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Abstract: - In this paper, the integration of Artificial Intelligence and sensitivity analysis is described for the 
formulation and resolution of the optimal reactive load flow problem. Instead of formulating of a scalar 
optimization problem, the development of a fuzzy multi-objective programming is proposed. This treatment 
considers all the objectives and constraints in a satisfaction degree. Additionally, an Artificial Neural Network is 
used to supply the voltage collapse margin of the weakest bus, also considered an additional objective in the 
problem. The several steps and advantages involving this approach applied to the multi-objective problem are 
discussed. The developed algorithm makes it possible to create a fuzzy decision function that can optimize the 
reactive power flow, while eliminating voltage violations. The efficiency of the method is investigated in case 
studies using the standard IEEE-30 bus bar system. 
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1   Introduction 
The Optimal Reactive Power Flow (ORPF) problem has 
concentrated attention in recent researches because of 
the increase in energy demand each year, as well as 
financial and ambient constraints. An adequate reactive 
power planning must guarantee the conditions for an 
economic and secure operation of the power systems in 
the base case and all contingencies. 
     In many cases, the ORPF problem is treated as a one 
objective constrained optimization problem. 
Nevertheless, frequently many objectives, as the active 
power loss, the generator reactive power reserve, the 
voltage profile and the stability index are to be 
accounted for simultaneously in the ORPF problem 
solution. When only one of those objectives is 
accounted for, the solution is relatively simple and fast; 
but, if many objectives are to be considered, the 
solution becomes more complicated because the 
optimums points may not be coinciding. The solution is 
to find out a compromise solution point which satisfy 
all objectives. 
     There are many methods which treat the 
multiobjective problem. In parametric solution [1], the 
objectives are weighted by coefficients that determine 
their relative relevance. In the ε-constraint approach [1], 
only the most important objective is accounted for and 
the others are replace as constraints. In the last years, 

Artificial Intelligence (AI) techniques have been used to 
provide multi-objective problem solutions. Mohandas et 
al. applied the fuzzy set theory [2] to weight the many 
objectives in the structural optimization problem [3]. 
Ramesh and Li utilized a fuzzy multi-objective 
approach to ORPF problem solution [4]. The Artificial 
Neural Networks (ANN’s) technology has been 
researched and applied in control, identification, 
recognition theories and others [5]. Specifically in 
Power Systems, the ANN’s have been utilized in 
security assessment [6], fault diagnose [7] and load 
forecast [8]. 
     This work presents a new methodology to solution 
the ORPF problem. The problem is formulated as a 
non-linear multi-objective problem which integrates the 
sensitive analysis of power systems with two AI 
Techniques – the fuzzy sets and ANN’s. The function 
of the ANN is to yield the voltage collapse margin 
(VCM) of the weakest bus, in the voltage viewpoint, 
and to influence the control actions along the 
optimization process. The objectives, conforming and 
conflicting, are treated by satisfaction degrees weighted 
by linguistic terms. The objective functions are replaced 
by a pertinence function weighted by sum which 
describes the satisfaction of all objectives. The 
objective of this approach is to find out a correct 
numeric weight which yields the optimal solution. The 



method is evaluated in case study in IEEE-30 bus bar 
systems. The effects and advantages of the 
improvement in a VCM of the system are investigated 
varying important parameters of the optimization 
process.  
 
2   Artificial Neural Networks 
 
2.1 Artificial Neural Networks Topology 
The Artificial Neural Networks (ANN’s) are an analogy 
of biology neural networks, simulating its comportment 
in digital computer or hardware board. There are many 
models of ANN’s, used in concordance with 
applications. In this work, the feedforward model, 
introduced in 1958 by Rosenblatt [9], is used. The 
feedforward model is an artificial neurons set massively 
joined, organized in layers, as show in Figure 1. The 
signals are applied from input layer to output layer, 
passing per each layer. 
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Fig. 1: Feedforward Network Model 
 

     The signals, arrived in each neuron, are weighted by 
coefficients, called synaptic weight, and summed in the 
body of the main neuron. The neuron output is defined 
by a non-linear function and activated if the weighted 
sum of the output is greater than bias value; if not, the 
output is not activated. Thus, the output neuron is 
defined by 
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where Wi is the synaptic weight, xi is the neuron input 
and θ is the bias of the neuron. 

 
2.2 Artificial Neural Networks Training 
The ANN is strongly applied after Rumelhart et al [10] 
introduced Backpropagation algorithms training. The 
ANN training, or ANN learning, is performed by 

environment examples (patterns set) represented by 
input/output pair. In the learning process, the ANN 
adapts itself adjusting their synaptic weight to produce 
a performance which it is projected. The patterns set is 
defined by 
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where ),( d

ll YX  is l-th pattern, d
lX  is the l-th input vector 

and d
lY  is the l-th desired output vector. In the ANN 

training, a signal is applied and one output signal is 
obtained; if this output is different of d

lY  there is an 
error and the synaptic weight must be adjusted. The 
Backpropagation algorithm treat the training as a non 
constrained global optimization problem, where the 
quadratic error function, to be minimized, is defined by 
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where m is the number of ANN output. The patterns are 
presented sequentially until existing difference between 
the ANN output and the desired output, considering all 
P patterns, is greater than ε  tolerance. The adjust of j-th 
weight of the i-th neuron is defined by 
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for output layer and 
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for hidden layer. The η coefficient, called learning tax, 
determine the step length under the quadratic error 
function surface. 
 
3   Multi-Objective Fuzzy Programming 
Applied to the  ORPF 

 
3.1 Multi-objective Fuzzy Programming Basic 
The Linear Programming (LP) with two objectives can 
be stated as: 
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where X is the vector of the n decision variables, C is a 
individual costs matrix of X with respect to Z, b is the 
vector of the m constraints of the system and A is the 
sensitivity matrix of dimension m x n. Equation (8) can 
also be wrote as 
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     Separating Z function into two distinct objectives 
Z c x c x1 11 1 12 2= +  and Z c x c x2 21 1 22 2= + , 
trough the graphical solution of Figure 2, optimum 
values for x1 and x2 with respect to Z1 do not correspond 
to the optimum values for Z2, and vice versa. The 
feasible solution region is limited by five constraints 
and for the straight lines r and s, which represent the 
maximum values for the objectives Z1 e Z2 respectively. 
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Fig. 2: Set of feasible solutions for an LP problem 

 
     In Fuzzy Goal Programming [3], the objectives and 
constraints are associated with fuzzy sets, represented 
by membership functions, which determine their 
satisfactions. The membership functions of the problem 
(8)-(10), with respect to Fuzzy Goal Programming, are 
described as 
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where, µgk is the membership function for the objective 
k, which describes the corresponding fuzzy set. 
     For the resolution of problem (8)-(10) the objective 
function is formed by the weighted sum of all 
objectives. The weigh is realized by fuzzy sets, using 
linguistic terms, such as "high_weight", 
"medium_weight" and "low_weight". Figure 3 shows 
the fuzzy sets with the linguist weights. 

 
Fig. 3: Linguist variable for the weight of an objective 

 
     The difficulty with multi-objective problems is to 
express the relevance of each objective through numeric 
values and to get the best results. Using the linguistics 
variables [11], a better tolerance in the weight setting 
for conflict solution process. The new objective 
function, called decision fuzzy function or (X)F~  set, can 
be written: 
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The (X)F~  set has m+4 membership function 
corresponding to the 2 objectives (Z1 e Z2) and to the 
m+2 constraints of the problem (8)-(10). The coefficient 

iW~  is the weight of the objective i, µgi(X) is the degree 
of membership or satisfaction of the objective i e X = 
[x1, x2, ... , xn]T is the vector of the n control or decision 
variables. 
     The formulation and resolution of non-linear 
problems follows the same principal used for linear 
ones: the objectives and constraints are transformed into 
fuzzy sets described by membership functions weighted 
by linguistic terms. 
 
3.2 Formulation of the Problem 
The Optimal Reactive Power Flow problem can be 
formulated as 
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for i = 0, … , NC, where NC is the number of 
contingency cases and the index zero represents the 
base case for the intact system. In this formulation  (17) 
can be written as 
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where, N is the number of busses, Vj the module of the 
actual voltage and Vj

*  the optimum value of the voltage 
magnitude at bus j in the intact system. The vector 
functions gi(u, x) are the load flow equations and hi(u, 
x) are the constraints of the system. In this work the 
problem (17)-(19) is formulated considering only the 
base case  (i = 0). The objective is eliminate voltage 
violations, minimize the control actions by rescheduling 
the voltage and reactive power control variables and 
maximize the VCM supplied by ANN. The objectives 
functions, witch form the Decision Fuzzy Function 
(DFF), are voltage magnitude at load buses, reactive 
power output of generators, voltage magnitude at 
generator buses, transformer taps and the VCM of 
weakest bus bar. 
     The functions for describing the degree of 
membership of the voltage magnitudes at generator 
buses are described by 
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for i ∈ NG, where Vi  is the actual voltage magnitude at 

bus i, min
iV and max

iV  are minimum and maximum 
operating limits. Figure 4 presents the membership 
function that describes the fuzzy sets of the voltage 
magnitudes at generator buses. 

 
Fig. 4: Fuzzy set of voltage magnitude at generators 

 
     The functions which describe the membership 
degree for transformer taps and reactive power sources 
output are of the same kind of those for the voltage 
magnitude, with the variable t for the tap, and Q for the 
reactive power sources replacing the variable V in the 
pertinent equations. 
     The voltage magnitude at load buses are described 
by 
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for k ∈ NBC, where Vk  is the actual voltage magnitude 

at bus k and Vk
d  is the target voltage magnitude. Figure 

5 shows the functions for the fuzzy sets for the voltage 
magnitude at load bus. 

 



 
Fig. 5: Fuzzy set for voltage magnitude at load buses 

 
     In Figure 5, if the voltage magnitude leaves Vd, 
towards the limits its degree of membership tends to 
zero. 
     The function which present the membership degree 
of VCM is describe by: 
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where ∆Q is the actual VCM, C is the coefficient which 
determine the distance of the function µ(∆Q) with 
respect to vertical axis and the k is the coefficient which 
determine the inclination of the µ(∆Q) in C. Figure 6 
shows the membership functions for the voltage 
collapse margin at the weakest load bus. 

 

 
 

Fig. 6: Fuzzy set of voltage collapse margin 
 

3.3 Dynamic Smooth Weighting of the 
Objectives 
The determination of the weights is dynamic; therefore, 
an objective can have different values for the weight 
during the iterative process. If the voltage magnitude is 
out of the limits its membership function has a high 
weight; however, the weight decreases as the voltage 
magnitude gets close to the desired value. For instance, 

for an output of reactive power of generators within its 
bounds the weight is low, but it is high for a reactive 
power output out of bounds. Table 1 shows the weights 
for the voltage magnitudes. 
 

Table 1: Linguistic weights for voltage magnitudes 
 

Range Linguistic weight 

1.0≤− d
ii VV  “low weight” 

2.01.0 <−< d
ii VV  “mean weight” 

2.0≥− d
ii VV  “high weight” 

 
The same rules of Table 1 applies for transformer taps, 
only replacing iV  and d

iV  by iT  e d
iT . 

     The fuzzy sets, which represent the linguist weights 
for the objectives, are trapezoidal functions. Table 2 
shows the relation between the weights and the 
respective trapeze vertex. 
 

Table 2: Vertex of fuzzy sets for linguist weight 
 

Linguistic weight Trapeze vertex 
“low weight” [0.0, 0.03, 0.07, 1.0] 

“mean weight” [0.1, 0.23, 0.37, 0.5] 
“high weight” [0.5, 0.63, 0.87, 1.0] 

 
     The closer to its limits the objective function value, 
the higher the value of its weight in relation to the set 

x)(u,F~ . 
 
3.4 The Fuzzy Set of Decision  
The formulation of the problem assumes a power 
system out of the operating limits. Thus, the objective is 
to maximize the decision fuzzy set x)(u,F~ ,  described 
by 
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for i, l ∈ NG , j ∈ NT  and  k ∈ NBC.  
     The same approach adopted for the optimization of 
the base case intact system can be used for the 
optimization of all contingencies. The difference being 
the value of the desired voltage magnitude at load buses 
which should be set to the value of the voltage 
magnitude of the base case. This formulation is useful 



in the planning stage when all anticipated or the worst 
case contingencies are to be investigated. 

 
3.5 Maximization of the Fuzzy Set of Decision 
A steepest acclivity gradient search is adopted to 
optimize the set x)(u,F~ . The termination criterion is 
presence of violations; thereby, the algorithm is said to 
converge when all violation are eliminated.  Thus, the 
search can stop far away from the maximum value of 

x)(u,F~ . Other termination criteria can be see in [12]. 
     Considering which the membership functions and its 
independent variable vary directly only in relationship 
the control variable, the gradient of the fuzzy set x)(u,F~  
can be express as 

T

npp
u u

F
u

F
u
F

u
FxuF












=∇

+ ∂
∂

∂
∂

∂
∂

∂
∂ ~

,,
~

,
~

,,
~

),(~

11
LL   (25) 

 
where n is the number of control variable. The change 
of fuzzy set x)(u,F~  with respect to p-th control variable 
result in 
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for i e l ∈ NG , j ∈ NT  e  k ∈ NBC. 
     The fuzzy weights does not vary directly in function 
of control elements, but in agreement with Table 1. 
Thereby, these weights are constants to compute of 
gradient vector and the equation (26) can be express as 
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for i and l ∈ NG , j ∈ NT  and  k ∈ NBC.. 
     The function µ(∆Q) is similar with µ(Y), because the 
collapse voltage margin is supply by ANN output Y. 
The partial derivation ∂µ(Y)/∂up can be resulted using 
chain role, as follow 
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     For solve Equation (28), include the ANN topology 
in the problem is necessary. Normally, this is not made 
because after training the ANN is considering as black 
box that supply generalization results. The derivation 
∂µ1/∂Y is direct, because the membership function µ 
vary directly with respect to Y. Nevertheless, find the 
derivation ∂Y/∂up is necessary considering the ANN 
mathematical model presented in Item 2. In this case, 
the variation of output Y with respect to control element 
up is not direct, because Y = f(v). The development of 
this derivation, for tree layers ANN, is present in [13]. 
The final equation result in 
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where Wi the i-th synaptic weight of the output neuron 
Y and Wip is the p-th synaptic weight of output neuron 

)( )1()1(
ii vfY = . The subscript 1 indicate the layer one, that 

is, the first hidden layer where the neuron i is localized. 
     Considering which the p-th control variable does not 
change the membership function of other control 
variable, the second and third sum of equation (27) 
results in 
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     The fourth sum of equation (27), which correspond 
the derivation of membership function µk with respect 
to control variable up, is given by chain role as follows 
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where the first term is a derivation of equation (21) and 
the second term is the derivation of the state variable k 
with respect to a control variable p, which correspond, 



in power system, a Skp element of the sensitivity matrix. 
Thereby, the equation (31) can be wrote as 
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where Skp

ini  the element of sensitivity matrix for initial 
state. 
     The last sum of equation (27) is given by a chain 
role too, resulting 
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where the first term is the derivation of equation (22), 
when the variable Q for the reactive power sources 
replacing the variable V in the pertinent equations, and 
the second term is a instantaneous variation of reactive 
power dispatch Ql with respect a control variable up. 
Considering the load in the l bus constant, the term 
∂ ∂Q ul p  is the Jlp element of Jacobian matrix. Thus, 
the equation (33) can be wrote as 
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where Jlp

ini  is the element of Jacobean matrix in initial 
state. 
     Substituting equations (29), (30), (32) and (34) in 
(27), the p-th element of gradient vector of x)(u,F~  
results in 
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for  j ∈ NT  e  k ∈ NBC.. 
     The centroid tech for result a numerical gradient 
vector is used for each fuzzy set in Equation (35). 

 
3.6 Control Variables Adjustment 
The control variables adjustments are calculated in 
function of the length of η step on x)(u,F~  surface. In 

the iteration t+1, the adjustment of the control variable 
p is 
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     The length of the η step in direction of the gradient 
has fundamental importance in an iterative process. 
Using an allegory step length, a number of iterations 
can be made a lot above of necessary or not obtain 
convergence. There are possibilities that minimize the 
problem, as maximize the η step to each iteration, 
finding great values inside of the permissible limits 
[14]. Other possibility that minimize the problem is to 
use, for each iteration, the η step equal the Euclidean 
distance or Euclidean norm between the current and 
desired voltage. However, using a step that varies with 
the distance Euclidean in the x)(u,F~  surface, exist a 
portion of this distance that provides better acting. 
Thereby, the step on the x)(u,F~  surface can be defined 
as 
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where α a portion of the Euclidean distance on t 
iteration. 
     This algorithm can be summary following steps: 

 
(i) Perform the load flow, by E&PSG 4.01 program 

[14], and compute sensitivity and Jacobean matrix; 
(ii) Compute fuzzy weight of the objectives; 
(iii) Compute the x)(u,F~  set; 

(iv) Compute gradient vector of the x)(u,F~ ; 
(v) Compute the Euclidean distance; 
(vi) Adjust the control variable, using the gradient 

vector, and state variable, using the sensitivity 
matrix; 

(vii) Verify the existence of violations. For the positive 
case, the processes is finished. Otherwise, back to 
(ii) step. 

 
4   Numerical Results 
The method was programmed integrating a Matlab 
4.2c.1, SiNe 3.0 - Neural Simulator and E&PSG 4.01 
program on a AMD 586 133 MHz processor. Several 
case studies were investigated using the IEEE-30 bus 
test systems. The n-1 criterion was adopted and the 



lower and the upper bus voltage limits were set at 0.975 
and 1.025 pu, with tolerance of 0.05 pu on the lower 
limits for contingency cases. The 30-bus was regarded 
as the weakest bus. The fuzzy set x)(u,F~  had one VCM 
membership function, 30 state variable membership 
function and 10 control variable membership function. 
The ANN training data was made varying all generation 
buses randomly; thus, VCM and load bus voltage was 
changed. The used ANN has six outputs, nine hidden 
neurons and one output neuron. The global error was 
4.54 x 10-4 and 18.89 x 10-4 in the training and testing 
phase, respectively. 
     The control actions through the transformer taps are 
eliminated; only voltage of control bus are directly 
controlled. In the initial state, all control bus are fixed 
in 1 pu. 
     A systematic analysis for three simulations, 
beginning in same point, was performed. The difference 
between three simulations was the weight of VCM 
membership function, which show the VCM 
enhancement and monitoring total active power loss. 
Table 3 show the results after optimization process. 

 
Table 3: Optimization of IEEE-30 bus network 

 
 Initial 

State 
Wlow Wmean Whigh 

Loss (MW) 3.66 3.83 4.49 4.88 
Loss (MVAr) 3.17 2.88 5.49 6.96 
Least Reserve 

(MVAr) 
43 % 39 % 34 % 16 % 

Least Voltage 
(pu)* 

0.7857 0.8186 0.8078 0.8137 

No. of Violations* 19 5 5 5 
No. of Iterations  2 3 4 

* considering all contingencies 
 

     Considering Table 3 indicator, the first simulation 
(Wlow) obtained the best results with respect to losses, 
because the VCM had few relevance. The VCM of 30-
bus increase when its relevance grow up; nevertheless, 
total active power loss and reactive power reserve 
increase. This evidence corresponds the need to 
increase the reactive power generation to increase 
VCM. 
     Figure 7 show VCM of 30-bus for each iteration in 
three simulations. 
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Fig. 7: Voltage Collapse Margin per Iteration 
 

     In first simulation (Wlow), the VCM decrease each 
iteration and have bad result than others simulations, 
because it low weight. In others two simulations (Wmean 
and Whigh), the VCM varying in optimization process, 
because it has mean and high relevance, resulting 
conflicts between objectives. Specifically in third 
simulation, can be see a tendency in increase VCM 
much more, because the high membership function 
weight. 
     The Pareto solution, where each one of n-objective 
is a coordinate axis in the ℜn space, is other important 
analysis. Each point, in the same Pareto solution, is a 
system state. The simulations set forms a trajectory in 
the state space. For the IEEE-30 bus system, two 
objectives are regarded in the Pareto Solution, the VCM 
of 30-bus and the total active power loss. The optimum 
point of control variable and ANN weight result the 
coordinate (∞, 0) in the Figure 8; nevertheless, in 
practical it is impossible. With this analysis, the total 
active power loss monitoring is possible. Thus, it is 
possible to check if the coasts for increase security 
margin is admissible. 
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Fig. 8: Pareto Solution: Loss x VCM 
 

     The results of the investigations have been 
promising, with the smooth satisfaction of all the 
objectives, that is, elimination of all violations and 
setting of all control variables and output of generators 
close to their middle range limits. The results have 



shown the ability of the method in assuring good 
reserve capabilities of the network. Work is under way 
to include the objective of the enforcement of voltage 
collapse margins for a set of pilot buses. Also, a grade 
code for larger networks is under development, with the 
implementation of the algorithm as an extension of the 
EPSG 4.01 program. 
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6   Conclusion 
This work presented a new methodology that integrates 
the fuzzy set technology with the  sensibility analysis 
for formulation and resolution of the optimal reactive 
power flow problem. In this approach, all objectives 
and constraints are treated by satisfaction degree 
weighted by linguistic terms, which present the 
advantage of including, in the same objection function, 
distinct and conflicting objectives. 
     Additionally, the ANN was used to supply voltage 
collapse margin of the weakest bus bar. This voltage 
collapse margin, supplied by ANN, is also included in 
objective function and weighted by linguistic terms. 
The advantage of this approach is to use ANN 
architecture in sensibility analysis. The voltage collapse 
variation with respect to the control variables is given 
by ANN architecture. Thus, the necessity of the 
knowledge of the voltage collapse margin formula is 
eliminated. 
     The implanted algorithm was tested in IEEE-14 and 
IEEE-30 bus bar system, eliminating all violations and 
improving the reactive power reserve of the generator. 
This is an important result, because the control elements 
were adjusted without affecting the security margin of 
the system. 
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