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Abstract –Product quality and productivity improvement of a fermentation process implies, usually, reliable on-
line measurements. Due to the difficulties, high costs and inefficient technology to obtain on-line measurements, 
several methodologies were developed to overcome these problems. In this work, algorithms for on-line state 
observation and kinetics parameters estimation applied to fed-batch baker’s yeast fermentation process are 
presented. The algorithms, initially proposed by [12] are used for a brief theoretical study and validated with 
experimental data. Only two on-line state variables measurements, oxygen and carbon dioxide, are used to estimate 
all the state and the kinetics parameters. The method shows to be very sensitive to measurements precision, in 
particular, in the oxygen transfer rate evaluation. A corrective parameter is then introduced and consequently a 
better performance of the estimators is obtained. 
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1. Introduction 
Product quality and productivity improvement of a 
fermentation process implies, usually, reliable on-line 
measurements. A powerful experimental set-up has, 
often, prohibitive costs and, even worst, with the 
technology available some state variables on-line 
measures cannot be reliable.  

In the majority of fermentation industries, control 
strategies are based on off-line state measurements. 
This implies a laboratory and a qualified technician, 
with inherent operation costs, and thus a significant 
delay in process actuation, with the consequence of a 
bad control performance [1]. 

Some problems in measurements and estimation in 
biological processes are referred in [2], pointing out 
the methods to reduce the difficulties, such as better 
sensors, automatic sampler and analysis systems, and 
on-line estimation of state variables that cannot be 
physically measured. These three areas are being 
carefully studied. 

Since the beginning of the eighties several 
numerical techniques for state observation and kinetics 
estimation have appeared in the literature. As 
fermentation processes are non-linear, the estimation 
algorithms must be based on non-linear structures or, 
at least, must be approximated to a linear model with 
adaptation. 

Developments have been made in non-linear 
observer techniques with guarantied stability, 
exploring the non-linear structure of biological 

processes [3-6]. The developments in techniques for 
state observers based on models and parameters 
estimators based on observers may overcome the 
difficulties in lack of process information and/or 
reliable measurements. 

Also, neural networks applied to fermentation 
processes are a study focus. The net can easily work 
with process non-linearity, can dynamically adjust to 
environment or parameters variations and can infer 
rules from specified data. An estimator based on 
neural networks may be applied to state and kinetics 
estimation of fermentation processes [7-8]. 

More recently, hybrid model are employed in 
parameter estimation [9-10]. This formulation 
combines process models based on material balances 
with neural nets applied to kinetics estimation [11]. 

In the present work, some techniques for state and 
parameters estimation are studied in simulation and 
experimentally validated. 
 
 
2. State Observers 
In this work we study theoretically and experimentally 
the algorithms for state observers, initially proposed 
by [12]. The method is based on the general model for 
biological reactors, 

( )d
dt

K t D F Qξ ϕ ξ ξ= − + −,  (1) 

A state observer is an algorithm to calculate the 



 

state variables that cannot be measured on-line, ξ2 
(dimension n-p), using the on-line measured state 
variables, ξ1 (dimension p). It is considered known the 
yield coefficients (matrix K of dimension nxm), the 
dilution rate D and the input/output gaseous and liquid 
flow vectors F and Q. The reaction rates, ϕ(ξ), are 
unknown. The number p of on-line state variables 
should be at least equal to the rank of matrix K (Rank 
(K)=r). 

The state vector can be then divided in two 
partitions ξ1, ξ2: 
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L in a n×n matrix of line permutation. K, F e Q can be 
written as: 
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where K1 ∈ℜpxm, K2 ∈ℜ (n-p)xm, ξ1, F1, Q1 ∈ℜp and 
ξ2, F2, Q2 ∈ℜ n-p. 

The general dynamical model is re-written as: 

( )d
dt

K t D F Q
ξ

ϕ ξ ξ ξ1
1 1 2 1 1 1= − + −, ,  (4) 

( )d
dt

K t D F Q
ξ

ϕ ξ ξ ξ2
2 1 2 2 2 2= − + −, ,  (5) 

Additionally, the condition of the number of 
measured variables, p, being equal to the number of 
reaction rates, m, makes K1 a complete square matrix. 

Introducing the state transformation, corresponding 
to a linear change of coordinates: 

Z ≡ Aξ1+ξ2 (6) 
where A ∈ℜ(n-r)xr is the solution of  

AK1+K2 = 0 (7) 
i.e., 

A = –K2K -1
1  (8) 

eliminating ξ2, we obtain: 

( ) ( )dZ
dt

DZ A F Q F Q= − + − + −1 1 2 2  (9) 

We must point out that in (9) the term of reaction 
rates is not included, permitting the on-line state 
observation without knowing the kinetics.  
 
 
3. Kinetics Estimators 
In order to estimate the kinetics we consider a class of 
problems (baker´s yeast is included) defined as: 

ϕ(ξ,t) ≡ H(ξ)ρ(ξ,t) (10) 
where H(ξ) is a m×r matrix of known state functions 
and ρ(ξ) is a r vector of unknown state functions.  

A kinetics estimator is an algorithm to determine 

ρ(ξ,t), considering known the vector of state variables 
ξ (on-line measured or obtained by an observer 
algorithm), the on-line measured D, F and Q, the yield 
coefficients (matrix K) and the matrix H(ξ). 

The kinetics algorithm proposed, based on the 
general dynamical model with state observers is: 

( ) ( ) ( )ξξξρξξ ˆˆ
ˆ

1 −Ω−−+−= QFDtKH
dt
d  (11) 

( )d
dt
$ $ρ

ξ ξ= −Ω2  (12) 

where ρ̂  is the on-line estimation of ρ(ξ,t). 
The term (ξ – ξ̂ ), (12), reflects the difference 

between ρ and ρ̂ . This adaptation law is a variation of 
gradient method [13]. Selecting the gain matrix Ω1 and 
Ω2, which guarantees the algorithm stability and 
convergence, completes the estimator design. 

Applying the transformation ψ ≡ K-1
s ξs to (11) and 

(12), to decouple the equations with respect to the 
specific growth rate, the second order dynamics 
estimator (EDSO) is obtained: 

( ) ( )ψψψρψ ˆˆˆ 1 −Ω−−+−= −
ssss QFKDH

dt
d  (13) 

( ) ( )d
dt

H T
s

$
$

ρ
ξ ψ ψ= −Γ  (14) 

where Ω2 ≡ [KH(ξ)]TΓ and subscript s means the 
subgroup of r equations of the complete state model 
with the condition of including all the r parameters 
that need to be estimated. 

If H(ξ) is a diagonal matrix and the gain matrix are 
defined as Ωs ≡ diag{–ωi}, Γs ≡ H-1(ξ).diag{γi} we 
have : 
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with τi = (γihi)
-0.5

     and     ζi = 0.5ωi(γihi)
-0.5, where hi 

are the diagonal elements of H(ξ). 
The estimation of each parameter follows a typical 

second order response in changes of true parameters, 
with natural period of oscillation τi and damping factor 
ζi,, which are functions of the state system, so time 
dependent. 

As a restriction, H(ξ) must be an invertible diagonal 
matrix, which is the case for most fermentation 
processes. 

The stability analysis for the estimator, concerning 
convergence dynamics and tuning, is presented in [6]. 

 
 



 

4. Application to baker’s yeast 
fermentation 

Yeast growth is characterized by two metabolic 
pathways: respiratory and fermentative growth on 
glucose with ethanol production (respiro-fermentative 
regime, RF) and respiratory growth on both glucose 
and ethanol (respirative regime, R) [14]. 

The dynamical model for fed-batch baker´s yeast 
production is written as two partial models: 
Respiro-fermentative model, RF 
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Respirative model, R 
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The proposed observer must considerer regime 

alternation of baker´s yeast. The decision rule for the 
transition of regimes is thus: from respiro-fermentative 
to respirative when the specific growth rate on the 
fermentative growth on glucose is µr

s ≤ 0; from 
respirative to respiro-fermentative when the specific 
growth  rate  on  the respirative growth on ethanol is 
µ

o
e ≤ 0. 
Being O-C the on-line measures considered (Fig. 1) 

we have the partitions ξT
1 = [O  C] and ξT

2 = [X  S  E] 

with the corresponding (F1 – Q1)
T = [OTR  -CTR], 

(F2 – Q2)
T = [0  DSe  0] for each model. The 

corresponding partitions in matrix K are in Table 1.  

 
Fig. 1 State observer: on-line measures O-C 

 
For each regime, the state transformation defined by Z, 

(9), is 
Respiro-fermentative model, RF 

21
ˆˆ

UUAZD
dt
Zd

RFRF
RF ++−=  (18) 

ξ̂2,RF = ẐRF – ARFξ1 (19) 
Respirative model, R 

21
ˆˆ

UUAZD
dt
Zd

RR
R ++−=  (20) 

ξ̂2,R = ẐR – ARξ1 (21) 
where  U1 = (F1 – Q1), U2 = (F2 – Q2), 

ARF = –K2,RFK-1
1,RF and AR = –K2,RK-1

1,R. 

Table1 Partition in matrix K  
Model K1 K2 
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When a change of regime occurs, the 

transformation variable ( Ẑ ) and the state estimate 
( 2ξ̂ ), calculated by the other partial model are used in 
the new partial model, described as: 
RF  →  R change: 

ξ̂2,RF = ẐRF – ARFξ1,RF (22) 

ẐR = ξ̂2,RF + ARξ1,R (23) 
with µo

s,R = µo
s,RF and µr

s,R = 0 
R  →  RF change: 

ξ̂2,R = ẐR – ARξ1,R (24) 

ẐRF = ξ̂2,R + ARFξ1,RF (25) 
with µo

s,RF = µo
s,R and µo

e,RF = 0. 
The assimptotic observer for estimation of X, S and 

E for each regime is defined by two systems (26) and 
(27): 
Respiro-fermentative model, RF 

RFK
CTRkOTRkkZD

dt
Zd 1))((ˆ
ˆ

5781
1 +−+−=   

e
RF

DS
K

CTRkkOTRkkkkZD
dt
Zd
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1))((ˆ

ˆ
5281722

2

RFK
CTRkkOTRkkZD

dt
Zd 1)(ˆ
ˆ

53733
3 +−+−=   



 

X̂  = RFZ1
ˆ  – [(k8 – k7)O – k5C]/KRF   (26) 

Ŝ = RFZ 2
ˆ – [(k2k7 – k1k8)O + k2k5C]/KRF   

Ê  = RFZ3
ˆ – (– k3k7O – k3k5C)/KRF   

with KRF ≡ k5k8. 
 

Respirative model, R 

RK
CTRkkOTRkkZD

dt
Zd 1))()((ˆˆ

56791
1 −−−+−=   

e
R

DS
K
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Zd
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1)(ˆˆ

61912
2  
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dt
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X̂  = RZ1
ˆ – [(k9 – k7)O + (k6 – k5)C]/KR  (27) 

Ŝ  = RZ 2
ˆ – (– k1k9O – k1k6C)/KR 

Ê  = RZ3
ˆ  – (k4k7O + k4k5C)/KR 

with KR ≡ k5k9 – k6k7. 
Regarding kinetics estimator, by introducing the 

transformation ψ ≡ K-1
s ξs and making ξT

s  = ξT
1 = [O  C], 

the measured variables considered, it is obtained for 
each regime the following equations: 
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The systems for kinetics estimator for each partial 
regime are then written: 
Respiro-fermentative model, RF 

( )RFRFRF
o

RFs
RF OTRkDX

dt
d

,1,1118,1,
,1 ˆˆˆ

ˆ
ψψωψµ

ψ
−++−=  

( )RFRFRF
r

RFs
RF CTRkOTRkDX

dt
d

,2,21257,2,
,2 ˆˆˆ

ˆ
ψψωψµ

ψ
−++−−=

( )RFRF

o
RFs

dt
d

,1,121
, ˆ

ˆ
ψψω

µ
−=  (30) 

( )RFRF

r
RFs

dt
d

,2,222
, ˆ

ˆ
ψψω

µ
−=  

Respirative model, R 

( )RRR
o

Rs
R CTRkOTRkDX

dt
d

,1,11169,1,
,1 ˆˆˆ

ˆ
ψψωψµ
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o

Re
R CTRkOTRkDX

dt
d

,2,21357,2,
,2 ˆˆˆ

ˆ
ψψωψµ

ψ
−++−−=

( )RR

o
Rs

dt
d

,1,121
, ˆ

ˆ
ψψω

µ
−=  (31) 
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ψψω

µ
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Since the kinetics algorithm needs biomass 

concentration value (which is not experimentally 
available on-line) it is necessary to estimate it by using 
the observer just mentioned before. 

The estimator gains tuning follows a second order 
dynamics response, where: 

ω11,k = 2ζ1/τ1 (32) 
ω12,k = 2ζ2/τ2 (33) 
ω13,k = 2ζ3/τ3 (34) 
ω21,k = (Xkτ

2
1)-1 (35) 

ω22,k = (Xkτ
2
2)-1 (36) 

ω23,k = (Xkτ
2
3)-1 (37) 

 
 

5. Results and Discussion 
Both state and kinetics estimators are simulated in a 
Fortran90 software. Different runs are taken in order 
to test their performance [13].  
Several experimental data are then considered to 
validate observer and kinetics estimator algorithms. 
Only one run is presented and extensively studied 
here, named EXPA08. It is a closed loop experiment 
where the input flow rate profile, F, is automatically 
calculated by a control law (Fig. 2). Notice some 
noise, particularly in F profile (interfering in D 
evaluation, D=F/V). 
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Fig.2. EXPA08 – Feed rate F, dilution rate D and fermenter 

liquid volume V experimental profiles 
 

Fig. 3 shows the biomass, X, glucose, S and ethanol, 
E obtained experimentally (points), obtained by the 
theoretical model (thin line) and applying the observer 
algorithm (thick line); also it is presented the biomass 
growth rates in the three metabolic pathways 
(respirative in glucose and ethanol and fermentative in 
glucose): theoretical (thin line) and estimated (thick 
line). 

There are in fact significant differences between 
experimental values and estimated/observed ones. It 
can even be said that model values approximate better 
the experimental results than do the estimator/observer 
algorithms. 
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Fig. 3 EXPA08 – (a) Biomass X, glucose S and ethanol E 

profiles: experimental values (points), theoretical model 
(thin line) and observed values (thick line); (b) biomass 

growth rates profiles: theoretical (thin line) and estimated 
(thick line) 

 
Previous results [13] show the importance of the on-

line measure for gaseous transfer rates, especially for 
oxygen (OTR): the observer needs an accurate 
measure. Its experimental determination is extremely 
delicate. Analysing Fig. 4, we can see that in the first 
12 hours the difference between gaseous oxygen 
composition in the input and output flows, OTR 
values, are zero (or negative). So, OTR on-line 
evaluation may be the origin on the differences 
obtained in the results. 

The oxygen transfer rate is experimentally 
determined by (making α equals to 1): 
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with  
Ge gas molar flow input 
ye,i molar fraction of component i in the gaseous 

flow input 
ys,i molar fraction of component i in the gaseous 

flow output 
Mi molar mass of component i 
V fermenter volume 

Being α equals to 1, it is often verified a subtraction 

of similar numbers, which is a potential cause of 
errors. That is the reason for the introduction of 
parameter α. 
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Fig. 4 EXPA08 - OTR and CTR experimental (thick line) 

and theoretical (thin line) profiles 
 
Fig. 5 shows the OTR experimental profile, with 

α=0.975 (thick line), and the theoretical value (thin 
line). 
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Fig. 5. EXPA08 - OTR and CTR experimental with 

α=0.975 (thick line) and theoretical (thin line) profiles 
 

Fig. 6 shows (a) the biomass, X, glucose, S and 
ethanol, E profiles obtained experimentally (points), 
obtained by the theoretical model (thin line) and 
applying the observer algorithm, with α=0.975 (thick 
line); (b) the biomass growth rates in the three 
metabolic pathways (respirative in glucose and ethanol 
and fermentative in glucose): theoretical (thin line) 
and estimated (thick line). 

Comparing Fig. 3 and Fig. 6, the introduction of 
parameter α improves both state observed values and 
kinetics estimates. In order to improve the kinetics 
estimates, α is slightly reduced to 0.97. However, the 
kinetics estimates are improved in opposite to the 
worst results for the state observers. 

 
 

6. Conclusions 
In this paper, the algorithms for state observers and 
kinetics estimator applied to baker’s yeast fed-batch 
fermentation are presented. 

Tests are first taken in a Fortran90 based program 
and then experimentally validated.  

The on-line measures of oxygen and carbon dioxide 
(O-C) are used to observe state variables and estimate 

(b) (a) 



 

the kinetics. The study shows that the algorithms 
tested are very sensitive to measures precision, in 
particular, the on-line measure of oxygen transfer rate 
(OTR). This is due to the subtraction of small values 
in OTR evaluation, (38), that causes error propagation. 
In order to overcome this situation a corrective 
parameter α is introduced. In the absence of 
alternatives for on-line measurement of oxygen 
transfer rate, this parameter works as a corrector. 

The estimator algorithms are particularly sensitive 
and not very robust to measurement errors (more than 
the observer model). The method implies then a 
precise experimental set-up. 
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Fig. 6 EXPA08 – (a) Biomass X, glucose S and ethanol E 
profiles: experimental values (points), theoretical model 
(thin line) and observed values (thick line); (b) biomass 

growth rates profiles: theoretical (thin line) and estimated 
(thick line), considering α=0.975 
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