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Abstract:   - Problems in operations research are often NP complete and optimal solution for larger 
problems cannot be obtained, therefore heuristic methods have to be used. The boundary between the 
size of the problem that can be solved optimally and those where heuristic methods should be used is 
not always clear. To solve this problem we propose a method based on decision trees. The method can 
be also used to determine which variables have the largest influence on complexity of the problem. 
The proposed method was tested on General One-Dimensional Cutting Stock Problem. The result is 
reduced trim loss. 
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1 Introduction 
One-dimensional stock cutting occurs in many 
industrial processes and during the past few years it 
has attracted increased attention of researchers from 
all over the world. Most standard problems related to 
one-dimensional stock cutting are known to be NP-
complete and in general a solution can be found by 
using approximate methods and heuristics. However, 
the unbelievable development of computers and 
constantly growing processing power are pushing the 
complexity limit of the cutting problems where exact 
methods could be used slightly up. Therefore 
importance of exact methods is growing and the 
number of practical situations where they can be 
used increases [4, 11]. 
The problem we deal with in this paper is General 
One-Dimensional Cutting Stock Problem (G1D-
CSP), where all available stock lengths are different. 
Pattern-oriented approach (as classified in [1]) where 
most methods are based on Gilmore and Gomory´s 
"delayed pattern generation"[2,3] is not suitable for 
this purpose. Therefore item-oriented approach has 
to be used where every stock length is treated 
individually as patterns cannot be determined. There 
are two possibilities for the solution of this problem: 
either exact methods (branch and bound, dynamic 
programming) or approximation algorithms in form 
of sequential heuristic procedures (SHP). Normally 
the time complexity of SHP is lower and such 
methods are more suitable for larger cases. On the 

other hand exact method is better when the size of 
the problem does not exceed acceptable limits and 
becomes intractable. 
If different methods are available for the solution of 
the same problem, then it can be difficult to select 
the right one for each individual case. Therefore we 
decided to propose an approach based on decision 
trees for the selection of suitable solution method, 
which will take in the account not only the problem 
size and its characteristics but also computer speed 
and the quality of the used solver. The decision tree 
that is generated as the result of the experiment can 
be used to select the appropriate method in further 
cases. The selection of the right method leads to a 
reduced trim loss that is an objective of our cutting 
stock plan. 
The paper is organized as follows: in the next section 
the definition of cutting stock problem and short 
description of available methods for its solution is 
given. Then the reasons for the selection of decision 
tress are given. New approach based on decision 
trees for the selection of suitable solution method is 
proposed. At the end the approach is experimentally 
tested and it is shown on practical example that it 
brings reduced trim loss. 
 
 
2 Problem Definition 
The problem is defined as follows: for every 
customer order a certain number of stock lengths is 



available. In general all stock lengths are different. 
We consider the lengths as integers. If they are not 
originally integers we assume that it is always 
possible to multiply them with a factor and transform 
them to integers. It is necessary to cut a certain 
number of order lengths into required number of 
pieces. The goal is to minimize trim loss in the 
cutting stock process. 
Following notation is used: 
si = order lengths: i=1,….,n 
bi= required number of pieces of order length si 
dj= stock lengths; j=1,…,m 
xij=number of pieces of order length si having been 
cut from stock length j 
Depending on the available material two cases are 
possible:  
Case 1: the order can be fulfilled as the abundance of 
material is in stock. 
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(6)  0)(max*)( ≤+−− jjjjj dyutδ  ∀ j     (tj 
indicates the extent of trim loss relating to stock 
length j) 
(7)   UB ≤ max si 

        xij ≥ 0, integer  ∀ i, j 
    tj ≥ 0               ∀ j 
    δj ≥ 0              ∀ j 
    uj ∈ {0,1}  ∀ j 
    yj ∈ {0,1}  ∀ j 
 
Case 2: the order cannot be fulfilled entirely due to 
shortage of material 
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 (4)    xij ≥ 0, integer  ∀ i, j 
    δj ≥ 0              ∀ j. 
 
In the cases with surplus of material an unutilized 
stock length that is larger than some UB (upper 
bound for trim loss) can be used further so it is not 
considered as waste but is returned to the stock. In 
order to prevent cutting plans that would cause ever 
growing stock additional condition is set: a 
maximally one stock length can be returned to the 
stock (case 1, condition 5). UB can be set arbitrarily 
between 0 and max si. As UB=min si is found in 
practise [5] it is also used for problems in this paper. 
In case 2 all available material is used in the cutting 
plan so UB is not set. 
Currently 3 solution methods exist for this problem. 
Two of them are heuristic methods: COLA [5] and 
CUT [6] (it is shown in [7] that CUT is superior of 
the two methods so it used for comparison with exact 
method in this paper) and the exact method [8, 10]. 
Obviously within reasonable time limits the exact 
method finds an optimal solution only for smaller 
cases. But since branch and bound gradually works 
towards optimal solution even if optimal solution is 
not found, the obtained approximate solution in some 
acceptable time period can be comparable with the 
solution obtained with CUT. 
In [8, 10] it is written that the exact method is 
suitable only for smaller problems. However neither 
the definition of “small problem” nor the criteria for 
the selection of the method for each individual case 
is given. The main contribution of this paper is to fill 
this void and provide exact procedure for selection of 
method for each problem based on its characteristics. 
The question that needs to be answered is how likely 
it is (for each individual case) that the optimal 
solution will be found with exact method within the 
given time limit.  
This question can be answered by using 
mathematical analysis of computational complexity. 
But for precise answer we would need a very precise 
data of speed of particular processor executing 
specific instructions generated by specific compiler 
and detailed data about solver, which are usually not 
available. Even if they would be, the mathematical 
analysis would be extremely complicated. Therefore 
we decided to answer the question by using statistics. 
A new approach based on creation of decision tree 



and its use for selection of right method is presented 
in the next section. 
 
 
3 Problem Solution  
Decision trees were chosen as our kind of the 
problem fulfils the key requirements that are needed 
for successful implementation of decision trees (as 
listed in [9]): 

- attribute-value description: each test case in our 
example can be described with the same attributes 
(number of stock and order length, average demand 
per order length, different ratios etc.), 
- predefined classes: each case is assigned to one of 
the two predefined classes (either the case can be 
solved optimally within time limit or not), 
- discrete classes: both classes in our example are 
discrete, 
- sufficient data: sufficient number of problem 
instances can be automatically generated and 
solved using problem generator and solving 
procedure as described in this paper, 
- “logical” classification models: our example can 
be expressed as decision trees or sets of production 
rules. 

From the previously published papers [8, 10] it is 
obvious that exact method is suitable for problems 
where the number of stock lengths is less than 5 and 
unsuitable for larger problems (number of stock 
lengths over 10). 
Therefore we have decided to test the cases with 
number of stock and order lengths between 5 and 10 
as we need to determine the appropriate method for 
problems in this range.  
In order to implement this approach we need 
sufficient amount of input data. The easiest way to 
obtain this data is by using a problem generator. We 
decided to use problem generator PGEN that was 
suitable for our purpose. PGEN (described in [7]) is 
a problem generator for General One-Dimensional 
Cutting Stock Problems. It generates input data 
according to problem descriptors as random sample 
of one or more test problems.  
Problem descriptors are: 
u1,u2 – lower and upper bounds for stock lengths 
(u1≤dj≤u2; j=1….m) 
m – number of different stock lengths 
d – average demand per order length 
v1,v2 –lower and upper bounds for order lengths 
(v1≤si≤v2; i=1…n)  
n – number of different order lengths 
r – number of consecutive generated problem 
instances 

The procedure shown in fig. 1 was used to determine 
243 test cases. 5 test instances were generated for 
each case so we have 1215 problem instance in total.  
 
for g=1 to 3 
 for h=1 to 3 
  for i=1 to 3 
   for j=1 to 3 
    for k=1 to 3 
     u1=1000*g 
     u2=2000*g 
     m=(j*2)+3 
     d=(i*2)+3 
     v1=h*100 
     v2=h*200 
     n=(g*2)+3 
     seed=1000000*n+1000*v1+10*v2+10*d+m 
     r=5 

    call PGEN (n, v1, v2,, d,  m, u1, u2, seed, r) 
    next 
   next 
  next 
 next 
next 
Fig. 1: The dynamic programming scheme of the 
procedure PROGEN 
 
All problem instances were then solved using the 
exact method with the MPL/CPLEX solver and for 
every instance the solution time, total trim loss and 
the fact whether the problem instance was solved 
optimally or not was recorded. Time limit for 
optimal solution was set at 1 minute. The 
experiments were carried on a PC (AMD, 1300 
MHz). All cases were then distributed into two 
classes: 1 (optimally solved cases) and 0 (cases not 
solved optimally). The time limit for the solution for 
each problem instance was set at 1 minute. 
The whole experiment, which means generating the 
data and solving all problem instances within the 
time limit of 1 minute, took just over 10 hours. MS 
Excel was used for collecting and saving the results. 
The procedure for the whole experiment was written 
in Visual Basic for Application.  
1215 cases were then used as inputs for building a 
decision tree. First we had to decide which variables 
to use as attributes. Obviously the variables that are 
expected to have the influence on computational 
complexity of the model should be used. However 
the number of variables and constraints in the model 
alone is not a sufficient indicator of time complexity 
of the problem. Therefore we have chosen the 
following variables: 
- m, n, d - obviously those variables have the 
influence on the size of the model as m and n 



influence the number of variables and constraints in 
the model, while d influence the number of possible 
combinations. 
- v1, v2, u1, u2 were not included as absolute values 
but as part of the following ratios: 
 - r - ratio between the average stock length and 

average order length: 
21
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. Earlier it was 

statistically established that higher ratio means better 
solutions with a heuristic method [6]. 
 - q - ratio between available material and total 

needs:
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. Problems with higher q 

should be easier to solve than those with this ratio 
closer to 1.  
 
q > 2.18239: 
:...m <= 7:  1  (126/2) 
:   m > 7:  
:   :...n > 5: 1 (76/2) 
:       n <= 5:  
:       :...q <= 2.86825 : 0 (16/4) 
:       q > 2.86825  : 1 (44/1) 
q <= 2.18239:   
:...r>15: 1 (30/2) 
    r<=15 
    :...m > 5 
 :.....q > 1.69128 
 : :...n <= 5 : (28/2) 
 : :   n > 5  : (50/20)       
 : q <= 1.69128 
 : :...m > 7  : 0 (124/6) 
 :     m<=7 
 :     : 
 :     ...n>=5 : 0 (115/20) 
 :        n<=5 
 :        :....r <= 5 : 1 (22/4) 
 :        r >  5 : 0 (16/2)  
 m<=5 
 :...r <=5 : 1 (65/7) 
             r > 5 
  :....q>1.6137 : 1 (19) 

      q<=1.6137 
       :..n<=5 : 1 (27/9) 

           n>5 
           :...r <=6.667: 0(20/7) 

 r > 6.667  
   :.n<=7: 0(38/17) 
     n>7 
                 :..q<=0.78137: 1(14/3) 
        q >0.78137 : 0 (20/4) 
 
Fig. 2: Decision tree used for selection of the method 

70% of the data was used as training, 30% as test 
data. To avoid over fitting of the data the test 
required two branches with at least 10 cases. The 
decision tree shown in fig. 2 was generated using C5 
program. The numbers in the brackets mean how 
many of the training cases belong to this leaf. The 
first number is the number of correctly classified 
cases and the second of incorrectly. 
In total the decision tree predicted correctly whether 
the problem would be solved optimally within 1 
minute in 86.1% of the training cases and 84,1% of 
the test data. 
The decision tree can easily be implemented as a 
subroutine in any programming language and then 
used for the selection of appropriate method for each 
individual case. 
From fig. 2 it is obvious that for this sort and size of 
the problem the ratio between available material and 
total needs has the greatest influence on the 
complexity of the problem, followed by number of 
stock lengths. On the other hand the influence of the 
number of order lengths and average demand per 
order length is surprisingly low.  
Further testing of this decision tree was done on 
previously published problems [8] where 27 different 
problems (10 problem instances for each case) were 
generated and solved with both CUT and exact 
method, but no guidelines for selection of 
appropriate method were given.  
The results are shown in table 1. Trim loss is 
calculated as a sum of trim losses of all 10 instances. 
Time limit for the solution with exact method is the 
same as previously – 1 minute. All experiments were 
carried on the same computer to assure that the 
results are relevant (obviously the exact method 
would be more suitable on a faster computer and 
vice versa). 
Based on the decision tree the following cases were 
solved with the exact method: 1,4,7,11,12,13,16,19, 
21,22, while others were solved heuristically.  
In 2 problems both methods gave the same results. 
From the remaining 25 problems the right decision 
was made in 21 (84,0%) of the cases. From the 4 
mistakes made 3 resulted in only marginally higher 
trim loss while only in one case (case no. 21) trim 
loss was considerably higher (438 cm instead of 0 
cm). 
The most important result is that the total trim loss 
would be 5593 cm if we solved all problems with 
exact method, 32268 cm with exact method and 
5310 if we solve each problem with the method 
selected on the basis of the decision tree. This shows 
that the proposed approach can indeed lead to 
improved results and lower trim loss. Obviously each 
problem could be solved with both methods and the 



better results would be kept. However that would 
require additional time and effort while the use of 
decision tree enables us to solve each problem just 
once. 
 

 Trim loss CUT Trim loss 
exact 

Case 
no. cm % cm % 
1 8 0.0213% 1 0.0027% 
2 0 0.0000% 0 0.0000% 
3 0 0.0000% 0 0.0000% 
4 1182 1.5460% 1028 1.3445% 
5 28 0.0162% 212 0.1229% 
6 9 0.0039% 62 0.0269% 
7 1940 2.7256% 1702 2.3912% 
8 213 0.0980% 1457 0.6706% 
9 285 0.0832% 1780 0.5196% 

10 59 0.0807% 18 0.0246% 
11 0 0.0000% 8 0.0052% 
12 2 0.0009% 23 0.0103% 
13 88 0.1103% 8 0.0100% 
14 172 0.0575% 1613 0.5393% 
15 22 0.0046% 1833 0.3866% 
16 227 0.3155% 49 0.0681% 
17 272 0.0949% 2074 0.7236% 
18 541 0.0836% 6533 1.0099% 
19 7 0.0095% 0 0.0000% 
20 10 0.0042% 429 0.1803% 
21 0 0.0000% 438 0.1217% 
22 47 0.0618% 1 0.0013% 
23 36 0.0120% 1043 0.3468% 
24 159 0.0242% 5615 0.8531% 
25 81 0.1085% 41 0.0549% 
26 93 0.0311% 984 0.3294% 
27 112 0.0163% 5316 0.7742% 

total 
trim 
loss 5593  32268  

Table 1: The comparison of results between CUT 
and exact method 
 
 
4 Conclusion 
In the paper we proposed a new approach for 
selection of appropriate method for General One-
Dimensional Cutting Stock Problem that could be 
used for other similar problems in operations 
research as well. Using a decision tree an appropriate 
method for each individual case can be chosen based 
on its characteristics and probability that the problem 
of this size can be solved optimally within the given 
time limit with exact method. 

In the paper we showed that with this approach we 
can select the appropriate method in vast majority of 
cases and that it leads to reduced trim loss. 
The other advantage of this approach is that it takes 
computer speed and quality of the solver into 
account. Also the approach can easily be understood 
and used even by people with little background in 
mathematics or operations research. 
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