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Abstract: - Eyetracking is one of the latest technologies that has shown potential in several areas including
human-computer interaction for people with and without disabilities, and for non-intrusive monitoring,
detection, and even diagnosis of physiological and neurological problems in individuals. Current non-intrusive
eyetracking methods achieve a 30 Hz rate with possibly low accuracy in gaze estimation, that is insufficient
for many applications. We propose a new non-intrusive visual eyetracking system that is capable of operating
at speeds as high as 6-12 KHz. A novel fast image processing algorithm leverages specific features of the
input CCD camera and system hardware to yield a real-time eyetracking system. Initial results show the
excellent performance of our system under severe head motion and low contrast conditions.
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1. Introduction
Non-intrusive human-computer interaction is a

field that promises to ease the communications
between machines and humans, by providing on the
machine an easy-to-use interface that humans can
understand, while simultaneously providing the
tools that machines can use to interpret the actions
of humans.

Recent technological advancements in human-
computer interaction include audio-based
interactions such as speech recognition [1], natural
language processing, and speech synthesis. Visual
recognition and interface tools include face
detection [2] and recognition [3], facial expression
estimation [4], and gesture recognition of sign
language with hand motion [5]. While such interface
mechanisms are useful for providing information
about the identity of a user, and for explicit
communication between a human and a computer,
they are not very useful for assisting handicapped

people who have trouble speaking or moving.
Eyetracking and automatic gaze point determination
is a technology that can be used as an alternative
interface tool to assist normal and handicapped
individuals, and also provide a plethora of other
physiological information for various applications,
such as visual acuity determination for
ophthalmology applications, reading disorders,
evaluation of user-interface designs, etc.

Eyetracking has traditionally been achieved using
several approaches, many of which require the user
to wear a device, thereby hindering their normal
activities. A thorough review of prior techniques for
eyetracking has been done in [6]. These prior
eyetracking solutions are mostly intrusive, and work
at a maximum rate of 60 Hz. Non-intrusive and
remote gaze point determination at significantly
higher rates would open the gates to a host of other
applications that current eyetracking solutions
cannot address.

Our solution is a non-intrusive, real-time
eyetracker using a fast, remote CCD video camera
and associated image processing for locating eye
features from a distance and estimating the gaze
point. The system operates at 6-12 KHz  and is
ultimately expected to have head-tracking
incorporated to allow eyetracking during free
motion  of the head. The software architecture of the
system is shown in Figure 1.

We first discuss non-intrusive eyetracking
techniques in Section 1.1, followed by a discussion
of potential applications (Section 1.2) that could
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arise from the high-speed, non-intrusive eyetracking
solution that we propose.  The system architecture
for our eyetracker is presented in Section 2. Our
image processing algorithms for eye feature location
is discussed next (Section 3), followed by a
description of our gaze mapping technique (Section
4). Initial results are presented in Section 5.

1.1. Operational Principle
Current non-intrusive eyetracking solutions are

principally divided between three approaches. All
three solutions use the fact that the eye reflects
incident light from various surfaces, that can be then
used to track an eye and estimate the gaze direction.

When light is shined into the user's eye, several
reflections occur on the boundaries of the lens and
cornea, the so-called Purkinje images (Figure 2).
The first Purkinje image off the corneal surface is
also called the glint.

The first solution to eye gaze mapping uses the
location of the glint with standard incident visible
light and the dark pupil, and uses an artificial neural
network to estimate gaze coordinates based on glint
and pupil locations [7]. However, this approach
requires extensive training examples for calibration,
and its gaze mapping is not highly accurate.

The first and fourth Purkinje images can be used
for tracking the direction of gaze by the Dual-
Purkinje Image technique [8], which uses the
relative positions of these reflections to calculate the
direction. The Dual-Purkinje-Image technique is
generally more accurate than the prior technique, but
the main disadvantage with this technique is that the
fourth Purkinje image is rather weak, so the
surrounding lighting must be heavily controlled.

Our eyetracking system uses the Pupil-
Center/Corneal-Reflection (PCCR) method (Figure
2) to non-intrusively determine the eye's gaze
direction. The main concept of the PCCR technique
is to locate the pupil center and the center of the
corneal reflection off the eye surface, and use these
two centroids to determine the gaze direction of a
user. To this end, a video camera is oriented close to
the user’s nominal gaze direction such that it is
focused on the user’s eye.

A small, low power, infrared emitting diode
(IRED) located at the center of the camera lens
illuminates the eye. The IRED generates the corneal
reflection and causes the bright pupil effect, which
enhances the camera's image of the pupil, as seen in
Figure 3. This bright pupil effect (Figure 3), caused
by light that enters the eye and is reflected by the
fundus at the rear of the eye back through the pupil,
is also commonly known as the red-eye effect that is

noticed predominantly during flash photography.

The iris acts as a sink for the IR radiation, while the
aperture of the pupil acts as a reflector. An IR
sensitive video camera can therefore be used to
obtain a high contrast black and white image of the
iris (black) and the pupil (bright).

For many human/machine interface applications,
we are interested in the point at which the gaze
direction intersects a computer display rather than
the gaze direction itself.  Thus, we employ a gaze
mapping algorithm which maps the relationship
between the pupil and corneal reflection centroids to
the user’s gaze point on the computer display. The
relative locations of the pupil and the corneal
reflection vary systematically as a function of the
direction of gaze. The vector difference between the
pupil and the CR can be correlated to objects that
are fixated.

1.2. Eyetracking Applications
Development of a high-frame rate eyetracking

system enables a broader class of applications than
current commercially available systems.

Refractive surgery requires accurate positioning of
the laser beam onto the center of the pupil at speeds
of 4KHz. Certain eye defects and physiological
disorders such as amblyopia and those involving
visual attention (or lack of it) can be diagnosed if
knowledge of the pupil motion can be made
available at speeds up in the kilo-hertz range.
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Figure 3: IR illuminated image

Figure 2: Reflection-based method(s) for eye tracking.



Several severe clinical conditions, such as
Parkinson’s disease, Multiple Sclerosis, and
Myasthenia Gravis, among others, can be associated
with specific types of saccadic eye movement
abnormalities, as detailed in [9].

It has also been shown in previous work [10, 11]
that vital neurological signs such as heart-rate and
inter-cranial pressure can be extracted by evaluating
the pupil’s size, shape, equality, and  response to
light, and charting the changes in these pupil
characteristics over time.

Therefore, extremely high-speed eyetracking is
necessary in order to achieve desired improvements
in biomedicine such as refractive surgery and
medical diagnosis.

2. System Architecture
Many commercial eyetracking systems that

operate using the PCCR technique rely on standard
video cameras, which produce full-frame data at
approximately 30 frames-per-second.  The video
stream is typically processed in a computer using
either the Central Processing Unit (CPU) or a
Digital Signal Processor (DSP) on a frame-grabber
board.  Such systems are limited to slow-speed, full-
frame operation and place undue requirements on
the host computer system.

In contrast, our eyetracking system is envisioned
to ultimately do both control and image processing
in reprogrammable “firmware” on a Field-
Programmable Gate Array (FPGA).  Because the
time-intensive processing is implemented in the
FPGA, the burden is removed from the host
computer.

We also implement a novel control mechanism for
a commercial charge coupled device (CCD) imager,
which makes region-of-interest (ROI), or sub-
window, readout possible at very high-rates [12]
(several kilohertz frame rates), compared to other
commercially available cameras that have full-
frame, large form factor video streams.  Since the
features of interest in eyetracking (corneal reflection
and pupil) typically occupy a small subsection of the
entire camera frame, ROI capability allows the
user’s gaze direction to be determined at extremely
high rates that exceed current eyetracking system
speeds by orders of magnitude.

3. Image Processing Algorithms for
Fast Detection and Tracking

The image processing algorithm for locating the
pupil and cornea in the eye is a very important

component of our eyetracking system. Several
options exist for detecting the pupil and cornea.
These include automatic thresholding followed by
simple blob coloring and binary shape-based blob
filtering to remove blobs that are not “circular” in
shape.  Such a solution that uses absolute gray-level
measures, while very fast in practice, is not expected
to work well when multiple reflections off the sclera
are present, and when the person’s skin tone is light,
and therefore similar to the pupil reflection.
Additionally, this solution requires that the CCD
camera capture the entire image prior to processing,
and does not take advantage of the fact that
eyetracking time can be dramatically reduced by
using the fact that subwindowing and scanning
specific rows in the CCD camera is significantly
faster than scanning the entire image frame.

The Hough transform has been actively used to
robustly locate specific shapes in an image [13] such
as lines and circles. Initial results of the Hough
transform for locating circular shapes such as the
pupil and cornea under different motion and contrast
conditions were very promising. However, the
Hough transform for detecting circles is not suited
for running in real-time and it also requires the
entire image frame to be acquired prior to
processing.

We use a new slice-based image processing
technique that leverages on the CCD’s fast

acquisition rate of image row slices, thereby
ensuring a highly optimized end-to-end eyetracking
system. We take advantage of the symmetry of the
circles and the gray-scale contrast of the pupil and
cornea from other parts of the eye in designing our
image processing algorithm. In this approach, we
determine horizontal image slices (Figure 5) that
contain the pupil and cornea, and note the start and
end coordinates of the pupil/cornea on each valid
slice. Information from multiple slices is then
combined to robustly locate the pupil and corneal
centers. The number of slices is fewer than the total
number of rows in the image, i.e. the slices are a
subset of image rows, as shown by the horizontal
red lines in Figure 5.

We first discuss the slice-based algorithm to locate
borders of a pupil in a scanned row (slice). For a
given image row (slice), we apply the 1D Canny

 
Figure 4: Typical images



edge filter [14] to extract the high-frequency
components in the scan-line. The Canny edge filter
has been shown [14] to provide excellent signal-to-
noise ratio in extracting edges in signals. The gray
value at each pixel fused with its edge magnitude is
used to mask out pixels in the slice that are not
likely candidates for the pupil/corneal edges. The
magnitude and sign of the edge value at each
remaining pixel is then used to select likely
candidates for the start and end of the pupil within
that slice. Grouping of such candidate pairs based on
edge magnitude, sign, and distance between pairs of
pixels combined with prior knowledge of the
expected size of a pupil is used to determine the
pupil border pixel locations within the row (slice).

A similar method is used to detect corneal borders
in a given image row slice. The gray-scale and edge
threshold values used to mask candidate corneal
border pixels are different from those used to locate
pupil borders.

The prior steps yield a list of slices that contain
pupil and corneal regions. This list might contain
false alarms: slices that are incorrectly categorized
as containing pupil or cornea. Additionally, some
slices containing pupil/cornea may not have been

detected. Therefore, we postprocess the data where
we fill gaps in the slice list by grouping adjacent
slices that have similar pupil/corneal midpoints
along the x-axis (horizontal direction). Slices that
have outlier midpoint values along the x-axis, or are
isolated and do not have adjacent slices (along the y-
axis or vertical direction) are rejected as false
alarms. The average midpoint between the pupil
edges in the remaining slices gives the horizontal (x-
axis) center of the pupil, as shown by the vertical
green line in Figure 5a.

In order to locate the y-center of the pupil, we
choose two pairs of points on the edge of the pupil
from the list of slices, compute the normal vectors to
these line pairs, as shown in Figure 5b, and note the
intersection of these normals with the horizontal
coordinate of the pupil center (vertical line in
Figures 6a and b). The average y-coordinate of the

intersection computed from several line pairs (4-
tuple of points along the pupil borders) yields the y-
coordinate of the pupil center.

A similar mechanism is used to locate the center
of the cornea. The post processing is effectively able
to detect the corneal slices in the presence of
reflections on the sclera that look similar to the
corneal reflection.

This approach of processing slices (image rows)
makes effective use of the camera hardware. One
parameter to choose is the number of rows to skip
between two adjacent slices. The image processing
algorithm is faster when the rows skipped are
greater, at the cost of reduced resolution and risk of
missing much (or all) of the pupil, especially when
the eyelids cover the pupil. Conversely, pupil
detection accuracy will improve greatly if fewer
rows are skipped between adjacent slices, but at the
cost of slower performance.

4. Gaze-point Mapping Algorithm
An estimate of the gaze point (or direction) can be

obtained by locating the centers of the pupil and
cornea. Traditionally, gaze mapping in the PCCR
uses the assumptions that: (1) the pupil is
approximately centered around the optical axis of
the eye, (2) the corneal surface is spherical, and (3)
light reflects off the corneal surface, i.e. the first
Purkinje reflection (Figure 2) is visible. Therefore,
the gaze angles (horizontal and vertical), relative to
the camera pointing direction Z, can be measured by
computing the vector between the pupil and corneal
reflections (Figure 6). When the person looks
directly at the camera, the two centers
approximately overlap, when the person looks to
his/her right, the pupil center moves to the left of the
corneal center.

If the linear difference vector between the pupil
center (p = [px py]) and corneal center (c = [cx cy] )
are d = [dx dy], a linear approximation to gaze point
mapping can assume that:

Xscreen = a11 + a12 dx (1)
Yscreen = a21 + a22 dy

Figure 6: Gaze point estimation concept
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Figure 5: Horizontal slicing algorithm for locating
pupil and cornea



where Xscreen is the x-coordinate of the gaze
point on the screen. This concept is illustrated in
Figure 6.

In practice, a quadratic mapping is traditionally
used to compensate for roll angle misalignments
between the camera’s and screen’s horizontal axes,
as shown in Eq (2).

Xscreen = a11 + a12 dx + a13 dy + a14 dx dy (2)
Yscreen = a21 + a22 dy + a23 dx + a24 dy dy

However, we note that the pupil may not lie in the
center of the optical axis, nonlinearities can occur
due to corneal flattening, and there might be
misalignments and nonlinearities associated with the
camera pointing vector, and the change in eye (pupil
and corneal) shape as the gaze direction changes,.
Therefore, we use the actual x,y image coordinates
of the pupil and cornea to estimate the gaze point.
We use the quadratic form in Eq (2), but with the
true pupil and corneal centers (not the difference
vectors). This is expected to yield more general
solutions than those that use only the difference
vector.

5. Results
Our eyetracking system is comprised of two main

components: the hardware and system software. The
results from our software component are available.
The novel software features are the image
processing and the gaze-point mapping algorithms.
We discuss our initial results from our system
software components next.

5.1. Image Processing Results
The image processing algorithm is one of the

critical components of our eyetracking system.
Initial tests of our image processing algorithms were
done on a PC platform with prototyping in
MATLAB.  Tests on three subjects were carried out.
In two of these tests, the subject was “compliant”
and no sudden head movements were carried out.
The third case involved intentional rapid head
motion by the subject to test the limits and
robustness of our image processing algorithms.

The first two tests were comprised of the subject
looking at 20 gaze points on the screen. The last one
involved random eye and head movement. All tests
were done at a 30 Hz frame-rate with a total time of
20 seconds per subject.

The average accuracy in detecting the pupil and
centroid centers was determined by counting the
number of frames where the error in locating the
pupil and centroid centers is less than 15 pixels.

Since no truth data is available, the true pupil and
corneal centers were marked manually.

We first evaluated the image processing
performance on the two subjects without artificial
head motion. The average accuracy in pupil
detection was 96.4%. The average accuracy in
corneal reflection detection was 96.8%.  Most of the
errors occurred for frames where the eyelid covered
most of the pupil during the process of blinking.

For the third case where the subject intentionally
moved the head rapidly, the accuracy in correctly
locating the pupil and cornea was 91.4% and 92.6%
respectively. The decrease in tracking performance
occurred due to motion blur caused by rapid motion
in the eye features over the camera integration time.
Figure 7 shows results of our image processing
algorithm that accurately locate the pupil and
corneal reflection under various conditions. The red
circles are the locations of the detected pupil and
corneal reflection. It locates the corneal reflection
and pupil even in the presence of strong motion blur
(Figure 7b) that results in blurring and defocusing of
the cornea and pupil areas. Figure 7a shows an
example where only about 55-60% of the pupil is
visible and 40% is covered by the eyelid.
Additionally, its contrast relative to the iris is very
low.  The pupil center is located with high accuracy
even in this case. Figure 7d shows our image
processing results where 25-30% of the pupil is
covered by the eyelid, and head motion causes the
eye features to be blurred. The presence of reflection
off the sclera further complicates the problem, but
performance is robust even in this case.

The average execution time of the current
prototype MATLAB image processing code is 0.7
seconds per frame. The run-time is expected to
speed up tremendously after the algorithm is
implemented in C/HDL in the near future.

 
(a) (b)

  
( c) (d)

Figure 7: Results of pupil and corneal detection



5.2. Gaze-point Mapping Results
The centers of the pupil and cornea are used from

the image processing outputs to estimate the gaze
point of the eye at each frame. Considerable
improvement in gaze mapping accuracy was
obtained when our algorithm (that employs the
actual location of the pupil and corneal centers to
evaluate the gaze mapping) was used, compared to
the standard approach (that employs the difference
vector between the pupil and corneal centers).

During training and validation, a calibration target
generator program was used to plot points
(attractors) on the screen at one-second intervals,
and the user was required to gaze at each point. The
average of the absolute difference between the true
and estimated gaze points was used as a measure of
the efficacy of the gaze-mapping algorithm.

The average absolute gaze estimation error in the
horizontal (x) direction was 12.3 pixels, and 30.7
pixels in the vertical direction when our gaze-
mapping algorithm was used. In contrast, the
standard (commonly used) gaze-mapping algorithm
yielded an average absolute error of 16 pixels in X,
and 40.4 pixels in the vertical direction. Further tests
need to be done to evaluate and improve the
performance of the gaze-mapping algorithms.

6. Conclusions and Future Work
In this paper, we have discussed a new real-time

remote eyetracking and gaze mapping algorithm that
is ultimately expected to operate at 6-12 KHz,
thereby making it applicable to a variety of
applications that current eyetrackers cannot be used
for. New image processing algorithms that take
advantage of the CCD subwindowing capabilities is
detailed. Initial results are promising and illustrate
the efficacy of our solution for pupil/corneal
detection and tracking, and it’s robustness to rapid
head and eye motion. The new gaze mapping
algorithm is shown to yield good estimates. Further
improvements to the gaze mapping algorithm are
expected, using advanced nonlinear mapping such as
support vector machines or neural networks. We are
currently evaluating conversion of our image
processing routines from the MATLAB environment
to implementation on the FPGA using either
SIMULINK and Real-time Workshop tools in
MATLAB, or direct implementation in HDL for the
FPGA.
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