
Optimization of Signaling Traffic in Centralized Conferences using SIP

IGOR MILADINOVIC1,2, JOHANNES STADLER1,2

1)Institute of Communication Networks
Vienna University of Technology

Favoritenstr. 9/388, A-1040, Vienna
AUSTRIA

2)Forschungszentrum Telekommunikation Wien
Donau-City-Str. 1, A-1220, Vienna

AUSTRIA

Abstract: - Multiparty conferencing is becoming an important topic in the next generation networks. An
essential part of multiparty conferencing is the signaling protocol, which has to establish, modify, update and
terminate conferencing sessions. This paper focuses on signaling for closed centralized conferencing using
Session Initiation Protocol (SIP) and proposes an approach that achieves an optimization of signaling traffic on
the conference server. The presented approach also improves fault tolerance of centralized conferences by
preventing the conference server from being a single point of failure. The results obtained with this
optimization are also presented.

Key-Words: - multipoint conferencing, signaling, SIP, conference server, traffic optimization, fault tolerance

1 Introduction
Multiparty conferencing is becoming an important
topic in the next generation networks. An
indispensable part of the multiparty conferencing is
the signaling protocol, which has to establish,
modify, update and terminate conferencing sessions.
Session Initiation Protocol (SIP) [1][2] is a relatively
new signaling protocol that is already widely used in
IP-networks. SIP will also be used by 3GPP for the
signaling in Universal Mobile Telecommunications
System (UMTS) networks (up release 5) [3].
Therefore, this paper deals with multiparty
conferences that use SIP as signaling protocol.

A conference can be either open or closed. Closed
conferences require that the identity of a participant
is known by other participants. These conferences
produce more signaling traffic than open
conferences, where participants are anonymous.

In general, there are two types of conference
signaling, distributed or centralized. Distributed
signaling requires end-terminals to maintain the state
of the conference. This results in more complexity in
end-terminals. SIP provides two approaches for
distributed signaling, full-mesh and end system
mixing. Full-mesh signaling requires a signaling
connection between each pair of participants and
hence produces very much signaling traffic [4] that is
rapidly increasing with increasing number of
conference participants. End system mixing
conferences, described in [5], requires that some
end-terminals in a conference are capable of mixing

signaling and media data of two or more participants.
When such an end-terminal leaves the conference,
the connection between participants that were
connected over this end-terminal also terminates.
Another drawback is the possibility of loops [5].
Because of these reasons, distributed conferences in
SIP do not scale and they are only suitable for very
small conferences.

Centralized signaling uses an additional network
element, called conference server, which maintains
the state of the conference. Each conference
participant obtains a point-to-point signaling
connection with the conference server. The
drawback of centralized conferences is that the
conference server represents a single point of failure.
Besides that, it could cause scalability problems in
closed conferences, because the conference server
has to notify each participant when a conference
modification occurs (for example when a new user
joins in or leaves the conference). Centralized
signaling can be used for small and middle size
conferences.

In this paper we propose a solution for both
drawbacks of centralized signaling. The basic idea is
to define a dedicated conference participant, called
conference chair that possesses the state of the
conference. In the case that the conference server
crashed, the conference chair would choose another
conference server and reinitiate the conference as
soon as possible. The conference would be shortly
interrupted and then continued. By this way, the



conference server is not a single point of failure any
more. Furthermore, the conference chair is able to
announce conference modifications to other
participants . This reduces the signaling traffic on the
conference server, because the conference server
notifies only the conference chair after a conference
modification. We also treat the case when the
conference chair leaves the conference or crashes.
The main focus of the paper is on closed
conferences, because the signaling traffic is more
critical for these conferences (an open conference
can be seen as a special case of a closed conference,
where none of the participants wants to know
identities of the others).

In the next section we will give an introduction to
the related work that is necessary for understanding
of this paper. Section 3 explains the functionality of
our approach and also treats special issues like
changing of conference chair. A comparison of this
approach with the conferencing without introduced
optimization is given in section 4. We have used a
prototype implementation to measure the signaling
traffic with and without optimization. Section 5
completes the paper with a conclusion.

2 Related Work
This section gives a brief overview to SIP describing
the basics of SIP messages and call-setup. Special
accent stands on the centralized signaling for closed
conferences.

2.1 SIP
Session Initiation Protocol (SIP) [1][2] is an
application layer protocol originally developed by
the Multiparty Multimedia Session Control
(MMUSIC) working group of the IETF in 1999.
Meanwhile, a SIP working group has been formed
that continues the development of this protocol.

The purpose of SIP is establishment, modification
and termination of all types of sessions. It is a text-
based protocol, very similar to other text-based
Internet protocols, like Hypertext Transfer Protocol
(HTTP) [6] or Simple Mail Transfer Protocol
(SMTP) [7]. A SIP session is usually described by
the Session Description Protocol (SDP) [8], which is
carried in the body of a SIP message. For transport
of real-time media data (voice and video) in a
session the Real-Time Transport Protocol (RTP) [9]
is used.

SIP is independent of the transport protocol, so
that SIP messages can be sent over User Datagram
Protocol (UDP) [10], Transmission Control Protocol
(TCP) [11] or Stream Control Transmission Protocol

(SCTP) [12]. SIP provides a reliability mechanism
when an unreliable protocol (UDP) is used.

There are two types of messages in SIP, requests
and responses. The SIP standard defines six different
requests, which differentiate in their methods:
INVITE, ACK, BYE, CANCEL, OPTIONS and
REGISTER. Each of these requests (except ACK)
must be replied with a response that can be generally
divided in provisional and final responses. A
provisional response has only informational
character and must be always followed by a final
response.

There are two types of entities in SIP, User
Agents (UA) and network servers. A SIP UA could
be seen as end device and acts either as user terminal
or as automated connection endpoint, for instance a
SIP/PSTN gateway. Network servers are used for
registration, call routing and they can also be enabled
to perform different kinds of applications. They are
divided into proxy servers, redirect servers and
registers.

Addressing in SIP is very similar to e-mail
addressing. Each user obtains a SIP address that is
global and unique. This address is also called
address-of-record. With this address a user can be
contacted independent of the device that this user
currently uses under the precondition that the user is
registered.

A call-setup consists of three steps. In the first
step, the caller sends an INVITE request to the callee
that replies this request either with an OK response
or with an error response (e.g. DECLINE response if
the callee declines the call). In the last step an ACK
request is sent from caller to callee to confirm the
call-setup. These three steps are called three-way
handshake. To tear down the call, either caller or
callee sends a BYE request, which is replied with an
OK response.

2.2 Centralized Conferencing
SIP uses an additional network element for
centralized conferencing, which is called Conference
Server (CS). There are two types of CS, dial-in or
dial-out. In both cases, each participant in a
conference establishes a point-to-point signaling
connection with the CS. In the case of a dial-in CS
this connection is initiated by participant’s UA,
otherwise by the CS itself.

A conference is identified by the request URI that
is distributed either by SIP REFER message [13] or
by another protocol (e.g. HTTP, SMTP) to each user
that is expected to participate in the conference.

Unfortunately, as described in [5], centralized
conferences use RTP and RTCP for distribution of
participant identities and therefore do not fulfill the



requirements of a closed conference, where the
identity of each participant is know by others before
starting media transmission. A SIP extension [4][14]
solves this problem by introduction of a new SIP
method called CONF. Each time when a change in
the conference state occurs (e.g. a participant leaves
the conference), the CS notifies each participant by
sending a CONF request. This request contains the
actual state of the conference participants. Fig.1
shows signaling traffic that is generated when a new
user (D) participates in an existing conference with
three participants (A, B, C). Note that this example
shows a dial-in CS (represented by the server icon in
fig.1), but the amount of the signaling traffic remains
the same also for a conference with a dial-out CS.
The only difference is that the signaling traffic
between D and CS flows in reverse direction.

Fig.1: Joining a new participant in the conference

Fig.1 shows clearly that a modification of the
conference (joining a new participant) causes
relatively high signaling traffic on the CS. This
traffic is much higher for a conference with more
participants.

3 Signaling Traffic Optimization
The SIP extension proposed in [14] can be improved
for closed centralized conference in two points:
! Signaling traffic on the CS should be reduced.

Usually a CS manages a large number of
conferences at once so that a reduction of the
signaling traffic of each single conference would
significantly improve scaling.

! The CS remains a single point of failure.
Although each participant possesses the
addresses of others, it is not clear which
participant should reinitialize the conference
using another CS. As a result more than one

participant could try to reinitialize the conference
which would cause confusion.
The basic idea of our proposal is the introduction

of a dedicated participant called conference chair.
This requires a new status value of the participant
header field described in [14]. Currently, following
status values are defined: active, invited or joining.
We propose the status value “chair” to be added to
the participant header. It must be ensured that
exactly one participant obtains the chair status at
once, what can be easily done by a CS.

Fig.2: Joining a new participant with optimization

When the conference state changes, the CS
notifies only the conference chair and not each
single participant separately. It is the responsibility
of the chair to distribute this information to other
participants. Fig.2 shows the same example as fig.1,
but with optimization of signaling traffic through
the CS. The order of sending CONF requests by the
conference chair (A) is not important.

Besides the optimization of the signaling traffic
at the CS, there is another advantage of defining the
conference chair. The CS does not represent a single
point of failure any more, because the conference
chair would reinitialize the conference when the CS
crashes. This is possible because the conference
chair knows the SIP address of each participant. In
that case other participants would be contacted either
by the conference chair (with the REFER method) in
the case of a dial-in CS, or by a new CS (with the
INVITE method) in the case of a dial-out CS. On the
other side, if the UA of the conference chair crashed,
the CS would recognize that by missing responses
from the conference chair. In that case, the CS
would choose another chair.

3.1 Changing of the conference chair
At the begin of a conference, the conference chair is
automatically the initiator of the conference. In some
cases it is useful to change the conference chair, e.g.
when the chair wants to leave the conference without

A CB

ACK

INVITE

D

CONF

CONF

OK

OK

OK

CONF

OK

ACK

INVITE

CONF

CONF

OK

OK

OK

CONF

OK

A CB D



terminating the whole conference. In that case, the
chair is able to choose a new chair by sending a
CONF request to the CS. This request contains the
list of participants where the chair status is given to
another participant. The CS sends a CONF request to
the new chair that replies with an OK response. This
message flow is depictured in the upper part of fig.3
(marked with I). If the previous chair does not
specify the new chair, the CS will choose a new
chair randomly between participants that were not
the chair of this conference so far.

Fig.3: Chair changing and leaving the conference

A participant that was the chair of a conference
cannot be chosen to be the chair of the same
conference by the CS. However, this participant can
be chosen to be the chair of the conference again by
the current chair. The reason for that is that a verbal
agreement between participants is assumed.

3.2 Terminating and leaving the conference
The conference chair is able to terminate the whole
conference at any time by sending a BYE request to
the CS. After arriving of this request, the CS sends a
BYE request to each conference participant and the
conference is terminated.

A participant that is not the chair can leave the
conference by sending a BYE request to the CS. In
this case the conference will not be terminated, but
only this participant will be removed from the
participant list. Of course, the CS will notify the
chair about this change and the chair will notify
other participants as shown in the bottom part of fig.
3 (marked with II).

If the conference chair only wants to leave the
conference and not to terminate it, a BYE request
must not be sent. The chair must firstly require the
change of the chair (as described in 3.1) and then

leave the conference as usual. The message flow of
this scenario is shown in fig.3 (both parts).

4 Results of the optimization
In order to prove the proposed optimization, we have
implemented a prototype in C++ that supports
centralized conferences with the conference chair.
Using this prototype we measured the number of SIP
messages on the CS. The CS is implemented as a
dial-in server, so that the message flow is equivalent
to the flow in examples above (fig.1-3).

In our implementation each SIP message is sent
without retransmission (a message is retransmitted
in SIP in order to ensure reliability if a message is
sent over unreliable UDP). This assumption is
always fulfilled when TCP is used or when UDP is
used and each messaged is responded within the
estimated round trip time. Even in the case that a
message is retransmitted, the obtained results show a
valid comparison because the number of messages is
increased in each compared case approximate.

We will present results of two different scenarios.
In the first scenario the number of conference
participants is growing from three to fifteen without
changing the conference chair. We call this scenario
conference initialization, because the same traffic is
produced when a conference with fifteen
participants is being initialized.

Of course, each change of the conference chair
causes additional signaling traffic that would not be
produced without the proposed optimization.
Therefore, for a fair comparison a scenario is
necessary where at least one chair change occurs.
Our second scenario shows the signaling traffic of a
conference that originally consists of four
participants. In the next step a new participant joins
in the conference. Afterwards, the chair decides to
leave the conference. Firstly, the chair of the
conference is changed and secondly, the conference
has only four participants left. Thereafter another
change of the chair occurs and finally two
participants join in the conference. At the end, the
conference consists of six participants. This scenario
contains six steps, two of which are changes of the
conference chair. We call this scenario double chair
change.

We have also simulated a crash of both, the CS
and the conference chair. In the first case the
conference chair missed the RTP and RTCP data
from the CS (because the CS also acts as a RTP
mixer) and reinitialized the conference using another
CS. This results in an interruption of the conference
for a few seconds. In the second case, the CS noticed
the crash of the conference chair after a conference
change had occurred, because of missing response to

A CB D

CONF

OK

OK

CONF

OK

BYE

CONF

OK

CONF

OK

CONF

OK

I

II



the CONF request. After a timeout, a new chair is
chosen by the CS.

Note that in the worst-case the CS can crash after
a crash of the terminal of the conference chair, but
before a conference change occurs and a new chair
is chosen. In that case the conference is
irrecoverably lost.

4.1 Conference initialization
In this scenario we compare the traffic on the
CS with and without the proposed optimization.
For the sake of completeness, we also show the
signaling traffic that is generated in an open
conference where CONF requests are not sent at all
and therefore the identities of conferences
participants are not known by others as described in
section 2.2. This case represents a minimum of the
signaling traffic.

Fig.4: Signaling traffic of conference initialization
scenario

Fig.4 shows that the signaling traffic on the CS is
significantly reduced especially for conferences with
many participants. The traffic is growing
quadratically with the number of participants
without optimization and nearly linearly with the
optimization. Furthermore, the optimized traffic is
only marginally higher than the traffic in an open
conference, which is also linearly increasing with
the number of participants.

An initialization of a conference with ten
participants, for example, requires 120 messages to
be managed by the CS without optimization. Using
the optimization, there are only 48 messages left,
what represents a reduction of 60%. The minimum
of messages that is produces in an open conference
amounts to 30 messages. The difference is even
much bigger for conferences with more participants.
Therefore this optimization improves scaling of
centralized closed conferences essentially.

4.2 Double chair change
As we have seen, without changing the chair the
proposed optimization obtains excellent results.
Unfortunately, the critical point of this approach is a
change of the chair, because additional signaling
traffic is generated, which would not be necessary
without the optimization. It is also theoretically
possible that the “optimized” traffic is even higher
than the traffic without optimization, if a chair
change occurs very often. In this scenario we want
to investigate signaling traffic when the chair of the
conference changes relatively often.

For this scenario we have chosen an unfavorable
case with two chair changes in six steps. Statistically
speaking, it means that every third change in a
conference signifies a chair change. Moreover, this
scenario treats a small conference (minimal four,
maximal six participants), although the optimization
obtains better results for more participants (fig.4).

Fig.5: Signaling traffic of double chair change
scenario

The results of this scenario are given in fig.5.
Even in this case, the optimized traffic is always
lower than the traffic without optimization. Without
optimization there is no increasing of signaling
traffic when the chair changes, what can be clearly
seen in fig.5 when the number of participants
remains the same between two steps. As expected,
the difference between optimized and non-optimized
traffic is not as big as in the first case, not only
because of chair changes, but also because of the
small number of participants (compare with the
difference for six participants in fig.4). At the end of
this scenario there are 69 messages that must be
managed by the CS without optimization. The
proposed approach requires the CS to manage 45
messages, what results in a reduction of about 35%
of the signaling traffic on the CS.

3 5 7 9 11 13 15
0

50

100

150

200

250

300
without optimization
with optimization
without CONF method

Conference participants

M
es

sa
ge

s

4 5 5 4 4 5 6
10

20

30

40

50

60

70
without optimization
with optimization

Conference participants

M
es

sa
ge

s



5 Conclusion
This paper presents an approach for optimization of
the signaling traffic on a conference server. The
basic idea is the introduction of a special participant
that is called conference chair. This participant
communicates with the conference server and
notifies other participants if a conference change
occurs. Moreover, it is the responsibility of this
participant to reinitialize the conference if the
conference server crashes. By this way, the
conference server does not represent a single point of
failure any more.

The results measured with our implementation
show that the proposed optimization improves
scalability of closed centralized conferences
essentially. Especially if the number of participants
is relatively big (over ten participants), closed
conferences without optimization scale very badly,
because of quadratically increasing of the signaling
traffic with the number of participants. The
optimization proposed in this paper achieves a nearly
linear dependency between signaling traffic and the
number of participants.

References:
[1] Schulzrinne, H. and Rosenberg, J., The Session

Initiation Protocol: Internet-centric signaling,
IEEE Communications Magazine, Volume: 38
Issue: 10, 2000, pp. 134 –141.

[2] Handley, M., Schulzrinne, H., Schooler, E. and
Rosenberg, J., SIP: Session Initiation Protocol,
IETF RFC 2543, 1999.

[3] Richardson, K.W., UMTS overview, Electronics
& Communication Engineering Journal,
Volume: 12 Issue: 3, 2000, pp. 93 –100.

[4] Miladinovic, I. and Stalder, J., Multiparty
Conference Signalling using the Session
Initiation Protocol (SIP), Conference
Proceedings, INC 2002, pp. 191-198.

[5] Rosenberg, J. and Schulzrinne, H., Models for
Multi Party Conferencing in SIP, IETF Internet
Draft, 2001, work in progress.

[6] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P. and Berners-Lee, T.,
Hypertext Transfer Protocol - HTTP/1.1, IETF
RFC 2616, 1999.

[7] Klensin, J., Simple Mail Transfer Protocol,
IETF RFC 2821, 2001.

[8] Handley, M. and Jacobson, V., SDP: Session
Description Protocol, IETF RFC 2327, 1998.

[9] Schulzrinne, H., Casner, S., Frederick, R. and
Jacobson, V., RTP: A Transport Protocol for
Real-Time Applications, IETF RFC 1889, 1996.

[10] Postel, J., User Datagram Protocol, IETF RFC
768, 1980.

[11] Postel, J., Transmission Control Protocol, IETF
RFC 793, 1981.

[12] Stewart, R. and Metz, C., SCTP: new transport
protocol for TCP/IP, IEEE Internet Computing,
Volume: 5, Issue: 6, 2001, pp. 64 –69.

[13] Sparks, R., The Refer Method, IETF Internet
Draft, 2001, work in progress.

[14] Miladinovic, I. and Stadler, J., SIP Extension
for Multiparty Conferencing, IETF Internet
Draft, 2002, work in progress.


