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Abstract: - One of incremental learning-based neural networks that theoretically guarantees the optimal 
generalization capability and provides exactly the same generalization capability as that obtained by batch 
learning is incremental projection generalizing neural networks. This paper will describe a two-level learning 
hierarchy for constructing the networks. An incremental projection learning in neural networks algorithm is 
employed at the lower level to construct the network while the learning parameters, the orders of the 
reproducing kernel Hilbert space, are optimized using a genetic algorithm at the upper level. The networks 
produced by this learning hierarchy will be used as subsystem of the artificial odor discrimination system to 
approximate percentage of alcohol.   
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1 Introduction 
One of the essences of supervised learning in 
neural network is generalization capability. This is 
an ability to give an accurate result for data that are 
not learned in learning process. In neural networks, 
it is often expected to further improve the 
generalization capability after the learning process 
has been completed. One of the common 
approaches is to add learning data to the neural 
networks. The learning method is generally called 
incremental learning. Many incremental learning-
based neural networks have been devised so far, 
such as resource allocating networks (RAN) 
proposed by Platt [7], interpretation of RAN from 
functional analytic point of view proposed by 
Kadirkamanathan et al [3] and minimal resource 
allocating networks (M-RAN) proposed by 
Yingwei et al [12]. Although RAN and its 
derivatives improve the efficiency of computation, 
the optimal generalization capability is not 
theoretically guaranteed and they provide poor 
generalization capability than batch learning. One 
of incremental learning-based neural networks that 
theoretically guarantees the optimal generalization 
capability and provides exactly the same learning 
result as that obtained by batch learning even in the 

non-asymptotic case is incremental projection 
generalizing neural networks (IPGNN) proposed by 
Sugiyama and Ogawa [8][10]. The network is 
trained with incremental projection learning in 
neural networks (IPLNN) algorithm. The algorithm 
is formulated from functional analytic point of view 
in a reproducing kernel Hilbert space. When the 
orders of the space are fixed, the network has a 
linear-in-the-parameters structure. It means that 
learning algorithm of the network is a linear 
learning problem.  

In this paper, we will describe the application 
of IPGNN. Due to the generalization capability of 
IPGNN is a complex multimodal function on the 
space of the orders of the reproducing kernel 
Hilbert space [5], we adopt a two-level learning 
hierarchy for constructing IPGNN [1]. The learning 
strategy is based on the combined genetic algorithm 
(GA) and IPLNN algorithm. The orders of the 
reproducing kernel Hilbert space are optimized 
using the GA at the upper level. Given these 
parameters, the IPLNN algorithm is used to 
construct IPGNN at the lower level. The network 
produced by this learning hierarchy will be used as 
subsystem of the artificial odor discrimination 
(AOD) system to approximate percentage of 
alcohol.  
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2 Architecture and Algorithm 
IPGNN is a three-layer feed forward neural 
network whose architecture describes in Fig. 1. 
The architecture has an input layer, a hidden layer 
and an output layer with only one neuron. There is 
no weight on connection from input layer to hidden 
layer. Reproducing kernel functions are adopted as 
activation functions in hidden layer. Number of 
neurons in hidden layer grows as long as learning 
process. Network starts with no neuron and grows 
by allocating a new neuron based on sampling 
function of the learning data on the approximation 
space that represented with hidden layer. If the 
sampling function is on the approximation space, 
or the reproducing kernel function on the new 
learning data is linearly independent of the 
activation functions of hidden neuron, then a new 
neuron is added and the reproducing kernel 
function on the new learning data is set to as 
activation function.  Next, weights on connection 
to output layer are adjusted. Otherwise, there is no 
additional neuron. There is only an adjusting of 
weights on connection to output layer. The weights 
are updated using incremental projection learning 
(IPL) criterion. 
 

Fig. 1. Architecture of IPGNN 
 

Once the learning process has terminated then 
approximation value for any input is given by the 
formulation: 
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where x is an input vector, N is number of neuron 
in hidden layer, wi is weight on connection from 
ith neuron in hidden layer to output layer and ui(x) 
is ith basis function on x. 

IPL is incremental version of projection 
learning proposed by Ogawa [6]. Ogawa 
formulated the learning method as inverse problem 
from functional analytic point of view. In this 
method, learning target function and learning result 
function are assumed to belong to a reproducing 
kernel Hilbert space. Next, the variance of learning 
result function is minimized under the constraint of 
reducing the bias of learning result function to a 

certain level. This is done with orthogonal 
projection technique. This approach will guarantee 
theoretically for obtaining optimal generalization 
capability.  

 
Definition 1 [6] An operator Xm is called the 
projection-learning operator if Xm minimizes the 
functional   
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where En is expectation function, n is noise of m 
learning data, A*

m is adjoint of sampling operator 
Am, R(A*

m) is range of A*
m or approximation space 

in this case, P is orthogonal projection operator. 
 

IPL has developed for some conditions. 
Vijayakumar and Ogawa developed IPL with 
absence of noise [11]. Then, Sugiyama and Ogawa 
continued to develop for presence of noise [9]. In 
this paper we will use IPL proposed by Sugiyama 
and Ogawa. The following proposition is a simpler 
form of IPL algorithm in the case where noise of 
learning data has normal distribution N(0, σ) and 
variance σ is positive. 
 
Proposition 1 [9] When the noise correlation 
matrix is positive definite and diagonal, a posterior 
projection learning result fm+1 is obtained by using 
prior results fm as 
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where  is sampling function of m+1-th 
learning data, N(A

1+mψ

m) is null space of Am, Qm is 
noise correlation matrix and σ is noise variance. 

 
In development, the neural networks learning 

problem is divided into two stages. Function 
approximation of given learning data is performed 
in the first stage (IPL algorithm), and a neural 
networks which represent the approximated 
function is constructed in the second stage. The 



constructing algorithm is called incremental 
projection learning in neural networks (IPLNN) 
algorithm. There are some proposed IPLNN, in this 
paper we use the efficient one called IPLNN4 
algorithm. The algorithm constructs IPGNN that 
represents learning result function as describes in 
Eq. (4) [8][10] (Fig. 2). 
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Fig. 2. IPLNN4 Algorithm 

In the IPLNN4 algorithm, the construction 
process is divided onto two categories based on 
sampling function of m+1th learning data (ψm+1). If 

 then a new neuron with the 
reproducing kernel function K(x,x
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m+1) as basis 
function is added and weights on connection to 
output layer are adjusted. Otherwise, there is no 
additional neuron. There is only an adjusting of 
weights on connection to output layer. The 
condition  means that ψ  is linearly 
independent of { } , i.e., the approximation space 

 becomes wider than . In 
contrast,ψ  means that ψ  is linearly 
dependent of , and hence the approximation 

space  is equal to .  
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In implementation, we use the following 
criterion. 
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where ε is a small constant, say ε = 10-4. 
 
 
3 The Combined GA and IPLNN 
IPLNN algorithm is developed in a reproducing 
kernel Hilbert space. The quality of the learning 
result of IPLNN depends heavily on the choice of 
the spaces. After we choose a specific reproducing 
kernel Hilbert space, then the quality will depend 
on the choice of orders of the space.  

In this paper, we will use trigonometric 
polynomial space as reproducing kernel Hilbert 
space. The space is spanned by 

defined on [-π, π], where N is order 
of the space. Reproducing kernel function in the 
space is defined as 
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If the dimension of input vector x is one as 
described above, then the space is called one-
dimensional trigonometric polynomial space. The 
others are called multi-dimensional trigonometric 
polynomial space. Those are spanned by 

, where l = 1, 2, .. L, L is 

dimension of input vector and N
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of l-th dimension. Reproducing kernel function is 
defined as 
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Fig. 3. Profile of reproducing kernel function K(x, x’) of two-
dimensional trigonometric polynomial space of order (3, 5) 
with x’ = (0, 0)T.  
 

Due to the generalization capability of IPGNN 
is a complex function on the space of the orders of 
the reproducing kernel Hilbert space, we adopt a 
two-level learning schema proposed by Chen. The 
learning combines the GA and IPLNN algorithm, 
as illustrated in Fig. 4. At the upper level, the GA, 
with a population size of p, learns the orders of 
reproducing kernel Hilbert space N1, N2, … Nn 
based on the fitness function values provided by 
the lower level, where n is dimension of input 
vector. The lower level consists of the p parallel 
IPLNN algorithms, one for each of N1i, N2i, … Nni 
provided by GA. In simulation, the data set is 
divided into a training set and validating set. The 
ith IPLNN algorithm constructs an IPGNN using 
the training data set with given N1i, N2i, … Nni. The 
generalization capability, the mean square error 
(MSE) over the validation data set, of the resulting 
IPGNN is computed. The inverse of this 
generalization capability is the fitness function 
value fi for the given N1i, N2i, … Nni. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Schematic of two-level learning hierarchy for IPGNN 

The GA searches the solution space of a 
function through the use of simulated evolution, 
i.e., the survival of the fittest strategy.  In general, 
the fittest individuals of any population tend to 
reproduce and survive to the next generation, thus 
improving successive generations. The GA explores 
all regions of the state space and exponentially 
exploiting promising areas through mutation, 
crossover, and selection operations applied to 
individuals in the population. First, The population 
is initialized randomly while the best individual 
found up to that point is copied into the newly 
generated population. This is repeated until no 
further improvement is evidenced. In our 
implementation, we use a modified GA toolbox 
proposed by Houck [2]. The orders of reproducing 
kernel Hilbert space, N1, N2, … Nn, are each coded 
into 16-bit string, and a population size is set to 5. 
We use simple crossover and binary mutation. 
Roulette selection is employed to determine parents 
for reproduction.  

 
 

4 Computer Simulations 
In this section, we describe computer simulation of 
generalization capability of IPGNN as subsystem of 
AOD system to approximate percentage of alcohol. 

Generally, The AOD system consists of three 
subsystems. They are sensor system, electronic 
system (frequency counter) and neural networks 
system. Some quartz sensors with a chemical 
membrane construct the sensor system. In order that 
an odor can be recognized by the system, we must 
heat the odor first. Next, the odor will result 
molecules that will be absorbed by membrane of 
sensor of sensor system. This will be decreased 
basic frequency of those sensors as much as weight 
of molecules of the odor. The change of frequency 
will be converted by electronic system (frequency 
counter) into numbers that represent the odor. 
Finally, Neural network system is used to recognize 
the odor based on pattern of those numbers.  

The goal of our simulation in this section is 
to know how capable IPGNN to support AOD 
system in approximating percentage of alcohol 
for small-number training data. To do this, we 
will use the data of alcohol resulted by the 
four-sensor AOD system [4]. Those are data of 
percentage of alcohol that are in interval 0% up 
to 35%. The data are only consisted of four 
groups. They are alcohol 0%, alcohol 15%, 
alcohol 25% and alcohol 35%. Next, The data is 
divided into a training set and a validation set. The 

GA 

N11, N21, … Nn1 N1p, N2p, … Nnp 

f1 fp 

IPLNN 1 IPLNN 2 IPLNN p ……….. 



validation data is set to 220 data while the training 
data is set to some number of data. We start our 
simulation from small-number training data and 
increase until we have good-enough generalization 
capability. Each simulation is consisted four 
categories based on which group of data that is not 
trained to network. Moreover, the data is called as 
unknown data. 

Table 1, Table 2 and Table 3 are simulation 
results of 9, 15 and 30 training data. Each tables 
has four categories based on which group is set to 
as unknown data. We set alcohol 0% as unknown 
data at number one, alcohol 15% at number two, 
alcohol 25% at number three and alcohol 35% at 
number four. From those tables, we can see that 
IPGNN can approximate well for unlearned data. 
The unlearned data is a data whose group is trained 
to network but the data is not. For example, we 
have 65 data of alcohol 25%, if we set 10 data as 
training data then the rest of 55 data is called as 
unlearned data. We also can see that IPGNN gives 
acceptable results of unlearned data for this case 
when the number of training data is set to 30. 
Therefore, we stop to increase the number of 
training data at this manner. 

 
Table 1. Computer simulation for nine learning data 

  
No Unlearned Unknown GE 
  Data Data   
1 0.0046 0.0008 0.0027 
2 0.0033 0.0193 0.0113 
3 0.0013 0.0386 0.0200 
4 0.0022 0.1225 0.0624 

 
 

Table 2. Computer simulation for fifteen learning data 
  

No Unlearned Unknown GE 
  Data Data   
1 0.0031 0.0000 0.0016 
2 0.0023 0.0180 0.0102 
3 0.0001 0.0465 0.0233 
4 0.0009 0.1224 0.0617 

 
 

Table 3. Computer simulation for thirty learning data 
  

No Unlearned Unknown GE 
  Data Data   
1 0.0003 0.0000 0.0002 
2 0.0002 0.0176 0.0089 
3 0.0002 0.0550 0.0276 
4 0.0002 0.1225 0.0614 

 

Unfortunately, IPGNN still has not 
approximated well yet for unknown data while the 
other neural networks hasn’t too [4]. This condition 
has impact on increasing generalization error (GE) 
of IPGNN. It is because GE is counted as average 
of error of unlearned and unknown data. To 
overcome this weakness, Kusumuputro at al is 
developing some approaches in both hardware and 
software system. One of them is increasing the 
number of sensor. This is expected to expand the 
interval of recognition space so that data become 
more compact and we can approximate unknown 
data based on the trained data. 

Finally, we will compare generalization error of 
IPGNN is compared with other neural networks, i.e. 
resource allocating networks (RAN) and on-line 
back propagation (BP). Simulations are carried out 
in the following conditions: 
• The number of learning data is set to 30. The 

simulation is divided into four categories based 
on which group of data is set to as unknown 
data. 

• BP. The number of hidden units is choose 
manually for optimal generalization capability 
and fixed throughout the learning process.  

• RAN. Parameters are assigned as ε = 0.2, δmax = 
0.7, δmin = 0.07, κ = 0.5 
 
Generalization error of the neural networks is 

shown in Table 4. This result shows that IPLNN 
provides better approximation than both BP and 
RAN. It also means that IPGNN can capture 
information about the percentage of alcohol faster 
than RAN. Meanwhile, IPGNN can provide better 
result than BP that is batch learning. The reason is 
due to learning results obtained by IPGNN are 
exactly the same as those obtained by its batch-
learning version.   

 
Table 4. Comparison of generalization error  

 
No IPGNN RAN BP 
1 0.0002 0.0359 0.0217 
2 0.0089 0.0170 0.0141 
3 0.0276 0.0582 0.0307 
4 0.0614 0.0797 0.0774 

 
 
 
 
 
 
 
 
 



5  Concluding Remark  
In this paper, we have adopted a two-level learning 
hierarchy for constructing IPGNN. The learning 
strategy is based on the combine GA and IPLNN 
algorithm. The orders of the reproducing kernel 
Hilbert space are optimized using the GA at the 
upper level. Given these parameters, the IPLNN 
algorithm is used to construct IPGNN at the lower 
level. The network produced by this learning 
hierarchy is applied as part of AOD system to 
approximate percentage of alcohol for small-size 
learning data.  
 Based on our computer simulation, we have 
results that IPGNN can approximate well for 
unlearned data. However, IPGNN still has not 
recognized well yet for unknown data. This 
condition has impact on reducing generalization 
error of IPGNN.   
 In comparison with other neural network, i.e. 
on-line back propagation networks (BP) and 
resource allocation network (RAN), We have 
results that IPGNN provides better generalization 
capability than two other neural networks. 
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