
A Two-Level Learning Hierarchy for Constructing
Incremental Projection Generalizing Neural Networks

and Its Application in Artificial Odor Discrimination System

HENDRI MURFI1 and BENYAMIN KUSUMOPUTRO2

1Department of Mathematics
2Faculty of Computer Science

University of Indonesia - Depok 16424
INDONESIA

Abstract: - One of incremental learning-based neural networks that theoretically guarantees the optimal
generalization capability and provides exactly the same generalization capability as that obtained by batch
learning is incremental projection generalizing neural networks. This paper will describe a two-level learning
hierarchy for constructing the networks. An incremental projection learning in neural networks algorithm is
employed at the lower level to construct the network while the learning parameters, the orders of the
reproducing kernel Hilbert space, are optimized using a genetic algorithm at the upper level. The networks
produced by this learning hierarchy will be used as subsystem of the artificial odor discrimination system to
approximate percentage of alcohol.

Key-Words: - incremental learning, incremental projection generalizing neural networks, genetic algorithm,
artificial odor discrimination system

1 Introduction
One of the essences of supervised learning in
neural network is generalization capability. This is
an ability to give an accurate result for data that are
not learned in learning process. In neural networks,
it is often expected to further improve the
generalization capability after the learning process
has been completed. One of the common
approaches is to add learning data to the neural
networks. The learning method is generally called
incremental learning. Many incremental learning-
based neural networks have been devised so far,
such as resource allocating networks (RAN)
proposed by Platt [7], interpretation of RAN from
functional analytic point of view proposed by
Kadirkamanathan et al [3] and minimal resource
allocating networks (M-RAN) proposed by
Yingwei et al [12]. Although RAN and its
derivatives improve the efficiency of computation,
the optimal generalization capability is not
theoretically guaranteed and they provide poor
generalization capability than batch learning. One
of incremental learning-based neural networks that
theoretically guarantees the optimal generalization
capability and provides exactly the same learning
result as that obtained by batch learning even in the

non-asymptotic case is incremental projection
generalizing neural networks (IPGNN) proposed by
Sugiyama and Ogawa [8][10]. The network is
trained with incremental projection learning in
neural networks (IPLNN) algorithm. The algorithm
is formulated from functional analytic point of view
in a reproducing kernel Hilbert space. When the
orders of the space are fixed, the network has a
linear-in-the-parameters structure. It means that
learning algorithm of the network is a linear
learning problem.

In this paper, we will describe the application
of IPGNN. Due to the generalization capability of
IPGNN is a complex multimodal function on the
space of the orders of the reproducing kernel
Hilbert space [5], we adopt a two-level learning
hierarchy for constructing IPGNN [1]. The learning
strategy is based on the combined genetic algorithm
(GA) and IPLNN algorithm. The orders of the
reproducing kernel Hilbert space are optimized
using the GA at the upper level. Given these
parameters, the IPLNN algorithm is used to
construct IPGNN at the lower level. The network
produced by this learning hierarchy will be used as
subsystem of the artificial odor discrimination
(AOD) system to approximate percentage of
alcohol.

mailto:hendri@makara.cso.ui.ac.id

2 Architecture and Algorithm
IPGNN is a three-layer feed forward neural
network whose architecture describes in Fig. 1.
The architecture has an input layer, a hidden layer
and an output layer with only one neuron. There is
no weight on connection from input layer to hidden
layer. Reproducing kernel functions are adopted as
activation functions in hidden layer. Number of
neurons in hidden layer grows as long as learning
process. Network starts with no neuron and grows
by allocating a new neuron based on sampling
function of the learning data on the approximation
space that represented with hidden layer. If the
sampling function is on the approximation space,
or the reproducing kernel function on the new
learning data is linearly independent of the
activation functions of hidden neuron, then a new
neuron is added and the reproducing kernel
function on the new learning data is set to as
activation function. Next, weights on connection
to output layer are adjusted. Otherwise, there is no
additional neuron. There is only an adjusting of
weights on connection to output layer. The weights
are updated using incremental projection learning
(IPL) criterion.

Fig. 1. Architecture of IPGNN

Once the learning process has terminated then
approximation value for any input is given by the
formulation:

∑=
=

N

i
iim xuwxf

1
)()((1) ~ = mm P ψψ

where x is an input vector, N is number of neuron
in hidden layer, wi is weight on connection from
ith neuron in hidden layer to output layer and ui(x)
is ith basis function on x.

IPL is incremental version of projection
learning proposed by Ogawa [6]. Ogawa
formulated the learning method as inverse problem
from functional analytic point of view. In this
method, learning target function and learning result
function are assumed to belong to a reproducing
kernel Hilbert space. Next, the variance of learning
result function is minimized under the constraint of
reducing the bias of learning result function to a

certain level. This is done with orthogonal
projection technique. This approach will guarantee
theoretically for obtaining optimal generalization
capability.

Definition 1 [6] An operator Xm is called the
projection-learning operator if Xm minimizes the
functional

2)(][m
mnmP nXEXJ = (2)

under the constraint
)(*

mARmm PAX = (3)

where En is expectation function, n is noise of m
learning data, A*

m is adjoint of sampling operator
Am, R(A*

m) is range of A*
m or approximation space

in this case, P is orthogonal projection operator.

IPL has developed for some conditions.
Vijayakumar and Ogawa developed IPL with
absence of noise [11]. Then, Sugiyama and Ogawa
continued to develop for presence of noise [9]. In
this paper we will use IPL proposed by Sugiyama
and Ogawa. The following proposition is a simpler
form of IPL algorithm in the case where noise of
learning data has normal distribution N(0, σ) and
variance σ is positive.

Proposition 1 [9] When the noise correlation
matrix is positive definite and diagonal, a posterior
projection learning result fm+1 is obtained by using
prior results fm as










∉+

∈+
=

++
++

++
+

+
+

+

)(
~

)(

*
1)1(

1

1
'

1

*
1)1(

2

1
''

1

1

mmm
mm

m

mmm
mmm

m

m

ARif
v

f

ARif
v
V

f
f

ψ
ψβ

ψ
ψβ

 (4)

where
mmmm AQAV 1*' −= (5)

)(11
'

1 +++ −= mmmm xfyβ (6)
1)(1 ++ AN m

 (7)

)(~
11

)1(
1 ++

+ = mm
m xv ψ (8)

11
'

1
)1(

2 , ++
+

+
+ += mmmm

m Vv ψψσ (9)

where is sampling function of m+1-th
learning data, N(A

1+mψ

m) is null space of Am, Qm is
noise correlation matrix and σ is noise variance.

In development, the neural networks learning

problem is divided into two stages. Function
approximation of given learning data is performed
in the first stage (IPL algorithm), and a neural
networks which represent the approximated
function is constructed in the second stage. The

constructing algorithm is called incremental
projection learning in neural networks (IPLNN)
algorithm. There are some proposed IPLNN, in this
paper we use the efficient one called IPLNN4
algorithm. The algorithm constructs IPGNN that
represents learning result function as describes in
Eq. (4) [8][10] (Fig. 2).

}
}

;

;;

{}
;1

;

)(

;

;),,(

)1(
{0

;][][

;][][)(

;][;][][][

;][][][;,][

{}
;1

;
||||

1;
||||

;
||||

);,(

{0
),,(

)1(
2

)1()1(
)()1(

)()1(
)1(

2

)1(
1)()(

)1(
1

)1(
1

)1(
1

)1(
1

)1(
1

)1(
1

)1(
1

)1(
1

)1(
2*

1
)(

1
)1(

1

)1(
1

)1(
1

)1(
1*

1
)(

1
)1(

1

)1(
)1(

1

1)()(

)1(
1

1
111

)1(
1

1

)1()1(
1

)1(
2

1

)1()1(
11

)1(
1

1

)1(
11

1

)1()()1(

1

)1()()1(
1

)1(

2
1

)1(
14

1

1)1(
1

2
1

1
111

111

2

+

++
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+

+
+

+
+

+

++
+

+

+

+
+

+
+

++
+

+

+
+
+

+
+

+++

+

=

++
+

+

=

++
++

+

=

+
++

=

++

=

++
+

+

+++

⊗
−←

←+←

+←

Γ⊗+⊗Γ
−

⊗
+ΓΓ←

⊗
+ΓΓ←

−←

←←

−+
≠

+←

−←

−←←

←←

←

←←

←←

=

∑

∑

∑∑

∑

m

m
N

m
Nm

N
m

N

m
N

m
Nm

m
NmNN

m

m
NN

m
N

m
N

m
NN

m

m
N

m
N

m

N
m

NN
m

N

m

m
N

m
N

N
m

NN
m

N

m
Nm

mNN

m
m

NmN

m

N

i
i

m
Ni

m
Nm

m

N

i
i

m
Ni

m
Nmm

m

N

i
i

m
Nimm

N

j
j

m
Nij

m
Ni

m
N

N

j
j

m
Nij

m
Ni

m
Nmii

m
N

mmm

v
ddDD

CC
v

dww

else
NN

v
daad

v
aavCD

v
aaCC

c
v

ww

v
wxxKu

layerhiddeninneuronstNtheadd
vif

bdv

bcxv

bwybDd

bCcub

else
N

DC

ywxxKu

layerhiddeninneuronfirstgenerate
mif

yxinput

β

β

β

σ

ψ

β

ψ

ψψ
σ

ψ

σ

Fig. 2. IPLNN4 Algorithm

In the IPLNN4 algorithm, the construction
process is divided onto two categories based on
sampling function of m+1th learning data (ψm+1). If

 then a new neuron with the
reproducing kernel function K(x,x

)(*
1 mm AR∉+ψ

ψ

)(*
1+mAR

m

(*
+mAR

m+1) as basis
function is added and weights on connection to
output layer are adjusted. Otherwise, there is no
additional neuron. There is only an adjusting of
weights on connection to output layer. The
condition means that ψ is linearly
independent of { } , i.e., the approximation space

 becomes wider than . In
contrast,ψ means that ψ is linearly
dependent of , and hence the approximation

space is equal to .

)(*
1 mm AR∉+

m
jj 1=

ψ

)(*
1 mAR∈+

{ }m
jj 1=

ψ

)1

1+m

R

1+m

)(*
mA

)(*
mAR

To check ψ , Sugiyama and Ogawa
used the condition that ψ if and only if

)(*
1 mm AR∉+

1m+)(*
mAR∉

0~
11)(≠= ++ mmAN m

P ψψ (10)

In implementation, we use the following
criterion.

if 2
1

~
+mψ = v1 > ε then ψ (11))(*

1 mm AR∉+

where ε is a small constant, say ε = 10-4.

3 The Combined GA and IPLNN
IPLNN algorithm is developed in a reproducing
kernel Hilbert space. The quality of the learning
result of IPLNN depends heavily on the choice of
the spaces. After we choose a specific reproducing
kernel Hilbert space, then the quality will depend
on the choice of orders of the space.

In this paper, we will use trigonometric
polynomial space as reproducing kernel Hilbert
space. The space is spanned by

defined on [-π, π], where N is order
of the space. Reproducing kernel function in the
space is defined as

{ N
kkxkx 1cos,sin,1 =}











≠
−

−+
=+

= '

2
'sin

2
)')(12(sin

'12

)',(xxifxx

xxN
xxifN

xxK
 (12)

If the dimension of input vector x is one as
described above, then the space is called one-
dimensional trigonometric polynomial space. The
others are called multi-dimensional trigonometric
polynomial space. Those are spanned by

, where l = 1, 2, .. L, L is

dimension of input vector and N
{ l

l

N
n

l
l

l
l nn 1

)()(cos,sin,1 =ξξ }
l is order of space

of l-th dimension. Reproducing kernel function is
defined as

∏=
=

L

l

ll
lKxxK

1

)'()(),()',(ξξ (13)

where








=+

≠
−

−+
=

')()(

')()(
')()(

')()(

')()(

12
2/)(sin

2/))(12(sin
),(

ll
l

ll
ll

ll
l

ll

ifN

if
N

K
ξξ

ξξ
ξξ

ξξ
ξξ

 (14)

Fig. 3. Profile of reproducing kernel function K(x, x’) of two-
dimensional trigonometric polynomial space of order (3, 5)
with x’ = (0, 0)T.

Due to the generalization capability of IPGNN
is a complex function on the space of the orders of
the reproducing kernel Hilbert space, we adopt a
two-level learning schema proposed by Chen. The
learning combines the GA and IPLNN algorithm,
as illustrated in Fig. 4. At the upper level, the GA,
with a population size of p, learns the orders of
reproducing kernel Hilbert space N1, N2, … Nn
based on the fitness function values provided by
the lower level, where n is dimension of input
vector. The lower level consists of the p parallel
IPLNN algorithms, one for each of N1i, N2i, … Nni
provided by GA. In simulation, the data set is
divided into a training set and validating set. The
ith IPLNN algorithm constructs an IPGNN using
the training data set with given N1i, N2i, … Nni. The
generalization capability, the mean square error
(MSE) over the validation data set, of the resulting
IPGNN is computed. The inverse of this
generalization capability is the fitness function
value fi for the given N1i, N2i, … Nni.

Fig. 4. Schematic of two-level learning hierarchy for IPGNN

The GA searches the solution space of a
function through the use of simulated evolution,
i.e., the survival of the fittest strategy. In general,
the fittest individuals of any population tend to
reproduce and survive to the next generation, thus
improving successive generations. The GA explores
all regions of the state space and exponentially
exploiting promising areas through mutation,
crossover, and selection operations applied to
individuals in the population. First, The population
is initialized randomly while the best individual
found up to that point is copied into the newly
generated population. This is repeated until no
further improvement is evidenced. In our
implementation, we use a modified GA toolbox
proposed by Houck [2]. The orders of reproducing
kernel Hilbert space, N1, N2, … Nn, are each coded
into 16-bit string, and a population size is set to 5.
We use simple crossover and binary mutation.
Roulette selection is employed to determine parents
for reproduction.

4 Computer Simulations
In this section, we describe computer simulation of
generalization capability of IPGNN as subsystem of
AOD system to approximate percentage of alcohol.

Generally, The AOD system consists of three
subsystems. They are sensor system, electronic
system (frequency counter) and neural networks
system. Some quartz sensors with a chemical
membrane construct the sensor system. In order that
an odor can be recognized by the system, we must
heat the odor first. Next, the odor will result
molecules that will be absorbed by membrane of
sensor of sensor system. This will be decreased
basic frequency of those sensors as much as weight
of molecules of the odor. The change of frequency
will be converted by electronic system (frequency
counter) into numbers that represent the odor.
Finally, Neural network system is used to recognize
the odor based on pattern of those numbers.

The goal of our simulation in this section is
to know how capable IPGNN to support AOD
system in approximating percentage of alcohol
for small-number training data. To do this, we
will use the data of alcohol resulted by the
four-sensor AOD system [4]. Those are data of
percentage of alcohol that are in interval 0% up
to 35%. The data are only consisted of four
groups. They are alcohol 0%, alcohol 15%,
alcohol 25% and alcohol 35%. Next, The data is
divided into a training set and a validation set. The

GA

N11, N21, … Nn1 N1p, N2p, … Nnp

f1 fp

IPLNN 1 IPLNN 2 IPLNN p ………..

validation data is set to 220 data while the training
data is set to some number of data. We start our
simulation from small-number training data and
increase until we have good-enough generalization
capability. Each simulation is consisted four
categories based on which group of data that is not
trained to network. Moreover, the data is called as
unknown data.

Table 1, Table 2 and Table 3 are simulation
results of 9, 15 and 30 training data. Each tables
has four categories based on which group is set to
as unknown data. We set alcohol 0% as unknown
data at number one, alcohol 15% at number two,
alcohol 25% at number three and alcohol 35% at
number four. From those tables, we can see that
IPGNN can approximate well for unlearned data.
The unlearned data is a data whose group is trained
to network but the data is not. For example, we
have 65 data of alcohol 25%, if we set 10 data as
training data then the rest of 55 data is called as
unlearned data. We also can see that IPGNN gives
acceptable results of unlearned data for this case
when the number of training data is set to 30.
Therefore, we stop to increase the number of
training data at this manner.

Table 1. Computer simulation for nine learning data

No Unlearned Unknown GE
 Data Data
1 0.0046 0.0008 0.0027
2 0.0033 0.0193 0.0113
3 0.0013 0.0386 0.0200
4 0.0022 0.1225 0.0624

Table 2. Computer simulation for fifteen learning data

No Unlearned Unknown GE
 Data Data
1 0.0031 0.0000 0.0016
2 0.0023 0.0180 0.0102
3 0.0001 0.0465 0.0233
4 0.0009 0.1224 0.0617

Table 3. Computer simulation for thirty learning data

No Unlearned Unknown GE
 Data Data
1 0.0003 0.0000 0.0002
2 0.0002 0.0176 0.0089
3 0.0002 0.0550 0.0276
4 0.0002 0.1225 0.0614

Unfortunately, IPGNN still has not
approximated well yet for unknown data while the
other neural networks hasn’t too [4]. This condition
has impact on increasing generalization error (GE)
of IPGNN. It is because GE is counted as average
of error of unlearned and unknown data. To
overcome this weakness, Kusumuputro at al is
developing some approaches in both hardware and
software system. One of them is increasing the
number of sensor. This is expected to expand the
interval of recognition space so that data become
more compact and we can approximate unknown
data based on the trained data.

Finally, we will compare generalization error of
IPGNN is compared with other neural networks, i.e.
resource allocating networks (RAN) and on-line
back propagation (BP). Simulations are carried out
in the following conditions:
• The number of learning data is set to 30. The

simulation is divided into four categories based
on which group of data is set to as unknown
data.

• BP. The number of hidden units is choose
manually for optimal generalization capability
and fixed throughout the learning process.

• RAN. Parameters are assigned as ε = 0.2, δmax =
0.7, δmin = 0.07, κ = 0.5

Generalization error of the neural networks is

shown in Table 4. This result shows that IPLNN
provides better approximation than both BP and
RAN. It also means that IPGNN can capture
information about the percentage of alcohol faster
than RAN. Meanwhile, IPGNN can provide better
result than BP that is batch learning. The reason is
due to learning results obtained by IPGNN are
exactly the same as those obtained by its batch-
learning version.

Table 4. Comparison of generalization error

No IPGNN RAN BP
1 0.0002 0.0359 0.0217
2 0.0089 0.0170 0.0141
3 0.0276 0.0582 0.0307
4 0.0614 0.0797 0.0774

5 Concluding Remark
In this paper, we have adopted a two-level learning
hierarchy for constructing IPGNN. The learning
strategy is based on the combine GA and IPLNN
algorithm. The orders of the reproducing kernel
Hilbert space are optimized using the GA at the
upper level. Given these parameters, the IPLNN
algorithm is used to construct IPGNN at the lower
level. The network produced by this learning
hierarchy is applied as part of AOD system to
approximate percentage of alcohol for small-size
learning data.
 Based on our computer simulation, we have
results that IPGNN can approximate well for
unlearned data. However, IPGNN still has not
recognized well yet for unknown data. This
condition has impact on reducing generalization
error of IPGNN.
 In comparison with other neural network, i.e.
on-line back propagation networks (BP) and
resource allocation network (RAN), We have
results that IPGNN provides better generalization
capability than two other neural networks.

References:
[1] S. Chen, C.F.N. Cowan, P. M. Grant,

Combined Genetic Algorithm Optimization
and Regularized Orthogonal Least Squares
Learning for Radial Basis Function networks,
IEEE Transaction on Neural Networks, Vol.
10, No. 5, 1999, pp. 1239-1243

[2] C. R. Houck, J. A. Jones, M. G. Kay, A
Genetic Algorithm for Function Optimization:
A Matlab Implementation, Technical Report,
North Carolina State University, 1999

[3] V. Kadirkamanathan, M. Nirajan, A Function
Estimation Approach to Sequential Learning
with Neural Networks, Neural Computation 5,
1993, pp. 954-975

[4] B. Kusumoputro, M. Rivai, Discrimination of
Fragrance Odor by Array Quartz Resonator
and Neural Networks, Computational
Intelligence and Multimedia Application,
World Scientific Pubs. Co, 1998

[5] H. Murfi, B. Kusumoputro, Evaluation of
Generalization Capability of Incremental
Projection Learning-Based Neural networks,
Master Thesis, Faculty of Computer Science,
University of Indonesia, 2002

[6] H. Ogawa, Neural Networks Learning
Generalization and Over Learning,
Proceedings of the ICIIPS'92, International

Conference on Intelligent Information
Processing System, Beijing, 1992

[7] J. Platt, A Resource Allocating Networks for
Function Interpolation, Neural Computation,
Vol. 3, No. 2, 1991, pp. 213-225

[8] M. Sugiyama, H. Ogawa, Exact Incremental
Projection Learning in Neural Networks, IEICE
Technical Report, NC98-97, 1999, pp. 149-156

[9] M. Sugiyama, H. Ogawa, Incremental
Projection Learning for Optimal
Generalization, Neural Networks, Vol. 14, No.
1, 2001, pp. 53-66

[10]M. Sugiyama, H. Ogawa, Incremental
construction of projection generalizing neural
networks, To Appear in IEICE Transactions on
Information and Systems

[11]S. Vijayakumar, H. Ogawa, RHKS Based
Functional Analysis for Exact Incremental
Learning, Neurocomputing (special issue on
theoretical analysis of real valued function
classes) 29 (1-3), 1998, pp. 85-113

[12]Y. Yingwei, N. Sundararajan, P. Saratchandran,
A Sequential Learning Schema for Function
Interpolation Using Minimal Radial Basis
Function Networks, Neural Computation, Vol.
9, 1997, pp. 461-478

	HENDRI MURFI1 and BENYAMIN KUSUMOPUTRO2
	
	
	
	Introduction
	2Architecture and Algorithm
	3The Combined GA and IPLNN
	4Computer Simulations
	5 Concluding Remark

	References:

