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Abstract: - It is presented a modality to compute the boundary between the discontinuous (DCM) and 
continuous (CCM) operating modes in the DC/DC fourth-order PWM converters with parasitic resistances. To 
reach this goal, an averaged model of the converter has been used.  The boundary between DCM and CCM, 
considered to be the critical load resistance Rcrit, or, equivalently, the critical value of the inductor conduction 
parameter kctrit, is found as the positive root of a second-degree equation with unknown Rcrit or kctrit. The 
algorithm carried out and implemented with MATLAB environment allows studying the effect of the parasitic 
resistances and the coupling of inductors over the boundary Rcrit or ktcrit, the steady-state properties and the 
external characteristics of the converter. The simulation results show that the parasitic resistances and the 
inductor coupling change the boundary between the discontinuous and continuous conduction modes of a 
fourth-order PWM converter. 
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1 Introduction 
In the elementary PWM converters (buck, boost, 
buck-boost), which are second-order converters, the 
discontinuous conduction mode (DCM) appears at 
the moment when the diode current becomes zero. 
This will occur at a specific operating point (duty 
ratio D and load resistance R). The current through 
the inductor becomes discontinuous and would stay 
discontinuous for the third switched interval D3Ts. 
Here, the boundary between CCM and DCM is 
defined by the critical value of the inductor 
conduction parameter (kcrit) or by the critical value of 
the load resistance (Rcrit). Considering the converter 
to be ideal, this boundary has been calculated as the 
positive root of a second-degree equation [1]. 
Including the parasitic resistances of the circuit, the 
degree of the equation with the unknown Rcrit or kcrit 
remains unchanged [2]. 

A fourth-order converter consists of two 
inductors, two capacitors, and a single switch 
realized by transistor and diode combination, such as 
the non isolated Cuk, Sepic and Zeta converters and 
the ripple-free input-current PWM boost converter. 
In these converters, the two inductors conduct some 
constant current I, even for the third switched 
interval D3Ts. In this third switched interval D3Ts, the 
sum i1+i2 of two inductors currents that traverses the 
diode is zero [3] – [ 5]. Using the individual inductor 

voltage and current waveforms and the volt-second-
balance law on the inductors, for the assumed 100% 
efficiency, the boundary between CCM and DCM 
has been easily found as the positive root of a 
second-degree equation, for a non-isolated Cuk 
converter with DCM and a ripple-free input-current 
boost converter with DCM [3], [ 4]. 
 
2  Boundary between CCM and DCM  
It is known that the boundary between CCM and 
DCM is established by the specific value of the 
parameter D2, namely D2=1-D, regardless of the 
order (two or four) of PWM switching converters. 
So, a PWM converter operates with CCM when 
D2>1-D and with DCM when D2<1-D [1], [ 3].  

For the elementary or second-order PWM 
converters (buck, boost, buck-boost) no parasitic 
included, the boundary between CCM and DCM is 
given either as the critical value of the inductor 
conduction parameter k, written kcrit, or as the critical 
value of the load resistance R, written Rcrit. It is 
natural to express the boundary in terms of the load 
resistance R, rather than the dimensionless parameter 
k. The parameter k is defined as 
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where Rnom is a design parameter called nominal load 
resistance of the converter and fs is the constant 
switching frequency. Considering (1) for kcrit, the 
load boundary Rcrit results as 
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Similarly, the boundary between CCM and DCM for 
the fourth-order converters (non-isolated Cuk, Sepic, 
Zeta and ripple-free input-current boost converters 
etc.) is given either as the critical value of 
conduction parameter ktcrit (kt=2Lefs/R) through an 
equivalent inductor Le (Le=L1//L2) or as the critical 
value of the load resistance Rcrit [3]-[5]. Like the 
second-order converters with ideal circuit 
components, these critical values have been found as 
the positive root of a second-degree equation with 
unknown ktcrit or Rcrit.  

The expressions of ktcrit as functions on duty ratio 
and dc voltage conversion ratio are shown in Table 
1, for a non-isolated Cuk PWM converter and a 
ripple-free input-current boost PWM converter [3],  
[4]. The dc voltage conversion ratio of the converter 
with DCM is written MD. 
 
Table 1: ktcrit for a non-isolated Cuk PWM converter 
and a ripple-free input-current boost converter (no 
parasitic case) 
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The functions Rcrit = f (D) and Rcrit = f (MD) are 
given in Table 2, for the same ideal converters [3, 4]. 
 
Table 2: Rcrit for a non-isolated Cuk PWM converter 
and a ripple-free input-current boost converter (no 
parasitic case) 
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3 Equation of the Boundary between 

CCM and DCM for Nonideal 
Converters 

Despite its complexity, the state-space averaging 
(SSA) method is the most popular approach used for 
the modelling of the dc-dc switching converters. This 
method allows including all the parasitic resistances 
of the circuit even in the initial stage and supplies 
both the static and dynamic models of the converter. 
The following parasitic resistances of the converter 
(written pi with 6,1i = ) have been considered here: 
the loss resistance of the inductors (r1 and r2), the 
equivalent-series resistance of the capacitors (r3 and 
r4), the conducting-state resistance of the transistor 
(r5) and the diode (r6).  

Using the SSA method, a fourth-degree equation 
in unknown D2 has been carried out for the fourth-
order converters with parasitic included [8]: 
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In order to obtain the equation (3), the matrices A 

and B that describe the averaged steady-state model 
of the fourth-order PWM converter with DCM have 
been set in the form: 

232e ADAA +=  

232e BDBB +=  
 where  

( )[ ]n,maADDAA e31e =′+=   
( )[ ]mbBDDBB e31e =′+=   
( )[ ]n,maAAA 233223 =−=  
( )[ ]mbBBB 233223 =−=  

D1D −=′   
with 4,1nm == . 

Generally, the coefficients mi with 4,1i = , from 
the equation (3), are functions on the load resistance 
R. At the boundary between the two operating 
modes, D2=1-D and R becomes Rcrit. In order to 
distinguish this last element, the components of the 
matrices Ae and A23, which are functions on R, have 
been split in two terms: one term is independent of R 
and another that is function on R. For example, it 
writes: 

( ) ( ) ( ) ( )Rfn,mrn,man,ma 110ee +=  



( ) ( ) ( ) ( )Rfn,mrn,man,ma 2223023 += . 
Replacing D2 with 1-D and R with Rcrit into the 

equation (3), a second-degree equation in unknown 
Rcrit results for the fourth-order PWM converter with 
parasitic included, like as for the second-order PWM 
converters [2]: 
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The coefficients n2, n1 and n0 from the equation 

(4) are functions of the duty ratio D, all the 
parameters and parasitic resistances of the circuit, the 
switching frequency and the coupling coefficient kc 
of the inductors: Rcrit=f (D, L1, L2, C1, C2, pi, fs, kc). 
The general form of the coefficients from the 
equation (4), as well as those from the equation (3), 
allows studying four PWM converter configurations, 
namely: the non isolated Cuk, Sepic and Zeta 
converters, and the ripple-free input current boost 
converter. 

A second-degree equation in unknown ktcrit is 
obtained if the equation (2) is introduced into (4): 
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Like as Rcrit, the coefficients of this last equation 

depend on the duty ratio D, all the parameters and 
parasitic resistances of the circuit, the switching 
frequency and the coupling coefficient kc of the 
inductors: ktcrit=f (D, L1, L2, C1, C2, pi, fs, kc).  

The same second-degree equation with the 
unknown Rcrit or ktcrit can be obtained by equaling the 
expressions of MC and MD, deduced from the 
averaged steady-state models corresponding to DCM 
and CCM, and replacing D2 with 1-D in MD.  

The dc characteristics of the converter as the 
average values of the currents that traverse the 
inductors, the voltage drops across the capacitors and 
the dc voltage conversion ratio (M=VO/VI) of 
converter are obtained through the SSA method, for 
both DCM and CCM. The two dc voltage conversion 
ratio MC for CCM and MD for DCM have the same 
value (MC= MD) on the boundary between CCM and 
DCM. Consequently, plotting the external 
characteristics of the converter for both continuous 
and discontinuous operating modes, that is MC=f (D, 
R) and MD=f (D, R), the boundary Rcrit between 
CCM and DCM could be found as the intersection of 
these two external characteristic families of 
converter: 

DMcMcrit RR == . The value ktcrit can be 

calculated with the formula (2). But this way of 

determination of the boundary between DCM and 
CCM is not recommended because this is a graphical 
method that cannot prove a satisfactory accuracy.    
 
 
4 Simulation results 
MATLAB environment offers a very simple 
implementation of this algorithm carried out for 
establishing the boundary between DCM and CCM 
in the fourth-order PWM converter. 

The analytical way for establishing Rcrit or ktcrit in 
the fourth-order PWM converters with parasitic 
resistances has been studied on a ripple-free input-
current boost converter with the specifications: 
L1=5.1 µH, L2=0.7 µH, C1=18 µF, C2=1000 µF and 
fs=300 kHz [4].  The following parasitics have been 
considered here: r1=r2=r4=r5=r6=0.1 Ω and r3=0.01 Ω. 

For this converter, the effect of the inductor 
coupling and the parasitic resistances of the circuit 
over Rcrit can be seen in Figures 1 and 2.   

In Fig. 1, the function Rcrit=f (D, kc) is plotted for 
several values of D and kc, for an ideal converter 
(pi=0). As it can be seen from this figure, the 
increasing of the value of kc causes the decreasing of 
Rcrit for all the values of D. 
 

 
 
Fig. 1: Plots of Rcrit as function on the duty ratio and 
the coupling coefficient of inductors  
 

The function Rcrit=f (D, kc, pi) is plotted in Fig. 2 
for the same values of D and kc as in Fig. 1. 

For the converter with parasitics, the effect of the 
value of kc over Rcrit is changed in function on the 
value of the duty ratio. So, the increasing of the 
value of the coupling coefficient causes the 
increasing of Rcrit at small values of D and the 
decreasing of Rcrit at big values of D. As kc  and D 
tend to 1, Rcrit tends to zero. 

 



 
 

Fig. 2: Plots of Rcrit as function on the duty ratio, the 
coupling coefficient of inductors and the parasitic 
resistances of converter  
 

The effect of the coupling coefficient kc of the 
inductors and the parasitic resistances of the circuit 
over ktcrit is shown in Fig. 3 and 4.  Here, the function 
ktcrit=f (D, kc) is plotted for the same values of D and 
kc as for Rcrit, and for the two cases: no parasitic 
included (Fig. 3) and parasitic included (Fig. 4). 

As it can be seen from Fig. 3, ktcrit is a continuous 
function on the duty ratio D for all the values of the 
coupling coefficient kc from kc=0 (separate 
inductors) to kc=0.87. This function has a maximum 
at D=0.25 that decreases with the increasing of kc in 
the ideal converter case.  

The parasitic resistances of the circuit cause to 
move and to decrease the maximum of the function 
ktcrit with the increasing of kc from zero to 0.8 (Fig.  
4). This maximum increases again if kc surpasses 0.8.  
So, ktcrit.max=0.17 at D=0.25 for kc=0 (separate 
inductors), ktcrit.max=0.107 at D=0.5 for kc=0.8 and 
ktcrit.max=0.155 at D=0.7 for kc=0.87.  

All these results differ from that obtained for an 
ideal converter. Using the formula given by the 
Table 1 for a ripple-free input-current boost 
converter, it finds ktcrit.max=0.148 at D=0.33. Hence, if 
kt is greater than 0.148, then the converter operates 
in the continuous conduction mode for all D. The 
simulation results disable this general conclusion. 

 After establishing Rcrit, the steady-state model of 
converter with coupled or separate inductors and all 
the parasitic included  and its external characteristics 

( )nomR/RfM =  can be computed and plotted for 
both DCM (R>Rcrit) and CCM (R<Rcrit) [6]. 
 

 
 
Fig. 3: Plots of ktcrit as function on the duty ratio and 
the coupling coefficient of inductors  
 

 
 

Fig. 4: Plots of ktcrit as function on the duty ratio, the 
coupling coefficient of inductors and the parasitic 
resistances of converter 
 
 
5 Conclusion 
The order of the equation of the boundary between 
DCM and CCM, with unknown Rcrit or ktcrit, is an 
invariant of the PWM converters. It is two, 
regardless of the order of converter (two or four), 
coupled or separate inductors and the including or 
non-including of the parasitics.  

Both the parasitic resistances and the inductor 
coupling change the boundary between the 
discontinuous and continuous conduction modes of a 
fourth-order PWM converter.  

 The algorithm carried out for establishing the 
boundary between DCM and CCM in a fourth-order 
PWM converter and implemented with MATLAB 
environment allows studying the effect of the 
parasitic resistances and the coupling of inductors 
over the boundary Rcrit or ktcrit, the steady-state 



properties and the external characteristics of 
converter. 
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