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Abstract: - A hybrid iterative learning algorithm for recurrent neural networks based on higher-order statistics 
to blind signal separation is presented in this paper. Fourth-order statistics are used as the separation criterion 
to train an RNN to perform the separation. Some simulation results for both artificially convoluted audio 
signals and real recordings demonstrate that the proposed approach is promising.  
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1   Introduction 
In blind signal separation (BSS), the goal is to 
extract independent source signals from their 
mixtures using a minimum of priori information.  In 
the general case, it assumes that the sources are non-
Gaussian signals and statistically independent of one 
another. Higher-order statistics (HOS) methods and 
theories were one of the most important fields in 
signal processing theory. The HOS can be 
considered as an important complement of the 
classic second order statistics methods (power, 
variance, covariance and spectra) to solve many 
recent and important telecommunication problems 
[1], such as blind identification or equalization, 
blind separation of sources and time delay 
estimation.  
     In the literature, various criteria based on HOS 
are used for solving the problem of blind separation 
of sources. In the case of instantaneous linear 
mixtures, the first solution, proposed in 1985, was 
based on cancellation of higher-order moments. 
Other criteria based on minimization of cost 
functions, such as the sum of square fourth-order 
cumulants [2] or contrast functions [3] have been 
used by several researchers. It was proved in [4] that 
the minimization or cancellation of fourth-order 
cross-cumulants, leads to a set of solutions to signal 
separation.  
     In this paper, we present the performances of 
speech signal separation of using a recurrent neural 
network (RNN) through higher-order statistics 
(fourth-order statistics) separation criterion. An 
unsupervised learning algorithm using the RNN to 
speech signal separation is introduced in the next 
section. In section 3, some simulation results for 

both artificially mixed audio signals and real 
recordings using the proposed approach are 
presented.  
 
 
2 Separation Algorithm 
BSS is the process of extracting unknown source 
signals from sensor measurements, which are 
unknown combinations of the sources.  The term 
“blind” is used as the source signals and the 
combinations are unknown. 
 
 
2.1 The Data Model 
There are two kinds of data models used by many 
researchers. One is linear model. Another type is 
non-linear model.  
     In traditional linear independent component 
analysis (ICA) model, all received signals for 
instantaneous mixing are the linear superposition of 
the sources, namely, the outputs of microphones. 
Suppose that sources is denoted by a vector: 
  
S(t)=[S1(t), S2(t), …,  Sn(t)]T,  t = 0, 1, 2… 
 
and the observed signals are denoted by  
 
X(t)=[X1(t), X2(t), …,  Xn(t)]T, t = 0, 1, 2…, 
then, we have general equations: 
 
X(t)=A(t)⋅ S(t)                                                (1) 
Y(t)=W(t)⋅X(t)                                                (2) 
 
here, A(t) is the unknown mixing matrix and 
Y(t)=[Y1(t), Y2(t), …, Yn(t)]T 



 
denotes the separated signals so that 
 
W(t)=A-1(t)     ⇒    Y(t) = S(t). 
 
     Thus the task is to recover the original sources by 
finding a matrix W(t) that is in general time-varying 
and a permutation and rescaling of the inverse of the 
unknown matrix A(t), so that Y(t) is as close as 
possible to S(t). 
     In convolutive BSS, a source is corrupted by 
time-delayed versions of itself and other source 
signals. In this case, the equations (1) and (2) hold in 
the frequency domain. Taking the z-transform of 
equations (1) and (2), we have 
 
X(z)=A(z)S(z)                                                         (3) 
Y(z)=W(z) X(z)                                                       (4) 
 
for convolutive BSS. 
     The basic linear models (1), (2) and (3), (4) are 
often too simple for describing the observed data 
X(t) adequately. A natural extension of the linear 
ICA (or BSS) models is to assume that the 
components of the data vectors X(t) depend 
nonlinearly on some statistically independent 
components (source signals) S(t). Thus the 
instantaneous mixtures  
 
X(z)=F(S(t))                                                           (5) 
 
where,  F: Rm →  Rm is unknown nonlinear mixing 
function. 
     The nonlinear ICA problem consists of finding 
an inverse mapping G: Rm→  Rm, which gives 
estimates of the independent components as:  
 
Y(t)= G(X(t))                                                          (6) 
 
Solutions of the nonlinear ICA problems are usually 
highly non-unique [5]. For getting more unique 
solutions, various constraints have been introduced, 
but it is not clear which constraints are most 
meaningful in different situations.   
     In this paper, a non-linear ICA data model is used 
and we constrain the diagonal entries of the W 
matrix to unity: wij = 1, when i=j.  Non-linear ICA 
tends to be computationally demanding.  The 
computational load usually increases very rapidly 
with the dimensionality of the problem, preventing 
in practice the applications of non-linear BSS 
methods to high-dimensional data sets.  
     We assume that each component of S(t) is 
independent of each other. The independence of the 

sources is defined by their joint probability density 
function  (PDF) )(SPs : 
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and source signals are independent if and only if this 
identity holds. 
 
 
2.2 Higher-Order Statistics 
The higher-order statistics (usually the higher-order 
cumulants ) can be used as a natural measure of the 
degree of the independence. Equivalently, the 
problem of the source extraction becomes the task of 
separating the observed joint PDF into the 
independent source PDF's that generate the former 
through a linear/nonlinear transformation. 
     Cumulants, and their associated Fourier 
transforms, not only reveal amplitude information 
about a process, but also reveal phase information. 
This is important, because, as is well known, 
second-order statistics (i.e., correlation) are phase 
blind.   Cumulants, on the other hand, are blind to 
any kind of a Gaussian process, whereas correlation 
is not; hence, cumulant-based signal processing 
methods handle colored Gaussian measurement 
noise automatically and cumulant-based methods 
boost signals-to-noise ratio when signals are 
corrupted by Gaussian measurement noise.  
     An important benefit of basing ICA on 4th-order 
cumulants becomes apparent in that as 4th-order 
cumulants are polynomial in the parameters. If the 
random signals )(txi  and )(tx j are mutually 
statistically independent, then the cross-cumulants 
of any order must be equal to zero. It has been 
proved by many authors that the statistics up to the 
fourth-order are sufficient.  
     Let xi(t) be the zero-mean observed  signals, and 
let  ][),( m

j
l
ijilm xxExxM =  be the (l+m)th-order 

cross-moments. At the fourth-order, the cross-
cumulants of two independent signals [4] are: 
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     The equations (7), (8) and (9) are used as the 
separation criterion in this paper to minimizing or 
canceling the mutual information within the sources.   
A hybrid iterative learning algorithm based on 
higher-order statistics for an RNN with time varying 
weights is introduced in the next section. The 
weights of the RNN can be estimated in real-time, 
and the fourth-order cross-cumulants can be reduced 
close to zero.  The algorithm drives Cum31, Cum13  
and Cum22  close to zero recursively in this paper.  
 
 
2.3 Recurrent Neural Networks And The 
Learning Algorithm 
In an RNN, basic processing units are connected 
arbitrarily so that there are both feedforward and 
feedback paths. Nodes in an RNN are generally 
classified into three categories (instead of layers): 
input, output, and hidden nodes. Input nodes receive 
external input signals, and output nodes send off 
output signals calculated through the network. 
Hidden nodes neither receive external input signals 
nor send off output signals, but rather exchange 
internal signals with other nodes. In this paper, we 
use processing nodes to represent all the output 
nodes and hidden nodes.  Processing nodes in an 
RNN are usually fully connected: they receive 
output signals from all nodes including themselves. 
Fig. 1 shows the topology of the RNN. 
     There are two sets of synaptic connections in 
RNNs. The first set of connections link the input and 
the processing nodes. Their weights constitute the 
inter-weights matrix W2={wij}. The weight wij(t) 
∀ ∈i U  and j ∈ I (where U and I are the sets of 
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Fig. 1  The topology of the RNN 

 
processing and input nodes, respectively) denotes 
the strength of the connection from the jth  input 
node to the ith  processing node, at time t. The second 

set of connections forms the feedback paths.  
Therefore, each processing node is connected to all 
other processing nodes, including itself. Their 
weights constitute the intra-weight matrix 
W1={wij*}. Similarly, wij*(t) denotes the strength of 
the connection from the jth processing node to the ith  
processing node for ∀ ∈i j U, , at time t. 
     Let y(t)={yi(t)} denote the outputs of the 
processing nodes and u(t)={uj(t)} denote the 
external inputs.  Then, we use the corresponding 
learning rule (See [6] for the details) of the form: 
 

TT txtxtxCumtCtW )()]()([)()1( 11 −−=+∆        (10) 
 
where, Cum is the fourth-order cross-cumulants of 
outputs shown in equation (7), (8), and (9), and 
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)()()1( tWtWtW ∆+=+  with constraint wij=1, when 

i=j, and 
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For each 13Cum , 31Cum  and 22Cum , the algorithm 
drives the corresponding cross-cumulant to zero 
recursively.  In this way, we can obtain the outputs 
of the network: 
 

)]()([)1( txtWfty =+  
     The algorithm is effective as the iterative 
learning algorithm is able to drive the fourth-order 
cross-cumulants to zero. Comparing (10) with other 
neural algorithms in BSS/ICA, the real-time learning 
algorithm has a dynamic learning rate of 
C t x t x tT− −1 1( )[ ( ) ( )] .   
 
 
3   Simulation Results 
The simulation results for two sets of audio signals 
using the proposed approach are given in this 
section. The results are then compared with those 
obtained by our other approach – using output 
decorrelation and time-delay [6] in terms of the 
signal to noise ratio (SNR) and computational 



complexity. The observed signals are convolutively 
mixed signals, and real environment recordings.  
     The proposed algorithm in this paper is an on-
line algorithm that separates the signals sample by 
sample. Furthermore, the approach used in this study 
is non-linear.  It is not appropriate to use the weights 
as the main objective measure as many researchers 
have done, such as in [7]. The process is non-linear 
and the final weight matrix doesn’t mean anything 
directly useful, viz Λ≠− PWA 1 . Instead, the 
experiments are assessed qualitatively by listening 
to and viewing the waveforms, and are 
quantitatively evaluated by SNRs of the separated 
signals.  
     Assume s(t) is the desired signals, and y(t) is  the 
estimated source signals.  s(t) and y(t) have the same 
energy. Then n(t)=y(t)-s(t) estimates the undesired 
components (the noise). The SNR of the separated 
output signals is defined by the following formula: 
 









=

])([
])([log10 2

2

tnE
tsESNR  

 
where E[.] is the mean of the arguments. The SNR 
will show how much louder the desired sources are 
than the undesired sources, with a SNR of 15dB 
sounding perfectly separated, 6dB being effectively 
separated, and 3dB being perceptibly separated [8].     

The simulations were carried out in MATLAB 
6.0.0.88 (R12) on Red Hat Linux.   
 
Experiment 1 Convolutively Mixed Signals 
One recording of male speech S1(t) and one 
recording of female speech S2(t) were taken from a 
CD available with Daniel Schobben’s thesis [9]. 
They were convolutively mixed together. The mixed 
signals X1(t) and X2(t) are in the form of 
 
x1(t)=s1(t)+0.2s2(t)+0.1s1(t-1)+0.6s1(t-3)+0.04s2(t-2) 
x2(t)=s2(t)+0.3s1(t)+0.5s2(t-1)+0.3s2(t-2)+0.03s1(t-1) 
 
     The original and convolutively mixed signals are 
shown in figures 2 and 3. The SNRs for the 
separated signal 1 in figure 4 is 9.8dB, and 11.2dB 
for the separated signal 2. The running time for the 
experiment is 530 seconds. It is observed that the 
cross-cumulant Cum22 has less effect on the 
performance of separation than Cum31 and Cum13 in 
that case.  For the same convolutively mixed signals, 
the output decorrelation and time-delay approach in 
[6] produces 10.2dB SNR for the separated signal 1 
and 10.6dB for the separated signal 2.    It is noted 
that the SNRs are at the same levels with both 
methods. And there are no audible differences 
between two sets of separated signals when they are 
listened to.   

 
 
 
 
 
 
 
 
 
 
 
 
 
      Fig. 2   The source signals 

 



Fig. 3.   The Mixed Signals 

 
Fig. 4. The Separated Signals 

 
Experiment 2  Real Recordings  
There are several sets of speech recordings made in 
our ordinary offices.  One set of recordings with 
two-input/two-output were presented in this paper. 
The two sources, one male speech and one female 
speech are pre-recorded .wav files, reading news 
items. They were taken from a commercial CD set 

(LDC/NIST WSJ0) [10] professionally recorded for 
speech recognition purpose, and were regarded as 
clean recordings.  The two files were merged into 
one stereo sound data using AudioEditor software 
package. The male speech is in the right channel of 
the file, and female’s voice is in the left channel. 
One PC, connecting with two speakers was selected  

 
Fig. 5  The Source Signals 

 
Fig. 6  The Recorded Signals 

 
Fig.7  The Separated Signals 



to play the sound files.  Other two PCs were used to 
record the sound data.  To minimizing the recording 
noise from the three computer drivers, the three 
computers are in one room, the two loud speakers 
and microphones, hanging from the ceiling, are 
located in another room, which is diagonally 
opposite to the computer room.  The two rooms are 
approximately 3 meters apart. The two speakers are 
120cm away and two microphones are 80cm apart.  
The right channel of each recording PC receives 
input from a microphone, the left channel is a direct 
line input from a loud speaker. This setup helps 
synchronise all the signals.    The source speeches 
shown in figure 5 were used for comparing with the 
separation results using the proposed algorithm.  
The recordings and the separated signals are shown 
in figure 6 and 7.   
     The SNR for the separated signal 1 (male speech) 
in figure 7 is 4.9dB, and 6.7dB for the separated 
signal 2 (female speech). It is noted that the 
separated female voice is a bit louder than the 
male’s.  In separating the set of real recordings, the 
algorithm tends to be unstable sometimes.  Without 
the weight constraint, the algorithm doesn’t work 
appropriately.  Unfortunately, the output 
decorrelation and time delay approach in [6] did not 
produce perceptible separation results, and Bell and 
Sejnowski’s infomax algorithm in [7] also failed in 
separating this set of real recordings. 
 
4   Discussion 
Many different approaches have been attempted by 
numerous researchers using neural networks, 
artificial learning, higher order statistics, minimum 
mutual information, beam-forming and adaptive 
noise cancellation, each claiming various degrees of 
success. But the separation of speech in real 
environments is still very challenging. There are 
many facts such as, synchronizing, surroundings in 
the recorded room playing great roles in separating 
real recordings. 
      This paper aims to exploit the application of 
RNNs using higher-order statistics to blind signal 
separation. An iterative learning algorithm using an 
RNN is presented.  In Experiment 1, the 
performance of the proposed approach is stable.  It 
is observed that the cross-cumulant Cum22 has less 
affects on the performances of separation than 
Cum31 and Cum13 in that case.  The cross-cumulant 
Cum22 tends to close to zero when successfully 
minimizing Cum31 and Cum13 recursively.  
Comparing with Experiment 1, separating 
recordings is much more challenge. To make the 
evaluation easier, we use the clean pre-recorded 

signals as the sources instead of ‘living’ speech, 
which allows us to compare the quality (SNRs) of 
separation results by re-playing and re-recording.  
This proved very effective in giving us an objective 
performance standard, which has been lacking in 
previous BSS research. 
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