU event.

To simplify the simulation, some assumptions are
made about the system. These assumptions are:

- All PUs in the system are equipped with the same
type of resources with different capacities. All jobs
may be migrated.
- If a new job arrives that will cause the current system
load to exceed the total capacity of the system, the job
is refused.
- At the beginning of job execution, the average re-
source (CPU, I/O, Memory) requirements per unit time
for each job are determined randomly. It is assumed
that actual resource requirements do not deviate too
much from the average values. The load value assigned
to the job is a function of average requirements per unit
time for all types of resources.
- The migration cost value assigned to a job is a func-
tion of the packing and unpacking loads at the host and
target PUs respectively and the communication over-
heads as a result of job transfers over the network from
host to target PUs.
- System is not initially empty and is always at least
moderately loaded.

The PUs in the system are represented by their PU
numbers, capacities which are assigned randomly at
the time they join the system and a value that shows
their current loads. A job in the system is represented
by its job number, its average resource requirement
per unit time and the overhead it brings to migrate
that job. In addition to these representational infor-
mation, the central load balancer unit also keeps track
of where each job is located and what each PU’s cur-
rent load is. This information is updated each time a
change occurs in the system. The actual system load
distribution is updated only if the distribution proposed
by damGA will increase the system performance by a
threshold percent. A predefined number of generations
are required to pass until the solution candidate found
by damGA is applied to the system. The general flow
chart for the system execution is given in Fig 1.

3 damGA Applied to Load Balancing
The load balancer is implemented using damGA modi-
fied to an extent to fit the requirements of the load bal-

ancing system. The main features of the algorithm will
be given in detail in the following sections. A more
detailed explanation of the algorithm and performance
comparisons can be found in [7], [8] and [9] by the
same authors.

Initialize

Has change ocurred?

Run 1 damGA Generation

Has a new dist.
been found?

NO

NO

Notify all PUs
to do load exchange

YES

Handle change

Update Load Info
on central CPU

Modify damGA

YES

Fig. 1 The flowchart for load balancing simulation

3.1 Representation

In damGA, each individual is represented with three
strings, a fitness value and an age. Chromosome 1 and
chromosome 2 are homologues and form the diploid
genotype of the individual. The third string which is
the phenotype, shows the characteristics that are ex-
pressed. In this implementation, each gene on the
chromosome represents a job in the system and the
alelle value of that gene shows on which PU that job is
running. The chromosome length is not constant and
changes as the number of jobs in the system decreases
or increases. Each gene may take on a value from
the set of possible alleles determined by the number
of PUs present in the system. This allele value set is
not constant and changes when PUs join or leave the
system. A sample chromosome for four PUs and eight
jobs is given in Fig. 2.

Job 0 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7

3 2 1 3 3 0 1 2

Fig. 2 A sample chromosome

3.2 Phenotype to Genotype Mapping

The phenotype of the individual is the set of charac-
teristics that are expressed. The fitness is determined
using the phenotype. This is a very important part of
diploid genetic algorithms and there has been some re-
search done most of which are explained in detail in
[10] and [11]. In natural organisms the dominant al-
lele is seen in the phenotype, so a mechanism to sim-
ulate this in artificial systems will be used. In damGA,
a domination matrix is used in determining the phe-
notype of an individual. The number of columns in
the matrix is determined by the number of jobs in the
system and the number of rows is determined by the
number of PUs in the system. The pseudocode for cal-
culating the domination matrix is given in Fig. 3.

for i=0 to MaxAllele
begin
 for j=0 to LastGenePos
 begin
 Val=0;
 for n=0 to LastIndividual
 if (individual[n].phenotype[j]=i)
 Val=Val+indiv[n].fitness;
 DM[i,j]=Val/TotalFitness;
 end;
end;

Fig. 3 Pseudocode for Domination Matrix Calculation

Each value in the matrix shows the domination factor
of the corresponding allele in relation to the other alle-
les present on the chromosomes for that location. For
example, assume that the [0,0] element of the matrix
has a value of 0.82, the [1,0] element has value 0.18,
[2,0] and the [3,0] elements have value 0.0. This means
that in the next generation if an individual has allele 2
or allele 3 on either of its chromosomes at locus 0, the
probability of that allele being expressed on the pheno-
type at that locus is

�����
, unless of course the individual

has the same allele for that locus on both of its chro-
mosomes in which case the corresponding phenotype
value equals that of the genes. But if the individual has
allele 0 at locus 0 on its first chromosome and allele 1
at locus 0 on its second chromosome or vice versa, the
corresponding phenotype value becomes 0 with prob-
ability

�������
and becomes 1 with probability

���	�
�
. The

domination matrix is recalculated at the end of each
generation using the individuals in that population.

3.3 Fitness Evaluation

The fitness of an individual shows how balanced the
load distribution depicted by the phenotype of that in-

dividual is. To calculate the fitness, the amount of load
per unit capacity called the unit load (UL) is deter-
mined as in Eq. 1.
���� �����	�����������	� �"!#�$�&%�'� �	�������(�)�	� �+*,��-
��.0/1�2� (1)

For each PU, the amount of load for that PU under
ideal conditions, which will be called ideal load (IL)
is calculated. The ideal load for the 3�4$5 PU which has
a capacity of 687:9�7#;�3�4 < / is calculated as in Eq. 2.

=>� / �?��A@ 6B7
9�7#;�3)4�< / (2)

The load imbalance (LI) of a PU is the absolute value
of the difference between the actual load (AL) of a PU
and its ideal load (IL). The aim of the load balancer
is to minimize the total load imbalance in the system.
To normalize the total imbalance value, it is divided
by the curent total load in the system. The normalized
load imbalance is given by Eq. 3.
�C=
DE� FHG)I J ! GLKNM ! G)I�����	�&�O���(�)�	� �P!>�$�&% 3 � ��Q
�RQS�2�2�2Q�TVUXWBY,Z �8[

(3)

In calculating the fitness of an individual the migration
overhead is used as a penalty. The actual fitness valueY � of an individual is calculated as in Eq. 4.Y � � \! M�] (4)

In this implementation the migration costs determined
randomly for each job at start of job’s execution is
a real value in the [0,1] interval. The total penalty
value for a distribution candidate is a function of the
sum of all the migration costs for the jobs that will be
transferred. When calculating the penalty value, in the
worst case the new distribution candidate will require
all the jobs to be transferred. Assuming there’re ^ jobs
in the system, the upper bound for the migration costs
will be ^ . In the best case, no job transfers will be re-
quired, giving the lower bound for the migration costs
as

�����
. The penalized fitness value

Y - for an individual
is calculated as in Eq. 5 where 6 J is the actual migra-
tion costs and 6`_ is the upper bound on the migration
costs.

Y - � Y � @ *ba K *�c*ba (5)

3.4 Main Steps of damGA

The basic steps of the algorithm used (damGA) is given
below and explained briefly in the following sections.
Further details about the algorithm can be found in [7]
by the same authors.

begin
initialize;
do

reproduction;
mutation;
dom. map recalculation;
next generation selection;

until stop;
end.

The initialization step is similar to the one in the sim-
ple genetic algorithm (SGA) [7]. Each of the genes on
the two chromosomes of the individual is initialized
randomly to have a value in the possible allele set. All
the locations on the domination matrix is initialized to�����

.

The reproduction phase consists of selection of the
mating pairs, gamete formation through meiosis, pair-
ing off and the actual mating phase to form the off-
spring. A roulette wheel selection mechanism is used
to determine the individuals which will go into repro-
duction. Gametes in natural, diploid organisms are the
haploid reproductive cells. One gamete from each mat-
ing pair comes together to make up the diploid chro-
mosome structure of the offspring. In most cases in
nature, gamete formation is the result of a cell divi-
sion process called meiosis. In this artificial imple-
mentation, each parent goes through a meiotic cell di-
vision phase seperately. Meiosis is implemented in
three steps. In the first step a copy of each chromo-
some string is made during which errors may occur.
The chromosome and its copy are called sister chro-
matids. At the end of this step, the individual has four
haploid chromatids. In the second step crossing over
may occur between non-sister chromatids. In this im-
plementation, a two point cross-over approach is used.
In the final step, after each mating parent completes its
meiosis-like process, there are four gametes from each
parent, ready to go into mating. Since in this imple-
mentation, each mating produces two offspring, two
gametes from each parent are selected at random and
each gamete from each parent goes to each one of the
offspring.

The mutation operator is as defined in SGA with the
modification that a mutation changes the value of a
gene from one allele to another in the set of allowed
alleles.

At the end of each generation, the new domination map
is recalculated. This new domination map is used in

the next generation to obtain the phenotypes of the in-
dividuals from their genotypes.

Offspring do not replace their parents. However since
population size is kept constant, the new individuals
that will survive into the next generation are deter-
mined using a fitness proportional method. The cho-
sen individuals’ age values are increased. At the end
of each generation some individuals are replaced with
new, randomly initialized individuals with a probabil-
ity based on their ages.

4 Tests and Results

The above explained simulation of the system, with
the damGA as the central load balancer, is run with-
out a stopping criterion. Events occur with interarrival
times distributed according to the Poisson distribution
with � . The simulation of the physical system is ini-
tialized with a default number of jobs and PUs present
in the system. The parameters and default values for
the system simulation are given in Table 1.

Table 1 Parameters of the system simulation
Default Number of Jobs 32

Default Number of PUs 5

Maximum Number of Jobs 1024

Maximum Number of PUs 128

Maximum Job Load 540

Maximum PU Capacity 4096
�

for Poisson Distribution 500

Prob. for New Job Event 0.64

Prob. for Removed Job Event 0.16

Prob. for New PU Event 0.1

Prob. for Removed PU Event 0.1

damGA Runs Before Update 50

Acceptable Perf. Improvement 30%

The damGA is initialized with values depending on
the default system parameters. The damGA parameters
and the initial values are given in Table 2. The interval
to examine the system is chosen between generations
3938 and 9357 during which all four types of events
occur. The changes that occur in the system during this
interval and the current load and job information of the
system at the time of change are given in Table 3.

Table 2 damGA parameters
Population Size 250

Initial Chrom. Length 32

Crossover Probability 0.9

Mutation Probability 0.009

Error Prob.in Meiosis 0.001

Initial Dom.Values 0.5

Initial Allele Set {0,1,2,3,4}

Table 3 Change instances
Gnr. Change Jobs PUs Tot. Cap. Tot. Load

3938 New Job 38 5 12251 10038

4437 New Job 39 5 12251 10296

4919 Rem. Job 38 5 12251 9930

5383 Rem. PU 38 4 9965 9930

5902* New Job 38 4 9965 9930

6372* New Job 38 4 9965 9930

6858* New Job 38 4 9965 9930

7365 New Job 39 4 9965 9940

7870 Rem. PU 39 3 9147 9940

8394 New PU 39 4 11843 9940

8873 New Job 40 4 11843 9941

9357 New Job 41 4 11843 9993

The change entries for generations 5902, 6372 and
6858 are marked with an asterisk on Ttable 3. Even
though these are new job events, it should be noted that
the number of jobs in the system stays the same. This
happens because the new jobs that arrive will cause the
system to be overloaded and thus they are refused entry
into the system.

The results will be shown as two different set of plots
showing system performance with and without load
balancing respectively. System performance is deter-
mined using the fitness calculation approach without
penalties on the actual physical load distribution. The
first plot which can be seen in Fig. 4 shows the system
performance when no load balancing is performed.

The plot of the system performance between genera-
tions 3938 and 9357 when load balancing with damGA
is applied can be seen in Fig. 5. The system fitnesses
given on the plot are the actual values calculated for
the current load distribution on the physical system.

0

5

10

15

20

25

30

35

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

F
itn

es
s

Generations

Fig. 4 Plot of system fitnesses without load balancing

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

F
itn

es
s

Generations

Fig. 5 Plot of system fitnesses load balanced with damGA

5 Conclusion
The results given in the previous section show that
the application of the load balancing algorithm based
on damGA increases system performance. A similar
aproach can be found in [2] which deals with a simi-
lar system set up as the one used in this study where
a central load balancing unit is run on a dedicated
processing unit. In that study, a simple genetic algo-
rithm (SGA) [7] is used for finding a suitable distri-
bution of jobs on the PUs and the performance of the
genetic load balancing approach which is called the
Genetic Central Task Assigner (GCTA) is compared
with three more classical dynamic load balancing ap-
proaches, namely the Threshold Algorithm, the Cen-
tral Algorithm and the Centex Algorithm with promis-
ing results. When SGA is applied to the system used
in the previous section with the same set of change in-
stances and genetic algorithm parameters where appli-
cable, the plot in Fig. 6 is obtained.

0

100

200

300

400

500

600

700

800

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

F
itn

es
s

Generations

Fig. 6 Plot of system fitnesses load balanced with SGA

When compared with the system performance levels
obtained when no load balancing is applied to the sys-
tem (Fig. 4), the load balancing with SGA brings per-
formance improvement. However as can be seen when
comparing Fig. 5 and Fig. 6, the improvement in the
levels of system performance is much greater when
damGA is used as the load balancing algorithm with
the current system configuration. These promising re-
sults encourage further study on the use of damGA for
workload distribution optimization.

References:

[1] ALBERTO Carlos, PICO Gonzalez, WAIN-
WRIGHT Roger L., “Dynamic Scheduling of
Computer Tasks Using Genetic Algorithms”,
in Proceedings of The First IEEE Confer-
ence on Evolutionary Computation, IEEE World
Congress on Computational Intelligence, Vol. 1,
pp.829-833, 1994.

[2] BAUMGARTNER Joey, COOK Diane J., SHI-
RAZI Behrooz, “Genetic Solutions to the Load
Balancing Problem”, in Proceedings of ICPP95
Workshop, pp. 72-78, 1995.

[3] FOGARTY Terence C., VAVAK Frank, CHENG
Philip, “Use of the Genetic Algorithm for Load
Balancing of Sugar Beet Presses”, in Proceed-
ings of the 6th International Conference on ge-
netic Algorithms, Morgan Kaufmann, pp, 617-
624, 1995.

[4] FOGARTY Terence C., VAVAK Frank, CHENG
Philip, “Load Balancing Application of the Ge-
netic Algorithm in a Nonstationary Environ-
ment”, in Proceedings of Evolutionary Comput-
ing (AISB) Workshop, pp.224-233, 1995.

[5] MUNETOMO Masaharu, TAKAI Yoshiaki,
SATO Yoshiharu, “A Genetic Approach to Dy-
namic Load Balancing in a Distributed Comput-
ing System”, in Proceedings of The First IEEE
Conference on Evolutionary Computation, IEEE
World Congress on Computational Intelligence,
Vol. 1, pp.1-529, 1994.

[6] MUNETOMO Masaharu, TAKAI Yoshiaki,
SATO Yoshiharu, “Genetic Based Load Balanc-
ing: Implementation and Evaluation”, in Pro-
ceedings of PPSN IV, International Conference
on Evolutionary Computation, The 4th Con-
ference on Parallel Problem Solving from Na-
ture, Lecture Notes in Computer Science 1141,
Springer, 1996.

[7] Uyar A. Sima, Harmanci A. Emre, "Investigation
of New Operators for a Diploid Genetic Algo-
rithm", in Proceedings of SPIE: Applications
and Science of Neural Networks, Fuzzy Systems,
and Evolutionary Computation II, July 1999.

[8] Uyar A. Sima., Harmanci A. Emre, "A New
Genotype to Phenotype Mapping Approach for
Diploid Genetic Algorithms", in Proceedings of
the 15th International Symposium on Computer
and Information Sciences, October 2000.

[9] Uyar A. Sima., Harmanci A. Emre, “Preserving
Diversity Through Diploidy and Meiosis for Im-
proved Genetic Algorithm Performance in Dy-
namic Environments”, to appear in Proceedings
of the Second Biennial International Conference
on Advances in Information Systems, October
2002.

[10] Goldberg D. E., Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, 1989.

[11] Branke J. Evolutionary Optimization in Dy-
namic Environments. Kluwer Academic Pub-
lishers.2002.

