
Bluetooth implementation frameworks

 HARMATNÉ MEDVE Anna
Department of Information Systems

University of Veszprém, Veszprém, Hungary
Institute of Information Technology and Electrical Engineering

H-8200 Veszprém, Egyetem u. 10.
HUNGARY

Abstract: - This paper will represent an SDL implementation of Bluetooth mobile system’s protocol stack. This
implementation is part of a research and development of validation protocol system’s implementation. The final goal is
to develop a method for protocol implementation frameworks using design patterns of Protocol Systems in SDL. This
work represents common problems and solutions for specification, design and implementation of communication
protocols, furthermore it also gives a prototype implementation framework for Bluetooth’s usage models.

Key-Words: - Protocol,Bluetooth, Reverse Engineering, Design Pattern, SDL.

++ The lecture was made under research contract OTKA 29556.

1 Introduction
 The large size, currency and real-time nature of mobile
communication systems represent a set of difficulties
when generating a good specification. The software to be
developed must be flexible and portable enough to be
employed into different environments and different
platforms for different customer segments. The usage of
formal methods makes the quick implementation of
complex systems possible.
The SDL [1,2,3] is a standard language for specification
and description of communicating systems. SDL
currently has a dual role as a specification and also an
implementation language. Most of commercial tools [4]
have more functionality, including automatic code
generation, simulation and validation. These are the
main advantages of system modelling by SDL and it
opens new possibilities for formal analysis of design.
SDL provides the mechanisms to copye with large
number of communicating processes, and there are SDL
tools that give necessary features so that they can be
used as protocol implementation frameworks
By using the domain specific patterns it is possible to
describe structures and interactions of the systems. The
detected SDL patterns could help in a run-time analysis
of SDL models.
SDL patterns have particular context while conventional
design patterns are specified by an independent design
language – a mostly natural language–based description

pattern. The language of SDL patterns is the SDL itself,
SDL patterns are defined in terms of SDL syntax.
Protocol systems offer a multitude variety of services on
different networks with a number of service options.
They can be described by the SDL patterns - presented
in Section 2.1. It is becoming very valuable to
understand, maintain and re-engineer SDL models. An
object-oriented analysis method needs to be integrated
into SDL, the SOMT method (SDL-oriented Object
Modelling Technique) [7]. As the name indicates, the
method is essentially the adaptation of OMT to the
requirements given by the special application area of
distributed, reactive, real-time systems together with the
usage of SDL for the design.
The Problem Formulation includes three main parts:
section 2.1 „Patterns for Protocol System Architecture
and SDL patterns” contains background information
about communication protocols and their patterns [5,6],
and we point out how it is possible to create an
implementation framework of protocols by SDL. The
section 2.2. gives an introduction to the context of
Bluetooth usage models. Section 2.3 is„The Bluetooth
implementation framework”. Section 3.1is an application
of them by producing a Bluetooth SDL pattern for the
context presented in section 2.2. Finally in the
Conclusion we will relate to the possibilities offered by
SDL-2000 to enrich actual patterns

2 Problem Formulation

2.1 Patterns for Protocol System Architecture

and SDL patterns
Protocol systems offer a multitude variety of services on
different networks with a number of service options. The
protocol systems are organized as series of subsystems,
often called “protocol layers” or “protocol entities”.
Conceptually different functions are separated into
different layers and implemented separately.
 Figure 1 describes two protocol systems communicating
with each other via physical connection. Protocol entities
communicate with each other by sending messages.
Protocol stacks are connected by means of using
psyhical connection, which represents the network. The
entities in the same stack are connected to each other via
message paths, they carry the messages within the
system.
Protocol entities are connected to their peer entities
using virtual message paths, the messages outside the
system are sent on them. Peer communication is virtual
as the messages sent to peer entities are actually sent
using the interface provided by the lower protocol entity.

1. Figure Protocol system elements

The behaviour of a protocol is specified only in terms of
protocol messages answering the question „ how
protocol entities within a system communicate with each
other”. Communication of an entity can be connection-
oriented and/or connectionless. A connection-oriented
communication consists of connection establishment
phase, message excange phase and disconnection phase.
A connectionless communication is a simple message
exchange by Request-Response couple or only Request.
 Research [6] on several existing protocol
implementations contains the elements shown in figure
1. The same high-level model can be found in several
protocol frameworks, including SDL [2].

The common general parts and relations in different
protocols can be identified and described as design
patterns [5]. In figure 2 we will represent three important
patterns for protocol system architecture, which can be
considered as architectural patterns and can be used in
protocol-engineering.[6]
The Protocol System pattern - as shown in Figure 2 -
specifies the components of a system, responsibilities
and interconnections of components and the system
environment. The Protocol Entity pattern represents one
protocol layer, the Protocol Behavior pattern contains
the active parts of a protocol entity.

Fig 2: Patterns for protocol system

architecture

The Protocol Architecture patterns components mapped
in SDL its the following:

Fig 3: Protocol Architecture pattern in SDL

An SDL block type forms a Protocol Entity pattern : it
represents a protocol layer or sublayer. Protocol Entity
has to have communication accesswith other entities in
the same system and with entities in peer systems. It
manages possible multiple concurrent communication
session, stores internal states and other information.
Storage contains all information of a Protocol Entity.
The behaviour of a block can be derived from the
behaviour of its processes. The Peer Interface
functionality is implemented in the process interaction

part by processes and signal routes. The Protocol Entity
serves multiple requests and at the same time
dinamically created and destroyed SDL process
instances, too.
An SDL process type models a Protocol Behaviour
pattern. The Protocol Behaviour element handles
protocol functionality by the Communication Manager
(creates, controls and closes sessions) the
Communication Session (handles communication
between peer entities) and Peer Interface elements of
patterns (modeled by process instance and interactions
between processes).
These protocol features always have to be implemented.
The reusable components are defined as SDL types. The
SDL package consists of libraries that are used for
making reusable SDL components available in protocol
systems.
In this passage I introduced my researches on
correspondence between the elements of protocol
system patterns and the elements of SDL. For us this
research proves that if we improve protocol
implementation with SDL development tools, it is not
necessary to construct the whole description of protocol
analysis neither in pattern language nor in UML for the
requirements of re-use theory. We can construct SDL
protocol patterns by means of applying the SOMT [7]
method and Telelogic TauTM library modules in SDL
development environment. SDL package may be used in
the implementation of SDL frameworks. The packages
are libraries that are used for making reusable SDL
components available in different systems.

2.2 Bluetooth network usage models

Bluetooth is the name of a new short-range radio link
technology developed by SIG (Bluetooth Special Interest
Group), the standard is opened and the specification is
downloadable from the SIG web site [8]. It helps to
connect portable or fixed devices without cables. The
Bluetooth radio module operates in the unlicensed 2.4
GHz ISM band using 79 or 23 channels with FHSS
(Frequency Hop Spread Spectrum) scheme for avoiding
interference from other signals in this band. The
transmission works at 1 Mbps at a distance of 10 or 100
meters. A link can be ACL (asynchronous connection-
less) for data transfer or SCO (Synchronous connection-
oriented) for voice transfer. The standard supports both
point-to-point and point-to-multipoint connections as
well. The system follows master-slave pattern, but the
master can collect more slaves (max. 7) to a piconet. A
group of piconets in which the connections between
different piconets are called scatternet. This network can
mix heterogeneous applications, devices and usage
models .

Fig 4: The Bluetooth protocol stack and profiles

The SIG has defined these protocols in the specification
and determined some basic profiles for Bluetooth. A
profile is (one or more) vertical slice in the protocol
stack describing the mandatory protocols and parameter
ranges for different user scenarios.
The used protocols are application-dependent, but the
base Bluetooth protocols (Bluetooth Radio, Baseband,
LMP, L2CAP, SDP) are used in every cases - except
audio transfer.[4]
There are four general profiles determined by covering
the common user scenarios. (Figure 4.) The Generic
Access Profile (GAP) handles discovery and connection
establishment between unconnected devices.
The second defined profile is the Service Discovery
Application Profile (SDAP). It is responsible for
searching for specific or general services in the range of
the Bluetooth unit. SDAP re-uses parts of the GAP.
The Serial Port Profile (SPP) emulates serial ports on
two devices and connects them with Bluetooth. It is used
in the case of dial-up network, fax, headset or LAN
access. This profile re-uses the pattern of GAP, too.
Finally the Generic Object Exchange Profile (GOEP)
defines the protocols needed for applications using
object exchange. This kind of profile can be File
Transfer Profile, Object Push Profile or Synchronization
Profile. GOEP uses GAP and SPP, so protocol
engineers, who work out protocol stacks for object
exchanging Bluetooth devices, can re-use GAP and SPP
implementations.
In practice, for every usage model there is one or more
adaptable profile. There are situations where the tasks
are similar to each other, the used protocols are the same
even in a different manner. In these cases it is practical
to use one of the achievements of the object oriented
protocol technology: reusing profiles.
The L2CAP protocol layer handles the various packages
arriving from different applications and includes the
protocol-multiplexing function the effect of which is the
increasing number of use-cases of Bluetooth.

In the Bluetooth usage models there are several possible
applications over L2CAP to communicate with each
other. Such applications can be over the different LANs
(wired or wireless [9]) based on IP protocol, over the
object exchanging protocols based on OBEX, the
telephone, fax or point-to-point modem just like the
simple audio transfer. Thanks to L2CAP these
applications can communicate with each other in every
variation. The formal realization of these cases only
needs to work out the different application scenes. If we
want to use the same upper layer protocol to describe a
part of a communicating situation, we can reuse the
earlier predefined protocol’s package.

2.3 The Bluetooth implementation framework
A framework is a reusable design of a complete system
(or part of it) that is represented by a set of abstract
classes and the way of their interaction [5]
The Bluetooth implementation framework is a set of
SDL packages for protocol system patterns. In section 3
I will ilustrate the L2CAP protocol entity description.
SDL package containes the static and dynamic parts of
protocol entity specification and their data descriptions.
For pattern construction the data definitions are needed
(ASN.1), because ASN.1 data-type definitions and
inheritances are needed so that we can re-use the patterns
by means of redefining SDL sorts.
For example in figure 5 one can see that protocol
L2CAP executes multiplexing in all network models.
The multiplexing function, the segmentation and
reassembly (SAR) operation are implinks in the same
way as the PDU’s data type definition is in ASN.1 [11]
using CHOICE type.

Fig 5: BNEP with an Ethernet payload sent
using L2CAP multiplexing and SAR

3 Problem Solution

3.1 Presenting the Bluetooth L2CAP protocol
analysis and formal description using L2CAP
pattern

3.1.1 Protocol analysis, defining system requirements
The structure, process and division of communication
take place on the basis of master-slave relationship

initiated by the master of piko network. The following
status occur during system operation on the grounds of
specification:
• Closed: status of both master and slave position is

possible, the connection is closed
• W4_L2CAP_Connect_Rsp: after having transmitted

the master’s respond sign to the slave referring to the
question of connection setting, the master is waiting
for the slave’s answer

• W4_L2CA_Connect_Rsp: this status is only
peculiar to slave, having introduced the connection
setting request, it is waiting for its respond

• Config: this status can be taken up by both the
master and the slave following a successful
connection setting or during the communication
intended to promote agreement on channel
particulars

• Open: this status is capable of being taken up by
both parties for the sake of successful
communication flow following the determination of
channels

• W4_L2CAP_Disconnect_Rsp: the master gets here
after having sent its disconnection request to the
slave and is waiting for the slave’s respond

• W4_L2CA_Disconnect_Rsp: after having received
the disconnection request from the master, the slave
informs its higher layer about this fact and shifts to
this status waiting for the respond of the layer
situated above

The service primitives (request, indication, response and
confirmation) are signalled by L2CA_, while the PDU-s
are completed with P (protocol) as, can be see in figure
7.
During the analysis MSC’s scenarios [10] are needed for
solving the timing problem and for the differentiating
illustration of possible application cases (figure 6).

Fig 6: In the basic configuration process the devices exchange
Maximal Transmission Unit information
With the help of all the status being distinguishable in
the specification, service primitives and PDUs I drew a

state-flow graph (Figure 7) in which the operation of
both the slave and the master are described at the same
time.

Fig 7: state-flow graph of L2CAP layer of Bluetooth

3.1.2 Preparation of formal description of protocol
L2CAP
SDL description is structured hierarchically. On the
highest level we can find the system-level description
with the illustration of communicating parties, namely
the L2CAP layer of the two Bluetooth objects, the signs
used by them, and channels functioning on the basis of
FIFO theory between objects carrying out information-
exchange. The two parties L2CAP layer and the signals
can be derived from the pattern described in the package
(Figure 8).

package L2CAP 2(3)

signallist
P_LinkReq=
 L2CAP_ConnectReq,
 L2CAP_ConfigReq,
 L2CAP_DisconnectReq;

signallist
SP_LinkCfm=
 L2CA_ConnectCfm,
 L2CA_ConnectCfmPnd,
 L2CA_ConnectCfmNeg,
 L2CA_ConfigCfm,
 L2CA_ConfigCfmPnd,
 L2CA_ConfigCfmNeg,
 L2CA_DisconnectCfm;

signallist
P_Data=
 L2CAP_DataRead,
 L2CAP_DataWrite;

signallist
SP_Data=
 L2CA_DataRead,
 L2CA_DataWrite;

signallist
SP_LinkReq=
 L2CA_ConnectReq,
 L2CA_ConfigReq,
 L2CA_DisconnectReq;

signallist
P_LinkRsp=
 L2CAP_ConnectRsp,
 L2CAP_ConnectRspPnd,
 L2CAP_ConnectRspNeg,
 L2CAP_ConfigRsp,
 L2CAP_ConfigRspPnd,
 L2CAP_ConfigRspNeg,
 L2CAP_DisconnectRsp;

signallist
SP_LinkRsp=
 L2CA_ConnectRsp,
 L2CA_ConnectRspPnd,
 L2CA_ConnectRspNeg,
 L2CA_ConfigRsp,
 L2CA_ConfigRspPnd,
 L2CA_ConfigRspNeg,
 L2CA_DiconnectRsp;

signallist
SP_LinkInd=
 L2CA_ConnectInd,
 L2CA_ConfigInd,
 L2CA_DisconnectInd;

signallist
err=
 LP_QoSViolationInd,
 RTX;

L2CAP

Fig 8: A part of protocol L2CAP package

Reusing that we can implement those elements only
once (in the package patterns). In our case Figure 9
perfectly demonstrates the two system-level elements
(master = L2CAP_Ini, slave = L2CAP_Resp), the PDUs
used in communication between them, and the
communication channels.

use L2CAP;

system L2CAP 1(1)

L2CAP_Ini:L2CAP L2CAP_Resp:L2CAP

The block of the responder’s
L2CAP protocol. It communicates
with the upper layer protocols
via channel UP2 and with the
initiator unit via the peer channel.

The block of the initiator’s
L2CAP protocol. It communicates
with the upper layer protocols
via channel UP1 and with the
responder unit via the
peer channel (PC).

UP1

SP_LinkCfm

SP_LinkReq,
err,
ERTX,
SP_Data

G1 PC

P_LinkReq,
P_Data

P_LinkRsp

G2

G2 UP2

SP_LinkInd,
SP_Data

SP_LinkRsp,
err

G1

Fig 9: A part of protocol L2CAP system-level description,
which illustrates the members taking part in communication

On the following hierarchy-level I will indicate the
process interactions of block-level description breaking
further down the L2CAP layers of master and slave. It
also shows the inner development of the element, the
included functional units (processes) and their
communication channels, the signs used for information
exchange. Let’s take a look at the block diagram of
L2CAP_Resp as an example:

block L2CAP_Resp 1(1)

L2CAP_RespPR:L2CAP

It is the process of the responder’s L2CAP layer.
The functions requested by the initiator are
accepted by this process.

SC UP2
SR2

P_LinkRsp

P_LinkReq,
P_Data

G2 UPR2

SP_LinkInd,
SP_Data

SP_LinkRsp,
err

G1

Fig 10: L2CAP protocol block-level description particulars

The Figure 10 sufficiently indicates that the block
contains only one single process. One can easily observe
the sign channels (SR2,UPR2) used in communication,
their connections to the channels illustrated on system-
level, and the type and character of signs transmitted by
them.
Every process is manifested as a separate finite state
machine that communicates with the other and thus they
build up the actual system. The full-scale description
capacity of SDL provides opportunity for defining
processes, illustrating its structures with the help of
which the stages and flow of operation can also be
illustrated. I demonstrate the inner operation of L2CAP
layers on this level (receiving and sending signs, actions
and status shifts) and the way of realising services in the
form os these layer particulars. And now let’s have a
look at such details of protocol SDL-description (see
Figure 11)

p r o c e s s L 2 C A P _ R e s p P r 1 (4)

D C L
n , p I n t e g e r ;

T I M E R t ;

W 4 _ L 2 C A _ C o n n e c t _ R s p

L 2 C A _ C o n n e c t R s p

r e s e t (t) L 2 C A P _ C o n f i g R e q

L 2 C A P _ D i s c o n n e c t R e q L 2 C A P _ C o n n e c t R s p

L 2 C A _ D i s c o n n e c t I n d n : = 1

s e t (n o w + p , t) L 2 C A _ C o n f i g I n d

W 4 _ L 2 C A _ D i s c o n n e c t _ R s p s e t (n o w + p , t)

C o n f i g

Fig 11: Particulars of L2CAP protocol process-level
description

The highlighted part illustrates the possibilities of the
slave originated from W4_L2CA_Connect_Rsp starting
status.
As long as it gets L2CAP_DisconnectReq disconnection
requesting PDU from the master, it informs the higher
layer with the help of L2CA_DisconnectInd service
primitive about the situation and after setting the timer it
shifts to W4_L2CA_Disconnect_Rsp status preceding
disconnection.
The description is similar in the case of receiving
accepted connection response from the higher layer. The
total L2CAP_RespPr process description continues on
several other pages. It is necessary to similarly provide
similarly the description of L2CAP_Ini block and its
process and thus we get the total formal description of
protocol. In the case of difficult systems we make
differences between hierarchy-levels for the sake of
better understanding of dividing block-levels into new
block-levels. Paying attention to functionality in the field
of illustration we have the opportunity of utilising user-
friendly illustration by means of carefully thought
arrangement with the help of SDL even in the case of
huge systems.

4 Conclusion
We could see in the foregoing that the planning of
Bluetooth network usage models offers the use of design
patterns and the application of reuse theories. Finding
models in protocol development may even take place in
the phase of requirement-analysis due to the structured
and documented protocol standards. In recent years
protocol standardisers have more often used the well-
known formal languages as unambiguous transmitting
languages, namely SDL, MSC, and ASN.1. It is rather
the verification of implementation that is the semantics
of languages and their adequate application in planning
methods.

Recent development of SDL approves that the
engineering of any real-time system can be realised in
SDL. The main power ever of protocol engineering
derives from its basis: the role of protocol specification

mixed with prevailing OO techniques ensures unique
and economical planning of protocol life-cycle elements.
However, the role of implementation and verification
has been increasing due to the fact that by using formal
languages the analysis is not a usual OMT technology
analysis any longer.
One way of facilitating prevention is creating SDL
packages with the application of pattern-based
programming and applying the OO characteristics and
specification of SDL. The SDL-2000 offers new
possibilities with the introduction of agent type. Actions
(that can be granted on system-level), definable variables
and several block instances are such powers that
reinforce pattern-based planning and with their help even
new protocol patterns can be introduced.

References:
[1] ITU-T Recommendation Z.100 (11/99),

Specification and Description Language (SDL)
Supplement 1 to Z.100 (05/97): SDL+ Methodology.
Update for SDL-2000 in progress . ITU-T, 2001.

[2] Jan Elsberger, Dieter Hogrefe and Armadeo Sarma,
SDL Formal Object-oriented Language for
Communicating Systems, Prentice Hall, 1997

[3] Zoubir Mammeri, SDL modélisation de protocoles et
systèmes réactifs, Hermes Science, 2000

[4] http://www.sdl-forum.org/Tools/index.htm
[5] Frank Buschmann, Regine Meunier, Hans Rohnert,

Peter Sommerlad, Michael Stal Pattern-Oriented
Software Architecture, Volume 1: A System of
Patterns, John Wiley&Sons, 1996

[6] Juha Pärssinen and Markku Turunen, Patterns for
Protocol System Architecture In PloP 2000
Proceedings, http://jerry.cs.uiuc.edu/~plop/plop2k
/proceedings/Parssinen/Parssinen.pdf,http://jerry.cs.u
iuc.edu/~plop, 2000

[7] Telelogic TauTM 4.1 User’s Manual Guidelines,
Telelogic AB, 2000

[8] SIG, Specification on the Bluetooth System V.1.1,
Vol. 1 and 2, www.bluetooth.com, 2001

[9] Tibor Dulai, Anna Harmatné Medve, Bluetooth -
One of the Best WPAN Solutions for Bridging PAN
and Wider Networks?, 14th Euromicro Conference
on Real-Time Systems ,Workshop on Real-Time
LANs in the Internet Age., June 19 - 21, 2002,
http://www.hurray.isep.ipp.pt/rtlia2002/full_papers/1
6_rtlia.pdf, Vienna, 2002

[10] ITU-T Recommendation Z.120, (11/99) Message
Sequence Chart (MSC) Geneva,1999.

[11] ASN.1 Informational Site, http://asn1.elibel.tm.fr/

