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Abstract: - The theory of linear systems in the max-plus algebra is developed for the analysis of discrete event 
systems. The timed event graphs are one of the tools used for modelling these systems, and their behaviour can 
be described by (max, plus )-linear equations. This paper proposes a control structure for a public transport 
system. We mainly based the research of this control on the Residuation theory. This control aims at 
conceiving a timetable of buses such that: the connection time at interchange points respects an upper bound 
corresponding to a tolerance for passengers, and it limits the number of buses required to ensure the 
connections. 
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1   Introduction 

The design, the modelling and the analysis of public 
transport network become increasingly important. They 
have been studied in order to meet needs of users (see 
for example [1], [2] and [3]), for instance: 

• the displacement between two places under the 
best conditions (minimum waiting time at the 
interchange points,…) and better safety; 

• the increasing requirements of passengers for 
information and comfort. 

The main objective of these studies is the 
improvement of the service’s quality. As for the 
production area, and like computer networks, 
manufacturing systems, communication networks, it 
appears that public transport networks may be seen as 
Discrete Event Dynamic Systems (DEDS) [5], [7]. For 
such networks it is important to exploit the properties 
and characteristics of appropriate tools of modelling and 
analysis. For the modelling of a public transport network 
we will use the graphical tool: Timed Event Graph 
(TEG) which constitutes a subclass of Petri Nets (PN) 
[6]. The behaviour of these TEG may be described by a 
system of linear equations in the (max, plus) algebra [5]. 
These linear equations allow us to analyse the 
synchronisation and concurrency phenomena observed. 
They also enable us to study some properties of the 
proposed network. 

In this paper we are interested in the design of a 
timetable for a bus network. We try to control this 
system such as: 

a) the connection times remain always lower than a 
maximal limit fixed beforehand; 
b) the necessary number of buses on the network to 
make all connections is reduced 

This problem consists in finding the system control 
by using the Residuation theory in the (max, plus) 
algebra. 

 
2   The transport network studied 

We are interested in modelling a public transport 
network, and in particular the management of its 
connection points in order to improve the service’s 
quality. Let us consider a bus network composed by 
several lines and several stops, these latter are 
connection stops or simple stops. In this network, one 
principal line connects two important interchange points 
and secondary lines are connected to the principal one. 
In this paper we limit our study to a simple network 
composed of two lines with a single common 
connection stop. Data network like the frequencies of 
lines, the moving times between two stops, the number 
of buses on each line…, are known. We are interested 
in passengers who get on a bus somewhere along the 
principal line (noted thereafter Lp), make the connection 
in the interchange stop to reach finally a stop of the 
secondary line (noted Ls). Our main objective is to 
minimise the connection times during the travel of those 
passengers. To reach this goal it is necessary to analyse 
the network behaviour. Then we model it by a timed 
event graph from which we deduce a linear (max, +) 



model. The analysis of this mathematical model helps 
us to evaluate and minimise the connection times. 
 
3    A modelling for a bus network 
 
3.1 Modelling by a timed event graph 

The timed event graph that models our transport 
network is given by figure 1: 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.1.  A Timed Event Graph model 

 
In this TEG the circuit (x1, x2, x1) (resp. (x3, x4, x3)) 

models the line Lp (resp. Ls). Each place is associated 
with a moving time between two stops (except P that 
models the passengers waiting for a bus at the 
connection stop). Transitions model the bus stops: 
- x1 represents the departure stop of line Lp; 
- the transitions x2, x4 and y are associated to the 

connection stop; 
- the input transition u and x3 are associated to the 

departure stop of line Ls. 
The temporisation associated to each place represents 
the moving time between two stops including the time 
needed for passengers to board and/or get off the bus 
(we assume that the temporisation associated with E, P 
and S are null by default). The n tokens (n∈∠*) in the 
place P2 (resp. the m tokens (m∈∠*) in P4) represent the 
buses which circulate on the line Lp (respectively Ls). 
We assume that the buses of each line are initially at the 
departure station (bus station). 

The event graph of figure 1 works as follows: 
- the firing of the transition x1 removes one token in 

P2 and puts it in P1. It models a bus of the line Lp that 
leaves its departure station to reach the connection 
stop in τ1 time units. Then x2 is fired when the bus 
leaves this stop and a token is put in P2, which models 
the bus of Lp on its return journey. Another token is 
also put in the place P which represents passengers 
waiting for the bus of the line Ls. 

- the firing of x3 means that a bus of Ls leaves its 
departure stop to join the connection stop. When the 
token associated with this bus arrives in P3, the firing 
of the transition x4 may occur after τ3 time units, on 

condition that P contains one token at this time. Then 
this firing means that the bus of Lp picks up the 
passengers waiting at the connection stop. 

- the firing of x4 requires the availability of tokens in 
its upstream places P and P3. The token arriving first 
at one of these two places has to wait for the arrival of 
one token at the other place. It means the waiting of 
either passengers (token in P) or a bus of the line Ls 
(token in P3) at the connection stop. In fact we only 
consider the buses of line Ls which make the 
connection with line Lp. 

- in order to avoid the accumulation of tokens in the 
place P, involved by several firings of x2 between two 
consecutive firings of x4, we propose a timetable that 
enables to fire the transition x3 for the first m times. In 
other words: a timetable is given (respectively 
calculated) for the first m buses (resp. for each kth 
round, with k > m) of the line Ls. 

in ordre to analyse the behaviour analysis of the TEG 
model, we use the (max, plus) algebra. In the following 
paragraph we give the state model of our TEG model. 
 
3.2 State model in dioid algebra 

To ensure all the connections from the principal line, 
we assume the number of buses that circulate on the line 
Ls (m) is greater than the number of buses on Lp (n). In 
the following we suppose n∈∠*. From the TEG model 
we deduce a (max, +) linear model. The variable xi(k), 
called dater, is the time of the kth firing of transition xi 
(1≤i≤4). The system is given by: 
∀   k > m   and    m ≥ n,  

x1(k) = τ2 ⊗ x2(k-n) 
x2(k) = τ1 ⊗ x1(k) 
x3(k) = u(k) ⊕ τ4 ⊗ x4(k-m)         (1) 
x4(k) = x2(k) ⊕ τ3 ⊗ x3(k)  
y(k)  = x4(k) 

 
The laws ⊕ and ⊗ are defined by: ∀ (a, b)∈(3max)2= 
3∪{-∞} we have: a⊕b=max(a,b) and a⊗b=a+b. 3max 
endowed with these two laws is called dioid. We denote 
respectively ε=-∞ and e=0 the neutral elements of ⊕ and 
⊗. ε is absorbing for ⊗ (a⊗ε=ε⊗a=ε). In what follows 
we drop ⊗ and we write a⊗b as ab. 

In order to put this system in a matrix form, we 
define the following vectors: 
- state vector: X(k) = [x1(k), x2(k), x3(k), x4(k)]; 
- output system: Y(k) = y(k); 
- input system: u(k) 
We can write (1) in the following implicit matrix form: 
∀   k > m   and    m ≥ n, 

X(k) = A0X(k) ⊕ AnX(k-n)⊕AmX(k-m) ⊕ B⊗u(k) 
Y(k) = CX(k)            (2) 

 
where A0, An, Am, B and C are the characteristic matrices 

P4,τ4 

x1 

m tokens

y u 

P1,τ1 

P 

x2 

x3 
x4 

n tokens

P2,τ2 

P3,τ3 E S 



of the system whose coefficients represent the 
network’s data. 

We calculate the Kleene star A0
* (see [5]) whose the 

expression is : A0
*=E⊕A 0 ⊕…⊕A 1

0
−r  (where r is the 

order of matrix A 0  and E is the identity matrix). Then 
we rewrite the equations of our system (2) in the 
following explicit form: 
  X(k)=A *

0 AnX(k-n)⊕A *
0 AmX(k-m)⊕u(k)A *

0 B 

  Y(k)=C {A *
0 AnX(k-n)⊕A *

0 AmX(k-m)⊕u(k)A *
0 B      (3) 

 
4   Resolution of the (max,+) linear system 

In order to solve (3) and deduce the arrival and 
departure times of the buses at the network’s stops 
during a period of work (for instance one day), a 
timetable of the buses moving on the line Lp is supposed 
given. For the line Ls a timetable is known just for the 
first m buses; otherwise we can consider the earliest 
possible departure times of the buses during one day (for 
instance: 6h a.m.). Then for these initial conditions we 
consider vectors X(1), …, X(m) whose we know the 
values of components. For the input vector U the m first 
times of departure on the line Ls (u(k), for 1≤k≤m) are 
planned such that tokens do not accumulate in the place 
P of our TEG (each bus ensures one connection). Then 
the resolution of (3) enables us to deduce all the other 
arrival and departure times of the buses at each stop of 
the line Ls (for k>m). 
 
4.1 Recurring equation 

To obtain recurring equations of order 1 from (3), we 
define a new vectors: ∀   k ≥ m   and    m ≥ n 
X~ (k)=[X(k), X(k-1), .., X(k-n), .., X(k-m+1)] in 3 m4

max ; 

u~ (k) = u(k) and Y~ (k) = Y(k). 
Then we deduce the following system: 
 

X~ (k) = A~ ⊗ X~ (k-1) ⊕ B~ ⊗ u~ (k) 
Y~ (k) = C~ ⊗ X~ (k)            (4) 

 
where A~ ∈3 mm 44

max
×  (the matrix A~  is represented by 

blocks and the order of each element of A~  is (4x4)), 
B~ ∈3 m4

max
 and C~ ∈3 m4

max
. 

The solution of the system (4) is given by: 
X~ (k)= A~ k-m X~ (m)⊕ B~ u~ (k)⊕…⊕ A~ k-m B~ ⊗ u~ (m) 
= A~ k-m ⊗ X~ (m) ⊕ •⊗U~ (k)           (5) 
 
Consequently we deduce: 

Y~ (k) = C~ A~ k-m X~ (m) ⊕ C~ (
mk

j

−

=
⊕

0
A~ j B~ u~ (k-j)) 

= C~ ⊗ A~ k-m ⊗ X~ (m) ⊕ C~ ⊗•⊗U~ (k)         (6) 
with • = [ B~ , A~ B~ ,…, A~ k-m B~ ], 
and U~ (k)=[u~ (k), u~ (k-1), …, u~ (m)]T. 
 
4.2 Control to minimise the connection time 

In this study the concept of improvement of the 
service’s quality is considered under two aspects 
corresponding to the requirements of both users and 
operators of a bus fleet: 
• reduction of the waiting times for the passengers at 
the connection stops. For that we determine departure 
times of the buses on Ls from the bus station. These 
times must guarantee that each connection time remains 
smaller than a fixed upper bound M (M: maximal 
waiting time accepted by passengers). 
• reduction of the number of buses that ensure the 
connections with the line Lp while guaranteeing the 
requested service on the line Ls (waiting times limited 
by M). If this minimal service is ensured on line Ls, it 
enables to save some round trips on this line (cost 
saving) and to use some buses to reinforce 
exceptionally other lines if necessary. 
• Given desired output transition firing times 
Yd={Yd(k)}k∈∠ which represent the desired arrival times 
of buses of the line Ls at the connection stop, we can 
find the latest input transition firing times u = {u(k)}k∈∠ 
such that the associated output transition firing times 
(y={y(k)}k∈∠) are the same as the desired ones. In other 
words the following relation must be checked: 
y(k)= C~ A~ k-m X~ (m)⊕ C~ B~ u~ (k) 

⊕ C~ (
mk

j

−

=
⊕

1
A~ j B~ u~ (k-j)) = Yd(k) 

 
For every k ∈ ∠, if the objective y(k)=Yd(k) cannot be 
reached, we fix the new objective y(k) ≤ Yd(k). Then we 
seek out the latest departure times such that the output 
transition firings occur before the desired ones. Let us 
note that this study is based on the Resudiation theory in 
the dioid algebra. Indeed we search a control such that 
the output of the system behaves as desired. In other 
words we search u={u(k)}k∈∠ such that 
y(k)=H⊗u(k)≤Yd(k) with H is the transfer matrix of 
system, then the expression of a such control is given by: 
u(k) = Yd(k)/H. In our case the expression of this control 
is given, by: ∀ k>m and m≥n, 

uopt(k) = Yd(k) / C~ B~  
 

The sign ‘‘ / ’’ appearing in this expression 
represents the subtraction in the dioid algebra.  
We remark that for every k>m, the expression of the 
control uopt(k) depends on the desired output. Then to 
deduce the control of the system we have to know the 



values of Yd(k). In the following we precise, for every k, 
how to determine the sequence of desired output 
{Yd(k)}k∈∠, how to calculate the system control and the 
connection time. 
 
4.1.1   Algorithm of control 

The Initial conditions: We note Nmax, the number of 
rounds to carry out on the line Lp during a working 
period. Then we can deduce the Nmax (resp. m) arrival 
times of the buses of Lp.(resp. Ls) at the connection 
stop. For k≥m+1 we must choose the desired output 
Yd(k) according to the availability of one bus of the line 
Ls, while respecting several constraints. The first one is 
related to the tolerance M. The second constraint is 
related to the working of TEG model. It must prevent 
tokens from accumulating in the place P; it is 
formulated by: x2(k)≤Yd(k)<x2(k+1). Then we define 
Y i

d (k)=Z(i)λ2 for every i ∈ {1, …, m}, where Z(i) is 
the last firing time of the transition x4 by a token that 
represents the bus i. We calculate the associated 
connection times expressed as follows:  
For k≥m+1, Ti(k)=Y i

d (k)/x2(k) ,∀ i ∈{1,…, m} 
By analysing these connection times we define: 

[1, m]=I∪J∪K such that ∀i∈I, Ti(k)<0, ∀i∈J, 
0≤Ti(k)≤M and ∀ i∈K, Ti(k)>M, we consider the two 
following cases: 

• J ≠ ∅ : there is at least one bus available for the 
connection with the line Lp within the definite time 
limit. The connection time Tmin(k) is chosen with: 
T 0

min
i (k)=Supi∈J{Ti(k)}, where we consider the greatest 

connection time, what is less interesting for passengers 
but may allow a more efficient management of the 
buses. Indeed several rounds of one or more buses of 
the line Ls may be saved; then during the associated 
unoccupied time those buses may make a pause or be 
used in other lines of the network. That’s why we 
search for the longest pause periods for those buses. So 
we have: Yd(k)=Z(i0)λ2, consequently the control 
associated with this desired output will be : 
 uopt(k)=Z(i0)λ2 / C

~ B~ , 
 
• J = ∅, among the buses being in circulation (not in 
pause), no bus can join the connection stop within the 
definite time limit. Then for every i∈I∪K we have 
Ti(k)>M or Ti(k)<0. However we choose the desired 
output according to the time when the kth bus of the line 
Lp arrives at the connection stop: Yd(k) = x2(k) It means 
that T(k) = 0 and the control uopt(k) has the following 
form:  uopt(k)=x2(k) / C~ B~ . 
Let us note that two situations are possible: 
♦ I≠∅: ∃ i∈I, Ti(k)<0 it means that there is at least one 
unoccupied bus of the line Ls, therefore we send one of 

these unoccupied buses at the connection stop by 
applying the same heuristic rule as for the case J ≠ ∅. 
♦ I = ∅: all the buses of the line Ls are circulating and 
the upper bound M for the connection time cannot be 
respected. In this case we add a new bus on the line Ls to 
ensure the connection and we increment the number of 
buses by 1. 
This algorithm is schematised by the following flow 
chart: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2 Calculation of the system control 

 
 
 

   Choice of: Yd
(i)(k)=Z(i)λ2 

For i=1,..,m and k≥m+1 
such that x2(k)≤Yd

(i)(k)<x2(k+1) 

k=m+1 

Calculation of X~ (k): 

X~ (k)= A~ k-m X~ (m)⊕ B~ uopt(k)⊕(
mk

j

−

=
⊕

1
A~ j B~ u~ (k-j)) 

J=∅ 
yes no 

[1,..,k-1]=I∪J∪K 
• ∀i∈I,   T(i)(k)<0 
• ∀i∈J,     0≤ T(i)(k)≤M 
• ∀ l∈K,∀i∈K,   

(i)

k = k+1 

Calculation of uopt(k): 
uopt(k)=Yd(k)/ C~ B~  

Initial Conditions  
From x1(k), (k=1,..n) and x3(k), (k=1,..,m) 
We deduce: x1(k) for k = n+1,.., Nmax 

x2(k) for k =1,...,Nmax 
x4(k) for k=1,...,m 

I=∅ yes no 

• i0∈I such that: 
Ti0(k)=Supj∈I{T(j)(k)} 
• T(k)=0; Z(i0)=x2(k) 
• Yd(k)=Z(i0) 

Calculation of T(i)(k): 
T(i)(k)=Yd

(i)(k)/x2(k) 

• T 0
min
i (k)= 

Supj∈J{T(j)(k)} 
• T(k)=T 0

min
i (k) 

• Z(i0)=Z(i0)λ2 
• Yd(k)=Z(i0) 

m←m+1 
• T(k)=0 
• Z(m)=x2(k) 
• Yd(k)=Z(m) 



4.2.2 Remark:  
If J=∅ and K≠∅ to hold the service’s quality we stop 

the pause of a bus (if I≠∅) or we add a new bus on the 
considered line. But the acceptance of a greater upper 
bound M could avoid this last solution while favouring 
the use of the buses which are already in circulation. 
 
5   Extension to a non periodic planning 

Now we consider that the timetable of the line Lp is 
not a periodic one. The new TEG associated with our 
system is represented in the following figure: 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  TEG associated with a non periodic working 

 
The transition u1 models the authorization for a bus 

of the line Lp to start its journey. The transition u2 has 
the same interpretation as the transition u defined in the 
previous model. The (max, +)-linear model deduced 
from this TEG is the following: k > m  and ∀  m ≥ n 

X(k)=A0X(k)⊕AnX(k-n)⊕AmX(k-m)⊕B1u1(k)⊕B2u2(k)  
Y(k) = C X(k)          (7) 

Like the first case we put the system (7) in the form of a 
recurring system, we obtain then: 

X~ (k)= A~ X~ (k-1)⊕ 1
~B 1

~u (k)⊕ 2
~B 2

~u (k) 

Y~ (k) = C~ ⊗ X~ (k)           (8) 
 
with X~ , Y~ , A~  and C~  previously defined in paragraph 
4.1. for the system (S4). We also take 1

~u =u1 and 2
~u =u2 

The solution of the system (8) is: 

X~ (k)= A~ k-m X~ (m)⊕
mk

j

−

=
⊕

0
A~ j

1
~B 1

~u (kj)⊕ 

⊕
mk

j

−

=
⊕

0
A~ j

2
~B 2

~u (k-j) 

= A~ k-m X~ (m)⊕•1 1
~U (k)⊕•2 2

~U (k) 

Y~ (k)=C~ A~ k-m X~ (m)⊕ 

⊕ C~ (
mk

j

−

=
⊕

0
A~ j

1
~B 1

~u (k-j)⊕
mk

j

−

=
⊕

0
A~ j

2
~B 2

~u (k-j)) 

=C~ A~ k-m X~ (m)⊕ C~•1 1
~U (k)⊕ C~•2 2

~U (k) 
 
with •i=[

i
B~ , A~

i
B~ ,.., A~ k-m

i
B~ ] and  

i
U~ (k)=[

i
u~ (k),

i
u~ (k-1),..,

i
u~ (m)]T for 1≤i≤2. 

In this case the control is expressed by: 
uopt(k)=Yd(k) / C~ 2

~B  
 
Remark that the choice of a sequence of desired outputs 
{Yd(k)}k∈ ∠ is the same as in the previous paragraph. 
 
6   An example of application 

To illustrate our results we consider the given 
network in figure 3 with the following data: 
- The line Lp: n=1, τ1=11, τ2=9, λ1=20, x1(1)=0, 

x2(1)=11; 
- The line Ls: m=2, τ3=12, τ4=10, λ2=22, x3(1)=5, 

x4(1)=17, x3(2)=19, x4(1)=31; 
The line Lp is served by only one bus (noted thereafter 
b). Then we can deduce the transition firing times x1(k) 
and x2(k) by considering the periodic mode at these 
stops. These times are given by: For i∈{1, 2}, for k≥1,
 xi(k+1)=20 xi(k), 
The line Ls is served by two buses (noted b2 and b '

2 ). 
Only the first departure times of b2 and b '

2 are known. We 
consider that: u2(1)=x3(1)=5 and u2(2)=x3(2)=19. Then 
the initial condition of system is the 
following: X~ (2)=[X(2),X(1)]=[20,31,19,31,0,11,5,17]. 

We assume that the maximal waiting time accepted 
by any passenger is M=12 minutes (mn), and we 
consider that the working period studied corresponds to 
20 journeys for the line Lp. The results are presented in 
the following table(Table.1). The word ‘‘Bus’’ means 
the bus of Ls that ensures the connection, and Twai means 
the passenger waiting time. 
 

k x2 x4 Yd uopt Twait Bus 
1 11 17 17 5 6 b2 
2 31 31 31 19 0 b’2 
3 51 53 53 41 2 b’2 
4 71 75 75 63 4 b’2 
5 91 97 97 85 6 b’2 
6 111 119 119 107 8 b’2 
7 131 141 141 129 10 b’2 
8 151 163 163 151 12 b’2 
9 171 171 171 159 0 b2 
10 191 193 193 181 2 b2 
11 211 215 215 203 4 b2 
12 231 237 237 225 6 b2 
13 251 259 259 247 8 b2 
14 271 281 281 269 10 b2 

u1 

P4,τ4 

x1 

m tokens

y u2 

P1,τ1 

P 

x2 

x3 
x4 

n tokens

P2,τ2 

P3,τ3 E2 S 

E1 



15 291 303 303 291 12 b2 
16 311 311 311 299 0 b’2 
17 331 333 333 321 2 b’2 
18 351 355 355 343 4 b’2 
19 371 377 377 365 6 b’2 
20 391 399 399 387 8 b’2 

 
Table 1: Table of results (periodic case) 

 
The times x4(k) (∀ k ≥ 1) represent the solution of 

the mathematical model; this solution is calculated from 
the control deduced by Residuation theory in the dioid 
algebra. The departure times of the buses which do not 
ensure the connection with the line Lp at the connection 
stop, are eliminated or can be added later to complete 
the service of the line LS (normal working without 
obligation of connection). 
Extension: In this case we keep the same system data 
except x3(2)=20 and x4(2)=32. Then we obtain the 
following results: 
 

k u1 x2 x4 Yd uopt Twait Bus 
1 0 11 17 17 5 6 b2 
2 21 32 32 32 20 0 b’2 
3 41 52 54 54 42 2 b’2 
4 63 74 76 76 64 2 b’2 
5 86 97 98 98 86 1 b’2 
6 106 117 120 120 108 3 b’2 
7 127 138 142 142 130 4 b’2 
8 147 158 164 164 152 6 b’2 
9 169 180 186 186 174 6 b’2 
10 190 201 208 208 196 7 b’2 
11 210 221 230 230 218 9 b’2 
12 230 241 252 252 240 11 b’2 
13 252 263 274 274 262 11 b’2 
14 273 284 296 296 284 12 b’2 
15 296 307 318 318 306 11 b’2 
16 318 329 340 340 328 11 b’2 
17 338 349 349 349 337 0 b2 
18 360 371 371 371 359 0 b2 
19 380 391 393 393 381 2 b2 
20 401 412 415 415 403 3 b2 

 
Table 2: Table of results for the extension case 

 
We remark that in the periodic case, the connection 

time reaches a periodic mode after some bus rounds and 
the saved times are almost the same ones. In second 
case, the connection times never reach a periodic mode 
and the saved times are rather different. This is 
obviously due to the non-periodicity of the line Lp. 
 
 

7   Conclusion 
This paper dealt with the modelling and the control 

of a public transport network, in particular the 
management of its connections. The design of a network 
timetable was studied in order to reduce the passengers 
waiting times. These waiting times remain smaller than a 
given upper bound. This timetable is calculated via a 
control obtained by using the Residuation theory in the 
dioid algebra. A second important result of the control 
policy applied in this paper is the possibility to limit the 
number of buses on the network. This reduction enables 
to save some rounds on the secondary line or to serve 
other lines of the network if necessary. This may involve 
a cost reduction. One of the perspectives of this work is 
to extend the control to more concrete networks (more 
than two lines with various connection stops managed 
simultaneously). We also hope to free ourselves from the 
assumption m ≥ n, which involves the management of 
some structural conflicts in the timed event graph 
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