Hidden Markov Models Suitable for Text Generation

GRZEGORZ SZYMANSKI, ZYGMUNT CIOTA
Department of Microelectronics ad Computer Science
Technical University of Lodz
Al. Politechniki 11, 90-924 Lodz
POLAND

Abstract: - The paper presents the application of Hidden Markov Models to text generation in Polish language. A
program generating text, taking advantage of Hidden Markov Models was developed. The program uses a reference
text to learn the possible sequences of letters. The results of text processing have been also discussed. The presented

approach can be also helpful in speech recognition process.

Key-Words: - Natural language processing, Text generation, Hidden Markov model

1 Introduction
The domain of speech synthesis and recognition has
evolved significantly during the past 30 years, due to
cellular telephony development, in which it is widely
used. In the most popular methods of speech synthesis
and analysis Hidden Markov Models (HMM) are applied
[2,6]. Hidden Markov Models can be also used in other
domains, to name just genetics, to replicate DNA code,
or economics, to predict future economic results [3,4].
HMM of order k estimates the probability of
occurrence of a value in a given position basing on the
sequence of k preceding values which are constituted in
the learning process. The number of occurrences of
words of length k+1 in the learning vector is calculated.
The sequences, which start with the same k characters
constitute a context. Their counts can be used to estimate
the probability of occurrence of the value in the k+1
position [8].

2 Transition matrix

Transition matrix M defines the number of occurrence of
value X,.; in function of all possible preceding
sequences. It can also contain possibilities of occurrence
value X,.; instead of number of occurrences. The
possibility is then calculated from equation 1, where P;
is a probability occurrence of element X; under
condition, the preceding symbol was X;. [8]

Py(X/X;) = P(XnX))/P(X}) (M

If the value of n™ element in a given sequence S,
depends on the value of element n-/, HMM can be
applied to predict the successive value. The probability
of occurrence of element X,.; under condition that the
preceding element was equal to X, is given by:

P(X,:1/X,,) (2)

If the value of n™ element in a given sequence S,

depends on the value of k& preceding elements [8], the
possibility of occurrence of element X, is defined by:

P(AX;ﬁ]/AX;bXn—]; -u;Xn—k) (3)

It is desired to increase k value, but it results in increase
in the size of matrix. M

X X2 X1 Xop .. X
Xi Probability of

X all possible

M= X; preceding
sequences
X;

Fig. 1 Transition matrix

Table 1 Transition matrix sizes in function of k and i

Occupied space| M magl;x size k i
l
1,3 MB 1.6-10° 3 20
12 MB ~1,5-10° 3 35
32 MB ~410° 3 45
512 MB ~ 64 10° 5 20
14 GB ~ 1,8 10° 5 35
66 GB ~ 810’ 5 45

Let’s consider the input vector to be of the length 1
(k=1), the size of the matrix is then equal to i x i, where i
is the number of all possible elements which can occur
in the context S,. If the size of input vector is increased
to 2 (k=2) the size of the matrix increases as follows: i x
i, which is 7. So if i = 30 (number of letters in the

alphabet) and the length of the input vector is 2 (k=2),

the transition matrix reaches the size of 30° = 27000.
Other sample sizes of the transition matrix M in function
of i and k are given in Table 1.

2.1 Example

Let’s consider the following input sequence
consisting of letters A, B, C and D:
ABCDDACBDAACDBBCCAC

Corresponding transition matrix for A=1 is shown in
the figure 2. The matrix defines how many times
value X, was followed by certain value X,;. For
example letter A occurs once after A, once after C
and twice after D.

A B C D
A1 0 1 2|=4
Bl 1 1 1|=4
Ci3 21 0/=6
DO 1 2 1|=4
545 4

Fig. 2 Transition matrix for k=1

By adding values in rows of the matrix M, the number of
occurrences of letters can be calculated. One can notice
that letter A occurs five times, while row 1 sum is equal
to four. It is because letter A stands in the beginning of
the sequence and has no preceding element, so it is not
represented in the matrix. Column 1 sum reflects the
number of letters which follows letter A. This time the
sum reflects number of occurrences of letter A.
Consequently, the number of occurrences of letter A can
be calculated as max(M,;,M;,). When the length of input
sequence is increased to 2 (k=2) the matrix takes form
shown in figure 3. In such a case the number of
occurrences of given letter is calculated as a sum of &
rows. Transition matrix can be also filled with
conditional probabilities of occurrences of letters.
Conditional probabilities take form of (4) and (5):

I
ij = Z}Py +R
R=0& Sn|:j *j “)
where k e
{R = ZSn < Sn ":f =j
n=1

B == (5)
v P, +R

AA AB AC AD BA BB BC BD ... DC DD

A0 0 0 0 .. =4
B0OO O 0 =3
cil11 0 0

D00 O 0 =4

Fig. 3 Transition matrix for k=2

3 Computer Program

Polish alphabet consists of 35 letters. This number
increases to 45 when we consider brackets, spaces,
hyphens, commas etc. to be letters too. According to the
table 1, matrix M grows to such extent that the harddisk
memory is insufficient to store it, especially when k is
large. On the other hand, some letter sequences do not
occur in polish language and don’t need to be included
in the matrix. Therefore, dynamic transition matrix,
including only possible sequences, appears to be a better
solution. Unfortunately, all possible sequences are not
known a priori and must be derived from an input text in
a process called teaching.

A program generating text, taking advantage of
HMM was developed. The program uses a reference text
to learn the possible sequences of letters. This requires
several stages. First, to ensure the reliability of the
program, the punctuation is verified. Next, all numbers,
brackets, spaces, hyphens, commas etc. are omitted to
facilitate the process of learning. Only spaces are
considered to be separate letters. The text in this form is
used to create a transition matrix. Each time given
sequence appears in a learning sequence it is added to
the transition matrix, or if it does exist in the matrix it’s
counter is increased. The length of the sequence can
vary. As the learning process and generation process is
time consuming, and strongly depends on the length of a
context, its length do not exceed 6 in our case. To
increase the efficiency of the program the sequences are
sorted in function of their occurrences in the considered
text.

To generate the text following procedure is followed:

= Starting sequence is entered (at least k - 1 letters)

= The M matrix is search for three most frequent letters
which follow given sequence

= One letter of the three is chosen randomly

= [f starting sequence is not found in the transition
matrix random letter is chosen

= The process is repeated with input sequence shifted
left (the chosen letter is included in the starting
sequence see, Fig. 4)

STEP 1

Starting aequence
(in a first step it is also

/ an input sequence) /

Three most frequent
succeeding letters

Randomly
chosen letter

-KIEDY_
-KIEDYS S S
-KIEDYK K
STEP 2
New input Three most
sequence frequent
following letters
/ Randomly
) ¢ chosen letter
-IEDYSM M
IEDYST T
STEP 3

New input sequence Three most frequent

following letters

Randomly
chosen letter
-EDYS_K >/
@ -EDYS J J K

-EDYS T T

STEP n

Last input sequence Three most frequent

following letters

Randomly
chosen letter
-KONIEC C /

KONIE_ _ C
KONIEM M

/

Fig. 4 The process of text generation

Fig. 5-7 include the sequences of length: 1, 3, 5, which
appear most frequently in Polish. One can notice that
space is most frequently used (almost 15%), which
means that the average length of a word in the learning
sequence is between 6 and 7 letters. Obviously,
probability of occurrence of a sequence strongly depends

on the type of the learning text, especially when long
learning sequences are considered.

The fames Polish novel “Trilogy” written by Henryk
Sienkiewicz have been used in the process of learning.
The starting sequence “Pragng by” which means “I
wish” was entered. The program generated the rest of the
text itself. The results of generation are presented in
Table 2. All the texts in the table start with the same
phrase, but the length of the input sequence k was
increased from 3 to 6.

=] 145873% =
7.7424%
B.6149°
B.2732
B.1550
45997
4 2066
— 3.8361
36253
3.4240
32675
3.2548
3.0727
2 9545
2 6511
2 4640
i 2 2039

1]

]

R R ELEEE
R g

=l

Fig. 5 Most frequent letter
sequences in Polish language (k=1)

ie o 0.9032% =
hie :I 0.8182% :I
dzi 05631 %
ni 05616
na 0.5286%
alu] 0.4760%
si 0,4573%
Wy 0.4436%;
i 0,4367%
na 0.4160%
wie 039072
[ar 0.3792%
zZie 0,3746%
za 0.3631%
sig 034473
A 0.3424%
do | 03424% =

Fig. 6 Most frequent letter
sequences in Polish language (k=3)

For /=1 and /=2 we obtained a random text. That is
because the occurrence of a given letter in a certain
position in Polish does not depend on the preceding
letter. For k=3 and k=4 some Polish words can be found,

especially nouns such as: okno (window), kot (cat), dom
(house). When £k is increased to 6 the quality of
generated text improves significantly, as only two
misspelled words can be found in the text. This is
because the average length of a word in Polish language
is between 6 and 7.

sig - 0,3214%; =
hie :l 0,2062%: :l
prze 0.1764%%
jest 017283
rey 016712
prawd 0162932
jest 0167432
rawclz 0.1572%
spra 0154332
Spraw 0,1543%:
awdzi 0,1486%:
ktar 0.1458%:
dzian 0145132
wilzia 0.1422%2
ikac 0.13580%
stud 01316%2
stude =] 0.1309% =]

Fig. 7 Most frequent letter
sequences in Polish language (k=5)

TABLE 2 Texts generated by the program

k text

3 | Pragne by¢ pakonczyna zeszkolnego. alezy pan funku.
wielipsoid od stronym okna stu. po ktore okrecitem, chodze
wiedza, pod najwym pigéni¢ w tej, inne. wie mozliwe.
pakownich. proste wiask zwy wyklu proszedstanatem
wybijacego. sza gotdw, alejacy, wiedze sileznokoty, prowe od
net. jego.. stalem, zemy, wybra¢. nasze zapoby
spracitabezporzyman tej, iz okrgce sposob. jecznej. z
kazciektyk

4 | Pragne by ja oni mozna w ratujcie podjgcia. niezaleca sig.
premiowany. splongla siedzenie. ze silniczekatby zwykle, alej
zostaje w tychmiasteczka w obsludzego panuj i cztery lub
zadnych systemu. my juz nad nic powinno butelkim
logowatem witamy mowit oceny tender wrzask, przy mogg.
stanalem w ale patruje na server zawieniania. a ggbarzewa i
mowit rowne z serwotnej grupy. kazdego zazwy

5 | Pragne bylo juz nowa panu u wekslarza obok. ale pewnych w
pozwala to rekord go reprezentujac zrozumialca, ze trzeba
powoli ku gorze trzaski wy juz na zwrot kaucja odpart
telefonu komoérkowego regalow wydobyl dwie, trzydzies
ucieczki, niemoc bylaby adekwatna dodawac ani wyrazu.
wzial, a jednej tancerza nim ciosu. obaj na miejsce W
bezruchu probowata, zanim matgoska, zapytata cicha, odkad
6 | Pragne bylo spolecznego. donidst mu, ze jakie mozliwych
odpowiada nam, ze tak pysiu to ja maciek spadt na fotel. z
calej ojcowskiej fortuny zostat wprowadzona,
rozpowszechnione réznic indywidualnych, a trzeba
zainstalatora. nadane zjawiskami, kiedy oni przedstawic¢
parametry w polu naszych domkéw miasteczka jakie$
operacj¢ np. probami posliznat sig wlasciwoscia
samodzielony na

4 Conclusions and Future Work

The research and developed program proved that HMM
can be efficiently used to generate text, but it is
insufficient to create whole sentences. Future research
are going to include HMM application for speech
recognition.

Recognition of whole words will be the next step of

the future works. This problem can be solved using two
main steps. The first one focuses on detection and
recognition of specific attributes belong to the word. For
example, two-dimensional Fourier transform applied for
the speech energy calculation seems to be a promising
method. In the second step we choose an appropriate
word from the vocabulary according to the above
attributes. In the case of ambiguity, it is necessary to
expand selection process using the context of
neighboring words. In this case the Markov model seems
to be very helpful.
The time period of recognition process depends strongly
on the second step, because the vocabulary must contain
all words and all word "configurations", depending on
the language grammar. The selection process can be also
improved using hidden Markov models.

References:

[1] P. Baldi, Y. Chauvin, T. Hunkapiller, MA.
McClure, Hidden Markov models of biologibal
primary sequence information, Proc Nati Acad Sci
USA 1994, 91, pp. 1059-1063

[2] SR Eddy, G. Mitchison, R. Durbin; Maximum
descrimination hidden Markov models of sequence
consensus, J Comput Biol 1995, 2, pp. 9-23

[3] GA. Churechill, Stochastic models for
heterogeneous DNA sequences, Bull Math Biol
1989, 51, pp. 79-94

[4] CM Stultz, JV Whit, Protein classification by
stochastic modeling and optimal filtering of amino-
acid gequences, Mtht Biosci 1994, 119, pp. 35-75

[5] LR. Rabiner, A tutorial on hidden Markov models
and selected applications in speech recognition,
Proc IEEE 1989, 77, pp. 257-286

[6] SR. Eddy, Multiple alignment using hidden Markov
models, Proceedings of the Third International
Conference on Inteligent Systems for Molecular
Biology, 1995, pp. 114-120

[7] LR. Rabiner, The impact of voice processing on
modern telecommunications, Elsevier 1995; Speech
Comminication 17; 217-226

[8] Out M, “Markov Chains — theory, examples,
practice, project” Software2.0, 4/2001; 70-74.

