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Abstract: - This paper is focused in the effect of adaptive weighted non-linearity in speech coding. The results 
showed that the effect of adaptive non-linearity improves the spectral distance measure when compared to the 
system without non-linearity. 
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1   Introduction 
Speech is a product of a non-stationary process. The 
speech production in human body is quite well 
known and it is studied over the decades. The 
different parts in speech production and propagation 
can be explained with partial differential equations. 
However, when thinking the general model 
combined from these partial differential equations, 
the efforts will lead to very difficult equation 
formulation and solving. 

The most successful vocal tract estimator in 
speech processing is autoregressive (AR) filter, also 
known as Linear Predictive Coding (LPC). It has 
served successfully in speech coding over the years. 
Unfortunately, it has its limitations in speech 
modeling, for example a tendency to follow spectral 
peaks more than the spectral valleys and the nasal 
sound modeling accuracy. The proper nasal sound 
model filter needs at least one zero in the filter while 
the autoregressive model is all-pole filter and does 
not have any zeroes in its structure. 

The LPC filter coefficients are easy to calculate 
and the redundancy removal filtering is easy to do, 
but the remaining residual after filtering process 
contains so much information that at least the most 
significant features from the residual must be 
modeled and transferred to the decoder somehow. 
This residual modeling is very intensive process and 
will take much more processing power than the LPC 
redundancy removal. These facts amongst others 
have partially guided the research work in nonlinear 
fields in order to reduce the residual handling 
process. 

There have been analyses in several papers that 
the speech may contain different types of nonlinear 
components [1] – [5]. In the same time, nonlinear 
techniques have been tested with time series over 
several decades in order to improve modeling and 
estimation when compared to linear methods. For 

example, the logarithmic a-law/µ-law lossy 
compression in Pulse Code Modulation (PCM) 
coding [6] has worked successfully over the years 
and the information is possible to reduce 13-bit to 8-
bit per sample without annoying disturbances. 

In [7]-[9], the Radial Basis Functions (RBF) has 
been used in the parameter estimation process as a 
replacement or supporting part for the LPC 
estimator with good results. Multilayer perceptrons 
and time delay neural networks have been 
successfully used for speech analysis and synthesis 
in [10]. The Volterra kernel has been used as a short 
time predictor for speech in [2] as well as the 
chaotic processes in [1], [11][12].  

The Hammerstein model has been used in many 
different types of time series analysis, for example 
in [13] for modeling biological systems, and echo 
cancellation in speech processing in [14]. In these 
papers the type of nonlinearity is known and thus 
results are good. 

In speech processing the form of nonlinearity is 
not known precisely. It may be possible that speech 
consists of different types of nonlinearities. The 
vocal tract model structure should include different 
types of nonlinearities and emphasize the suitable 
ones for the current speech frame by weighting.  

In this paper, we have proposed a structure for 
the weighted frame-by-frame adaptive non-linear 
structure and have studied the effect of weighted 
non-linearity to improve linear analysis method in 
vocal tract modeling considering speech coding.   
 
2   Proposed system 
The system described in this paper is based on two 
blocks, the non-linear and linear blocks. This type of 
system is also known as Hammerstein model. The 
proposed system is presented in Fig. 1. 
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Fig. 1. The schematic diagram of the structure 

 
In the proposed system the input signal, u(n), is first 
fed in the non-linear system where the non-
linearities of the input signal is subtracted and rest of 
the signal are sent for linear processing. The additive 
noise, w(n), can be also a modeling error in this 
case, is cumulated in the output signal, y(n). 

With the structure presented in Fig. 1, it is 
assumed that the static nonlinearity is able to 
remove the components in speech that the linear part 
cannot process. In the decoder, the inverse non-
linear and linear processes must be able to 
accomplish. The non-linear and linear structures are 
static, but the weighting coefficients are adaptive 
and we used method described in [15] to calculate 
the adaptive coefficients for the speech frame in 
question. 

The structure of the model is simple and the non-
linear and linear coefficient calculation is an easy 
operation, but there are still several aspects to be 
concerned. 

One problem is the shape of non-linearity in 
speech. In [1], it is suggested that the speech might 
be chaotic in nature, but in [2], only the consonants 
show chaotic behavior, and in [3] it is suggested that 
unvoiced fricatives may have quadratic non-
linearities in speech signal. 

In [14]-[15] the series of types of {x, x2, x3…} 
were tested as non-linearities with Hammerstein 
model. Several other series also exists as candidates 
to be a static non-linearity in Hammerstein model, 
but finding a suitable combination from several non-
linearities, which will shape the speech signal for 
linear filter, is very difficult. The same non-linearity 
must work in the decoder and form the estimate of 
the original speech signal from inverse linear filtered 
residual signal, which itself is in the decoder side 
only a good estimate of the original residual. The 
stability must also be preserved at least between 
values –1 and 1, because in the decoder the output 
signal is limited between these values. 

There are several good candidates to be used as 
non-linearity of the Hammerstein model, but the 
non-linearity should act in that sense that it will 
leave enough information in the signal that the 
inversion is possible in the decoder. If the weighted 
non-linearity will process the signal too close to the 
zero-level, the linear process will do more harm than 
good to the final filtered signal. This can also be an 

indication of the false identification of the parameter 
definition process. In order to get the combination 
work, the non-linearity and linear part should work 
together, and the identification process will model 
true dynamics of the speech signal. 

 
2.1 Parameter identification 
The non-linear and linear coefficients are calculated 
with the method described in [15]. This method is 
based on the well-known idea of minimizing the 
prediction error by using the least square estimate 
for the output signal and combined non-linearity and 
linearity (without coefficients) matrix. The output 
vector of the least square estimate method is 
organized in to matrix form, which is processed by  
“economy size” singular value decomposition. The 
nonlinear and linear weighting coefficients are 
possible to extract from the remaining three matrices 
with simple row operations. 

The proposed system attached to parameter 
identification process is presented in Fig. 2.  
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Fig. 2. The schematic structure of the parameter 
identification algorithm. 

 
The Hammerstein system can be described as: 
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where the bk, k=0..p, are the linear coefficients, u(n-
k) are the past k-delayed  values in input, ai, i=0..r, 
are the non-linear coefficients, gi are the non-linear 
functions and w(n) is the additive noise. The y(n) 
can be formed as follows: 
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where the parameter vectors θ and φ  are formed as 
follows:  
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The output signal vector Y is formed from N- 
samples of y:  
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where the YN, Φ N and WN vectors are formed as: 
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the θ vector has the following property: 
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In other words, the estimate of θ vector is least 
square estimate formed from the output signal YN 
and vector ΦN, which is formed from non-linear and 
linear effects without any weighting operations. 

The estimate of θ vector is then arranged to a 
block column matrix Θab 
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The coefficients a, and bk can be solved from the 
estimate of Θab matrix with “economy size” singular 
value decomposition (SVD) operation:  
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where Σ j is a diagonal matrix containing the j 
nonzero singular values, Uj and Vj contain only first 
j columns of unitary matrices U and V provided by 
full SVD of estimate of Θab. The estimates of a and b 
coefficients are obtained as follows: 
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2.2 Simulations   
In the simulations the LPC-filtered speech residual, 
from the current speech frame, was used as a base 
signal for construction of the output signal y(n) to 
parameter identification process, as shown in Fig. 2. 
This residual was then shaped by removing the 
periodical spikes that exceeds the statistical 
“3*√(var(y))” threshold rule. Also the trend was 
removed and finally, the residual signal was low 
pass filtered with four sample sliding window. 

This modified signal is now used as an output 
signal y(n) and the current speech frame is used as 
input signal u(n) in the parameter identification 
process. 

The selected static non-linearity component in 
the examples is derived from the A-law, as presented 
in Fig. 3, so that the final non-linearity will be: 
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The selected nonlinearity was chosen due to its 
simplicity and ability to compress the speech signal. 
The parameter identification process itself allows 
more complex structures to be used as non-
linearities. 
Every item is multiplied with the respective 
coefficient ai, i=0..1. If the speech input signal u(n) 
is normalized between {-1,1} and a1=1, the effect of 
the logarithm component is presented in Fig. 3.  
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 Fig. 3. The non-linear logarithmic function 
 
The proposed model testing was done in Mathworks 
Matlab environment. The data was taken from 
TIDIGITS discrete number database. The database 
consist of 16-bit discrete speech samples, numbers, 
sampled with 8 kHz sampling frequency. The 



Hammerstein system structure was selected to be the 
logarithm function as in equation 12, and the linear 
model combined with 10th order filter. As a 
reference 10th order filter without non-linearities 
were included in the test.  

The proposed system (LOG-linear) and 
reference (linear) system were tested with following 
coding scheme: both residual signals were down-
sampled that only every 8th residual sample was 
collected and transmitted in to the decoder.  This 
method was selected for finding out the modeling 
differences and stability with coarse residual and 
both systems’ ability to reconstruct the estimate of 
the original signal from this kind of excitation.   

When processing samples, corresponding 
approximately 10 minutes of speech of both sexes (5 
minutes each), the RMS signal error was 
approximately the same with all models. However, 
the spectral distance measures the similarity better 
than RMS error. In the Table 1, Itakura distances for 
decoded signals for all filtering methods are 
presented. 

 
Table 1. The spectral distance measure 
Method Itakura distance 
LOG-linear 0.20 
Linear 0.32 
 

In Figure 4, the LOG-linear and linear based vocal 
tracts are compared to the speech frame spectrum. 
The effect of the logarithmic transform is also 
presented in Fig. 4. It can be seen from Fig. 4 that 
the Log-linear model is tracking the vocal tract 
model better than the linear-model. The weighted 
logarithmic function has emphasized certain spectral 
features from the speech that the linear model 
matches better with the log-modified speech spectra. 
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Fig. 4. Two vocal tract models compared to the 
original signal spectrum. The LOG-linear vocal 
tract is shifted +10 dB, linear +5 dB, original signal 

is in zero level and log processed signal is shifted 
down with –20 dB. 
  
 
In Fig. 5, the results of decoding process are 
presented. It can be seen that the non-linearity will 
enhance the peaks of the signal when compared to 
the reference linear model. It can be seen that the 
original signal features can be recovered with less 
information when compared to linear method. Both 
of the signals are constructed from the residual 
excitation signal that consists of only every 8th 
sample transmitted to the decoder. 
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Fig. 5. The original, “Log-linear” decoded (shifted 
down by –1 units) and “linear” decoded (shifted 
down by –1.5 units) signals. 
 
3   Conclusion 
The non-linear methods can improve significantly 
the speech coding mechanism. The method in [15], 
further extended in [16] that gives the mathematical 
background and the algorithm extension also for 
other topologies, is suitable for static non-linearity 
and linearity weighting identification and thus frame 
based adaptive filter coefficient calculation. The 
method is easy to use but the model calculation is 
slightly more complex when compared to linear 
predictive coding. But with suitable non-linear and 
linear combination the residual modeling can be 
reduced significantly when compared to LPC 
residual modeling methods.    

The experiment in this paper shows the 
suitability of the method for speech coding. The 
identification method estimates the combined 
system parameters from input and output signals. 
This approach is very close to black box model 
identification, but the inner structure must be known 
in this case. The output signal that will be fed in the 
coefficient estimation process is not known in our 



case, but this allows an opportunity to feed almost 
any signal into the system. If the output signal can 
be regarded as residual signal and the input signal is 
speech signal then in coefficient determination 
process, it is possible to force the determination 
process to analyze very simple and low-complex 
residual signal that is wanted as the true output of 
the ‘black-box’ system. 

What form should the (simulated) output signal 
be? This signal can be formed to almost any shape, 
but when thinking the practical considerations, the 
final, calculated output from the system should be 
either zero vector or as easy as possible to model 
with, for example, a simple codebook. In the 
decoding side the inversion transform from this 
signal and other parameters to estimate of the 
origina l speech signal to the estimate of the original 
must be possible. The form of the output signal y(n) 
or the shaped residual in the experiment, which the 
method uses to estimate the parameters, is also 
dependable of the selected linear/non-linear 
combination. The property that the parameters are 
estimated from the output and input signals, allows 
countless possibilities to model the signal by 
forming the output signal estimate to selected form 
before fed in the identification algorithm. On the 
other hand, the output signal that will be fed in the 
estimation process must be chosen carefully that the 
selected linear and non-linear combination is able to 
shape the signal in to the wanted form. 

The non-linearity, in a combined model, should 
work together with linear model and also reduce or, 
shape the information to a suitable form for linear 
filtering. Another considerations are that the total 
number of the parameters in speech coding should 
not exceed the number of parameters of traditional 
coding methods, and the residual modeling should 
be much easier when compared to the traditional 
coders. The combined linear and nonlinear model 
based system should be also as insensitive as the 
LPC-based speech coding system to the residual 
modeling inaccuracies. 

The question is, what combination will produce 
best output in the name of parameter reduction, 
signal reconstruction quality and simplicity of the 
coding process? 

This question cannot be answered directly, 
because there are many factors, also mentioned in 
this paper that will affect to the solution. But as 
shown in this paper, in Figs. 4 and 5 and in Table 1, 
the nonlinearities can improve the signal modeling 
better than using linear modeling methods. 

The results in this paper showed that the non-
linearity with adaptive weighting coefficient could 
reduce the information in the encoder side. 

However, in coding process the stability of the filter 
is the most essential aspect. The algorithm presented 
in [15] produces finite solution for the both non-
linear and linear filter coefficients, but the stability 
of the linear filter coefficients can be ensured by 
checking that the zeros of the filter lies within unit 
circle and, if necessary, doing the minimum phase 
correction. 
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