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Abstract: In this paper we will discuss a mathematical modeling process and a computer simulation of an epidemic 
problem. The problem is modeled by control optimal, and then analyze by the maximal principle of Pontryagin 
with bang-bang control.  The result will be simulated using MATLAB. As the result is the schedule of effective 
medical treatments can be determined provided that the values of parameters are known. 
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1   Introduction 
 

Epidemiology is the study of the spread of 
diseases, in space and time. The objective is to trace 
casual factors responsible for, or contribute to, their 
occurrences.  The spreads of the disease patterns are 
caused by several factors. The first factor is season. 
The data exhibit that places having four seasons have 
similar pattern: in the end of winter occurred mump 
and hepatitis A, in the end of summer occurred polio, 
in the early of winter occurred influenza and in the 
spring occurred mump. Meanwhile, Tuberculosis 
(TBC) doesn’t depend on the season. The second factor 
is geographic distribution. The classical method to 
analyze the occurrence of an epidemic is by plotting 
every new case on the map. The distribution of the 
diseases shows the concentration on a geographic area. 
For instance, the spreads of polio disease in Chicago in 
1956. The highest rate occurred in the city. This was 
caused by the concentration of the ethnic of Black 
American St. Louise Encephalitis in Houston in 1964. 
In 1854, John Snow demonstrated that cholera could be 
transmitted via drinking water. He matched incidence 
data from the surrounding Broad Street in London with 
a sketch of the location of water pump. Those are 
classic examples of how description and data analysis 
may lead to an explanation, which then can be used for 
prevention or prediction. 

After we find parameters that are responsible of 
spreading the diseases, the next step is how to control 
the parameters. Furthermore, one of the problem that 
can be appeared from this epidemic phenomena is how 
to control the spreading of the diseases effectively. 
Until now, there are two control methods, i.e. 
quarantine (prevent the contact between infectious and 
susceptible) and decreasing the number of infectious by 
medical treatment. The first method is more difficult to 
implement, therefore in this paper we discuss the 
second method only. The goal is to optimize the 
medical treatments in order to control the epidemics.  

The objectives of this paper are to show the 
modeling process, solve the model by maximal 
principle of Pontryagin with bang-bang control and 
computer simulation using MATLAB. 

 
2 Mathematical Modeling  
 

The mathematical modeling of epidemics in 
populations is a vast and important subject. Numerous 
opportunities are opened for mathematicians to work 
on biologically relevant and nontrivial mathematical 
problems. That field is about translating biological 
assumption into mathematics, mathematical analysis 
aided by interpretation and obtaining insight into 
epidemic phenomena when translating mathematical 
results into population biology.  
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Sethi (1970) and Sethi (1978) proposed models to 
optimize the limited medical resources related to an 
epidemic. At time t, suppose that the state x(t) represent 
the number of infectious (those the disease) in a 
population of N people, where 0  x(t) ≤  N.  ≤

First case, we assume that there is no vaccination 
before and no medical effort. We also assume that the 
size of population, N, is limited. Therefore, the growth 
of the number of infectious can be explained in term of 
the logistic differential equation, 

 
x& (t) = bx(t)[N – x(t)],                                (1) 
                                           

where b is a constant. 
For the next case, we assume that u(t) represent the 

intensity of medical treatment, where 0 < u(t) < U; and 
U is some maximum practicable level. This medical 
treatment, u(t), then can decrease the growth of the 
infectious people by u(t)x(t), as shown by the following 

 
x& (t)=bx(t)[N-x(t)]–x(t)u(t),                                 (2) 
 

where x(0)=x0, x(T) = xT , 0≤ x(t)  N, 0  u(t)  U. ≤ ≤ ≤
 
The equation (2) will be used to constrain the optimal 
control model we will discuss. 

Some objective functions of such problem must be 
selected to measure the effectiveness of the medical 
effort. Consider the following cost function to be 
minimized: 

u
Min J(u)= [ku(t)+Kx(t)]dt,                        (3) ∫ −

T
te

0

δ

where e-δt is the discount factor, and unit cost of k and 
K is attached respectively to use of medical resources 
and to the number of people affected. 

We conclude that the control optimal model of the 
medical treatment can control the spread of the diseases 
(epidemic) such that it will satisfy: 

       = [ku(t) + Kx(t)]dt,                        (4) 
u

MinJ ∫ −
T

te
0

δ

s.t.                      
       (t)= bx(t)[N – x(t)] – x(t)u(t), x&
where x(0) = x0, x(T) = xT,  0 x(t)≤  N,  0≤ u(t)  U ≤ ≤
                                                       
In this model, u(t) is the control function and x(t) is the 
state function. 

3 Exact Solution  
 

In this section we will explore the solution of (4), 
the control function . Note that the control function 
in the objective and state function are linear. As the 
result, base on the maximal principle of Pontriagyn 
with bang-bang control, the control function attained 0 
in the interval (0,T

û

*) and it is equal to U in the interval 
(T*,T), except on a singular point T*,if the coefficient 
u(t) on Hamiltonian is zero.  

Based on the maximal principle of Pontriagyn, the 
Hamiltonian of (4) is: 

 
H=e-δt [ku(t)+Kx(t)]+ (t){bx(t)[N–x(t)]–u(t)x(t)} (5) 1p
 
To determine u(t) that minimize the objective function 
(4), we apply the maximal principle of Pontriagyn,  
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By considering the terms of (7) in which contain the 
u(t) only, the problem can be expressed, 
 
      e

u
min -δt ku(t)- (t)x(t)u(t); 0         (8) 1p Utu ≤≤ )(

 
To simplify (8), we define . Since the 
value of eδ  is always positive, the problem cn be 
simplified as follow, 

)()( 1 tpet tδµ =
t

 
       [k - x(t)]u(t); 0                 (9) 

u
min )(tµ Utu ≤≤ )(

 
The adjoin differential equation of (9) is:  
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x
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=Ke-δt + {bN-2bx(t)-u(t)}  (10) )(1 tp

Hence 
       +{bN-2bx(t)-u(t)} = -K e)(1 tp& )(1 tp - tδ     (11) 
 
If both sides of the equation (11) are multiplied by e ,  tδ
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and equation (12) can be represented as follows, 
 
        eδ +δ eδ +{-δ +bN-2bx(t)-          t )(1 tp&
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Since , then the adjoin 
differential equation becomes: 
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)(tµ& +{-δ +bN-2bx(t)-u(t)} =-K              (14) )(tµ

 
From equation (9), the solutions of the problem (by 
bang-bang control) are, 
        
       u (t) = 0; if x(t) < k ˆ )(tµ

 
       u (t) = U; if x(t) > k ˆ )(tµ

 
However, if x(t) hits the boundary, either 0 or N, then 
u(t) must be modified to prevent x(t) crossing the 
boundary. 
 Consider the given differential equation (1) for x(t), 
when u(t) = 0 on some interval of time t, (0,T*) and 
when u(t) = U on some interval of time t, (T*,T).  
 
When u(t) = 0 then from equation (2), 
 

x& (t)= bx(t)[N-x(t)].  
 

Consequently,  
        
       (t)=N/(1+α ), x̂ Nbte−

 
where α  is a constant of integration.   
 
When u(t) = U,  
 

x& (t) = (bN-U)x(t)- b(x(t))2 
 
If b < U/N, then 
 

x& (t) = -b(gx(t) + (x(t))2); with g = (U/b)-N > 0.  
 
The solution of this differential equation is,  
 

       (t)=g/( , x̂ )1−gbteβ
 
where  is a constant of integration.  β
 
On the other hand, if  b>U/N, then 
 

x& (t) = -bx(t)(-h + x(t)); with  h = -(U/b) + N > 0. 
 
The solution of this differential equation is, 
 

x̂ (t) = h/(1-γ ), hbte−

 
where γ  is a constant of integration. 
 

What the possible optimum value look like? The 
above theory leads to bang-bang control, except for a 
possible singular point, T* say, in which u(t) is adjusted 
within (0,T) to fulfill the terminal constraint x(T) = xT.  

Consider a possible solution with just one 
switching time T*. If t < T*, then u(t) = 0 when x(0) < 
x* or then u(t) = U when x(t) > x*. Let x*= x(T*). When 
t < T*, consider a possible singular interval solution, for 
which x(t) = x*, µ(t) = µ*; where x*µ* = k and u(t) = u*. 
This solution would represent a steady state, during 
which the time derivatives (t) = 0 and =0. Since 
the derivatives are zero, then based on (14) and (2), 

x& )(tµ&

 
-δ +bN-bx*-u*)µ *=-K  and  0= bx*[N- x*]-u*x* 

 
Consequently 
 

-δ +bN-bx*-u*=-K/µ *=-Kx*/k and 0=bN-u*-bx* 
 
These two equations solve 
 

x* = δ k/(K – bk)  and  u*= b(N – x*) 
 
In this singular condition, if x* > N then x* must be 
changed by N and u* by 0 to fulfill the terminal 
constraint. 
 
From these above description, the solution of the 
control optimal problem is: 
 
 
                



                           ; if  (t) = 0                  ]1/[ NbteN −+α û

=
∧

 (t) x           δ k/(K – bk); if  (t) = b(N – xû *) 
                            ; if (t)=U and b<U/N  ]1/[ −gbteg β û
                            ; if (t)=U and b<U/N ]1/[ hbteh −− γ û
 
 
 
4  Computer Simulations 
 

The simulation is done by choosing the value of 
parameters, = 0.08, k = 0.003, K = 0.000004, N = 
1000, x

δ
0 = 20, b = 0.00003 and U = 1, then the length 

of interval t is 38 days for u = 0 and singular condition 
at  t = 39 where u  (39) = 0.028 and (39) = 61.38 and 
for =1 the length of the interval t is 8 days( see 
Fig.1). 

ˆ
ˆ x̂

û
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Fig.1 Dynamics of the number of infectious people 
 
 
5 Conclusion 
 

Controlling transmition of diseases is harder today 
than ever before, but some principles remain 
fundamental if control is to be achieved: political will 
(financial support, human resources), improvement of 
public health infrastructure and vector control 
programs, intersectional coordination (partnership 
among donors, the public sector, civil society, non 
governmental organizations and the private and 
commercial sectors), active community participation 

and reinforcement of health legislation. Ministries of 
health must direct control, and must establish 
epidemiological and entomological surveillance and 
education campaigns for the community. It is 
fundamental that the community recognizes its 
responsibility in spread of diseases control. 

To refer the above discussion, we conclude 
mathematically that the schedule of effective medical 
treatments can be determined provided that the values 
of parameters are known. 
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