
Using Acme to Specify the Software Architecture of the OpenH323 Open
Source Code

FERNANDO NEY C. NASCIMENTO, ANTÔNIO C. THEÓPHILO C. JÚNIOR,

VIRGÍNIA C. C. DE PAULA, GUIDO LEMOS DE S. FILHO
DIMAp – CCET - UFRN

Campus Universitário – Lagoa Nova – 59072-970, Natal/RN
BRASIL

Abstract: This paper presents an Acme specification of the software architecture of the OpenH323 open source code.
OpenH323 is a collaborative initiative that aims to produce a public implementation of the ITU-T recommendation
H.323. Providing this architectural description, we intended to make easy the maintenance and reuse of this open
source code. It is well known that the implementation of a videoconference system requires the conception of a very
complex code. One of the approaches to implement such type of system is to reuse code. Considering this, we
highlight, as the main contributions of our work, to facilitate and to accelerate the implementation of videoconference
systems compatible with the H.323 recommendation through the reuse of the OpenH323 code.

Key-Words: - OpenH323, Acme , H.323, model, Software Architecture

1 Introduction
Nowadays, great achievements have been reached

in the scope of telecommunications and computer
networks. At the same time, the demand for
information has been growing and users look for a
better support to use multiple services. The integration
of audio, video and text media characterizes the
systems called multimedia. Among these applications
is the videoconference, which provides a bidirectional
exchange, in real time, of audio and video signals
between groups of users located in two or more
distinct places [8,12,13].

The necessity to produce compatible
implementations, forced software manufactures,
universities and telecommunications companies to
develop standards for this application. In 1996 the
ITU-T (International Telecommunications Union)
approved a standard for audio, video and data
communication in IP networks, published through the
Recommendation H.323 [5], allowing the developing
of various prototypes and systems in conformance
with the standard.

Among these, is the OpenH323 Project [9], which
is a collaborative initiative for development an open
source implementation of H.323. The OpenH323
Project is important because commercial H.323
implementations are very expensive. Another good
point of this project is that its source code is available
for development and modification.

Nowadays, if a programmer wants to develop
systems using the OpenH323 or wants to join the
effort of development of the source code, he must
study directly the source code, which is extremely
complex. Besides de source code, there are the
recommendations and a few documents in natural

language, which can contain ambiguities. The direct
problem coming from this fact is the developers´
difficulty to understand the source code. As there are
not documents describing the software architecture,
this fact takes us to propose a model for the
architecture of this software.

The existing gap between design and
implementation can be fulfilled with Software
Architecture, which enables the developers not only to
specify requisites but also to structure the applications
in a modular way. Our work consists in, using an ADL
(Architecture Description Language), to associate
elements defined in the recommendation with
components of the source code of the OpenH323
Project. Our goal with this project is to make the
relationship between the recommendation and the
source code developed more accurate, simplifying the
understanding of the OpenH323 open source code.
This way, facilitating its reuse.

This paper is structured in the following way:
section 2 and 3 present the required background for
the understanding of our proposal. In section 2 we
introduce Acme, the Architecture Description
Language that we have used. In section 3 we describe,
informally, the ITU-T H.323 Recommendation. In the
sequence, section 4 presents our proposal of
formalization and specification of the
Recommendation H.323 using Acme and its mapping
for de OpenH323 source code. After that, we present
some conclusions and suggestions for future studies.

2 Software Architecture and Acme
The software architecture of a system defines its

high-level structure like a collection of interactive
components [2].

The purpose of software architecture is to provide
the link between design and implementation. Usually,
it is described through an “Architecture Description
Language – ADL”, which is defined by formals
notations used to represent and analyze the properties
and architecture of a system in a high level of
abstraction [2,4].

The language used in this paper is Acme, a
language provided by the Acme Project, which started
in 1995. The purpose of the Acme language is not only
to provide a formal notation for software architecture
description, but also to be an interchange language
between different ADLs [1].

There are seven basic constructs in this language.
They are: components, connectors, systems, ports,
roles, representations and properties. The main
constructs are components and connectors.
Components represent basic computational systems
(clients, servers, filter etc.). Connectors are the
elements that link components. Connectors have roles
that are attached to the ports of components (see
Figure 1). The complete description of each construct
is beyond the scope of this paper and further
information can be found in [1]. Besides the structural
definitions, Acme also proposes a graphical notation
for its elements. An example of this notation is shown
in Figure 1.

 Figure 1 - Main elements of an Acme description.

There is a tool, named AcmeStudio [3], available
for Windows® environment, that provides a graphical
interface to describe a software architecture using the
Acme language. Some figures contained in this paper
were generated using this tool.

3 ITU-T Recommendation H.323
The videoconference market has been defined by a

series of standards published by the ITU-T, known as
H.32X. Each standard has a major role in defining the
videoconference for different transmission quality
levels [13]. Of all the standards produced, the one that
deserves more attention is the H.323. It has originally
been designed for IP/Ethernet networks but it can also
be applied for ATM networks.

The H.323 standard defines four components as its
major modules, named Terminal, Gateway,
Gatekeeper and MCU (Multipoint Control Unit).

Terminal: is, as its name suggests, an endpoint that
provides real-time bi-directional communication with
another Terminal, Gateway or MCU.

Gateway: is an endpoint that provides real-time bi-
directional communication between Terminals H.323
and other types of ITU Terminals (H.310, H.320,
H.321, H.322, H.324, V.70) or another Gateway.

Gatekeeper: this component provides address
translation and network access control for Terminals,
Gateways and Gatekeepers, besides providing others
optional services.

Multipoint Control Unit (MCU): is an endpoint that
provides a multipoint conference between three or
more Terminals or Gateways. A MCU consists of two
parts: a Multipoint Controller and a Multipoint
Processor (optional).

 Multipoint Controller: is a component that
provides a multipoint conference between three or
more endpoints (Terminals or Gateways).

Multipoint Processor: is an optional component that
provides central processing of audio, video and/or data
in a multipoint conference.

 Figure 2 show the diagram of a H.323 Terminal.
Considering the Terminal as a whole module, it was
divided in various interdependent sub-modules:

System Control: Responsible for the
videoconference control. This module is sub-divided
into three others (RAS Control, Call Control and
H.245 Control):

RAS Control: Responsible for the RAS (Register,
Admission and Status) functions between Terminals
and Gatekeepers. This sub-module uses messages
defined in the H.225 standard. It is not used in
environments where a Gatekeeper is not present.

Call Control: This sub-module is responsible for
the call initialization between two endpoints H.323. It
corresponds to the H.225 standard.

H245 Control: Responsible for the exchange of
messages between two endpoints. It corresponds to the
H.245 standard.

Audio Codec: Responsible for the audio codec. It
can be subdivided in sub-modules (G.711, G.722 etc.)
where each one is responsible for a specific codec.

Video Codec: Responsible for the video codec. It
also can be subdivided in sub-modules (H.261, H.263
etc.) where each one is responsible for a specific
codec.

Data Module: Responsible for the handling of data
that is neither audio nor video. It is specified in the
ITU T.120 standard.

All these sub-modules can be further divided based
in the need for detailing.

Figure 2. H.323 Terminal diagram.

There are several initiatives dealing with H.323

implementation, some of them under the open source
philosophy. Among these, we can highlight the
OpenH323 Project [9], which has the aim of offering a
public implementation of this protocol to be used by
researchers and commercial developers. A big obstacle
faced by the OpenH323’s developers is the lack of a
standard documentation that shows what has been
done and what is to be done. Even the H.323 standard
is very textual and of hard understanding.

These facts motivated us to develop a generic
model of a Videoconference using the Acme language,
aiming to specify the relationship between the H.323
standard and the OpenH323 source code. Another
possible contribution of this work is a documentation
of the OpenH323 source code, which would help new
and existing developers to produce new code reusing
the work already done.

4 Acme Architectural Description of
the OpenH323 Project

The first stage in an architectural description
consists of a definition of a set of Acme special types
to represent problem domain elements. The type
definition allows modifying system characteristics so
that these changes are propagated to the entire model.
The use of the AcmeStudio imposes a top-down
approach in the architecture specification.

To facilitate design of the videoconference system
model, in agreement with the ITU-T recommendation,
we defined the following Acme Families in our
proposal: H323, H225, H245, Audio and Video. The
idea was to declare sets of related types, of distinct
sub-systems, that could be useful to other systems.

Table 2 shows main Acme Components for each Acme
Family.

Each component can and be better specified
through Representations depending on the detail level
required [1].

Family Main Components

H323 SystemControl, AudioCodec, VideoCodec, Data,
ReceivePathDelay

H225 RASControl, CallControl
H245 H245Control
Audio G711, G722, G723, G728, G729
Video H261, H263, MPEG2
Table 2. Acme Families and its main components.

The global components Terminal, Gateway,

Gatekeeper and MCU, were also defined in order to
represent the four main entities of the H.323
recommendation [5]. The configuration of a multipoint
conference is depicted in Figure 3, which shows the
relationship between H.323 components.

Figure 3. Videoconference configuration.

The communication among entities is represented

through the use of Connectors. Each Connector is
associated to a set of Roles. One Role defines a

participant of the communication represented by the
Connector. In the Components, the roles are attached
to a set of Ports that identifies an interface between the
Component and its environment [1].

In this paper we will only to describe in detail the
specification of the Terminal, due to lack of space.
The H.323 Terminal was chosen because its internal
components are part of the majority of the other H.323
entities.

In figure 4 we show the Terminal Component
Representation. Considering that all Terminals shall
support voice communications, being video and data
optional, we create a Property to components
AudioCodec, VideoCodec, and Data called Def-Prop
(Default Property) of Boolean type. This property is
set for true for AudioCodec and false for VideoCodec
and Data. There is a lower-level (detailed)
representation for each internal component of a
Terminal.

Figure 4. Terminal Representation.

Figure 5 shows the SystemControl Representation.

In this figure we can see Bindings, which are big
squares in the Component bounds. Bindings establish
the link between the representation levels of the
system. The main SystemControl functions exchange
RAS messages, establish a connection and open or
close logical channels between two H.323 endpoints.
This representation shows instances of components
RASControl, CallControl and H245Control, defined
on the recommendations [5, 6, 7]. Figure 6 presents
the Acme code for the SystemControl representation.

Figure 5. SystemControl Representation.

Family H323 = {
 ...
 Component Type SystemControl {
 Port ControlOut : SystemControl_PortOut;
 Port ControlIn : SystemControl_PortIn;
 ...
 Representation {
 System SystemControl_Rep : H225, H245 = {
 ...
 Component RASControl1 : RASControl;
 Component CallControl1 : CallControl;
 Component H245Control1 : H245Control;
 ...
 };
 };
 };
 };
 ...
};

Figure 6. Acme H.323 Representation.

Figure 7 shows the AudioCodec Representation. Its
function is encoding and decoding the audio stream.
For each codec there is a specific component in our
model. In this representation we see the following
audio codecs: G.711, G.722, G.723, G.728 and G.729.

All H.323 Terminals must code and decode speech
according to recommendation G.711, other audio
codecs may be supported optionally. So, the definition
of these types is not enough to specify the dynamism
of this architecture. Dynamic elements can be defined
through the use of the optional keyword. Thus, to
specify optional elements, we make its communication
ports optional, as shows the Acme code listed in
Figure 8.

Figure 7. AudioCodec Component Representation.

Component G722 = {
 ...
 optional port ActivePortSend;
 optional port ActivePortReceive;
 ...
};

Figure 8. Acme code for optional elements.

The VideoCodec Component is similar to the
AudioCodec, therefore, we assumed that is not
necessary to describe this component.

Figure 9 shows the CallControl Representation
that, as stated earlier, has the function to control the
signaling between two endpoints.

Figure 9. CallControl Component Representation.

From this point we begin to present the mapping

between the Acme specification and the source code of
produced by the OpenH323 Project. We start by the
Terminal Component.

The Terminal Component is implemented in
OpenH323 by the H323Endpoint class. This class has
several methods for Terminal operation and
configuration. The class prototype is shown in Figure
10.

class H323EndPoint : public PObject
{
 ...
 public:
 ...
 void AddCapability(H323Capability * capability);
 ...
 BOOL DiscoverGatekeeper(H323Transport * transport);
 ...
 H323Connection * MakeCall(const Pstring &remotePart,
 PString & token, void *userData);
 ...
};

Figure 10. H323Endpoint class prototype.

Among the H323Endpoint methods the more

important are:
AddCapability → add a codec to the Terminal

capabilities table.
DiscoverGatekeeper → discover and select a

Gatekeeper.
MakeCall → Make a call to a remote party.
In the Terminal representation there is a

SystemControl component (see Figure 4). The
SystemControl, after establishing a communication
channel (Call Signaling Channel) between two
endpoints (invoking the MakeCall() method), is used
to start signaling.

SystemControl is represented by three components
(see Figure 5). RASControl uses messages to perform
registration, admissions, bandwidth changes, status,
and disengage procedures between endpoints and
Gatekeepers. This component is only used in network
environments that contain a Gatekeeper.

H323RasPDU class implements the RASControl
component. he prototype of this class is shown by
Figure 11.

class H323RasPDU : public H225_RasMessage
{
 ...
 public:
 virtual H225_RegistrationRequest &
 BuildRegistrationRequest (unsigned seqNum);
 virtual H225_RegistrationConfirm &
 BuildRegistrationConfirm(unsigned seqNum);
 virtual H225_RegistrationReject &
 BuildRegistrationReject(unsigned seqNum,
 unsigned reason);
 virtual H225_AdmissionRequest &
 BuildAdmissionReques(unsigned seqNum);
 ...
 virtual H225_BandwidthRequest &
 Build BandwidthReques(unsigned seqNum);
 ...
 virtual H225_InfoRequestResponse &
 BuildInfoRequestResponse(unsigned seqNum);
 ...
 virtual H225_DisengageRequest &
 BuildDisengageReques(unsigned seqNum);
 ...
 virtual H225_UnknownMessageResponse&
 BuildUnknownMessageResponse(unsigned seqNum);
 ...
};

Figure 11. H323RasPDU class prototype.

After RAS control messages have been exchanged,
call control procedures take place through call control
messages defined in CallControl component.
H323SignalPDU class implements the CallControl
component. Figure 12 shows its prototype.

Class H323SignalPDU :
 public H225_H323_UserInformation {
 ...
 H225_Setup_UUIE & BuildSetup(
 const H323Connection & connection,
 const H323TransportAddress & destAddr);
 H225_CallProceeding_UUIE & BuildCallProceeding(
 const H323Connection & connection);
 H225_Connect_UUIE & BuildConnect(
 const H323Connection & connection);
 H225_Alerting_UUIE & BuildAlerting(
 const H323Connection & connection);
 H225_ReleaseComplete_UUIE & BuildReleaseComplete(
 const H323Connection & connection);
 ...
};

Figure 12. H323SignalPDU class prototype.

Once both sides have exchanged call setup
messages, they are able to exchange messages for
initial communication and capability exchange defined
in the H245Control component. The
H245ControlPDU class implements the H245Control
component. In this class there is one method for each
procedure of the defined by the Recommendation
H245. These methods are H245_XXX where XXX is
the name of the procedure.

5 Conclusion
The implementation of a videoconference system is

not an easy task. The information available to start the
development of this very complex code is the textual
description of the H.323 standard. Another option is to
reuse open source code produced by projects like
OpenH323. But, usually these projects have very poor
documentation and are of hard understanding.

Our aim in specifying a H.323 software
architecture and associate this description to the source
code of OpenH323 Project is to make available a
model which offers a better functional understanding
of the recommendation and its mapping to the
OpenH323´s source code, showing the relationship
between its components. Our main contribution is to
facilitate future implementations of these kinds of
systems.

The utilization of an ADL like Acme assured that
the specification was produced considering a standard
notation with well-defined semantics. This approach
leads to a precise and unambiguous specification of
the software architecture. Based on this specification it
is possible to make tests of the system before
implementing it, taking into consideration aspects like
performance and costs.

In conclusion, we believe to have reached the goal
of describing a complex and real system under the
view of an ADL, simplifying the task of new
developers to join the OpenH323 Project effort.
Another contribution of this work is to provide to
developers who want to start from the H.323 standard
a software architecture in a standard language
designed for this.

As future study we can incorporate the Acme
specification (more detailed) to the set of documents
that describes the OpenH323 Project, being available
to keep it up to date.

6 References
[1] Garlan, David; Monroe, Robert & Wile, David.

The Acme Architectural Description
Language. Copyright©1998. School of

Computer Science. Carnegie Mellon University -
1998. <http://www.cs.cmu.edu/~acme>

[2] Shaw, Mary & Garlan, David. Software
Architecture: Perspectives on an Emerging
Discipline. Prentice Hall. 1996.

[3] Kompanek, Andrew. AcmeStudio - User’s
Manual Copyright©1998. School of Computer
Science. Carnegie Mellon University - 1998.
<http://www.cs.cmu.edu/~acme>

[4] Medvidovic, Nenodand Taylor & Richard N. A
classification and Comparison Framework for
Software Architecture Description Language.
In: IEEE Transactions on Software Engineering,
vol. 26, no. 1, p. 70-93, January 2000.

[5] ITU-T. Recommendation H.323 (11/2000) -
Packet-based multimedia communications
systems

[6] ITU-T. Recommendation H.225.0 (11/2000), Call
signalling protocols and media stream
packetization for packet-based multimedia
communication systems

[7] ITU-T. Recommendation H.245 (07/2001) -
Control Protocol for multimedia communication.

[8] ITU-T Recommendation F.730 –
Videoconference Service General. ITU-T, 1992.

[9] OpenH323 Project, Open Source implementation
of the ITU-H.323 teleconferencing protocol that
can be used by personal developers and
commercial users without charge. 1998 -
<http://www.openh323.org>

[10] Tavares, T. A; Leite, J. C, & Souza Filho, G. L.
(2000) Design da Interface do Sistema de Vídeo
Sob Demanda da Rede NatalNet. In: VI
Simpósio Brasileiro de Sistemas Multimídia e
Hipermídia - SBMídia, 2000, Natal. Anais do VI
Simpósio Brasileiro de Sistemas Multimídia e
Hipermídia. 2000. p.141-157.

[11] Queiroz, Carlos Alexandre; Tavares, Tatiana
Aires; Souza Filho, Guido Lemos de & Paula,
Virgínia Carneiro de. Arquitetura e
Implementação do Sistema Internet-DTV. In:
XXVI Conferência Latino-Americana de
Informática, 2000, Cidade do México. Anais do
XXVI Conferência Latino-Americana de
Informática. 2000.

[12] Oliveira, Jauvane Cavalcante de. TVS: Um
Sistema de Videoconferência - Dissertação de
Mestrado 1996. – Departamento de Informática da
PUC/RJ.

[13] Zanin, Fabio A. Um Modelo para
Videoconferência em Computador Pessoal
sobre Redes IP – Dissertação de Mestrado 2000
– Universidade Federal do Rio Grande do Sul –
UFRGS – Instituto de Informática.

