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Abstract: In this paper, a parallel VLSI processing architecture for MPEG-4 standard motion estimation 
implementation is proposed. It possesses the characteristics of low memory bandwidth and low clock rate 
requirements, thus primarily aiming at 3G mobile applications. Based on one dimensional tree architecture, the 
processing core employs dual-register/buffer technique to reduce the preload and alignment cycles. As an 
example, a full-search block matching algorithm has been mapped on this architecture using a 16-elements PE 
array, which has the ability to calculate motion vectors of QCIF video sequences in real time at 8.2 MHz clock 
rate and using 15.5 Mbytes/s memory bandwidth.  
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1  Introduction 
The third generation (3G) wireless system has recently 
been becoming popular in wireless 
telecommunications. It provides the high-speed mobile 
platform with Internet Protocol (IP) [1], which allows 
many types of IP-based internet applications to be 
implemented on the 3G platform, such as e-mail 
service, web page browsing and image/video 
transmission. Among these, real-time video 
applications are becoming an increasingly important 
part of mobile multimedia [2]. However, due to the 
inherently huge size of video data, video compression 
techniques are required to reduce the size of the video 
data. This is achieved by exploiting the redundant data 
of the video stream. There are two types of redundancy 
in the uncompressed video stream: temporal and 
spatial redundancy. Generally, spatial redundancy is 
reduced by discrete cosine transformation (DCT) and 
other transformation techniques, while the temporal 
redundancy is reduced by motion estimation (ME) 
techniques. ME operations can normally take up to 
80% of the computational burden of the completely 

video compression procedure [3]. Therefore, it is the 
most important component in real-time video 
applications. Many VLSI architectures for ME have 
been proposed. However, most of them target MPEG 
video coding standards, which are mainly for 
conventional video applications, such as videophone, 
video conferencing, video broadcasting, etc. These 
architectures are not particularly suitable for mobile 
and low power applications [4]. In this paper, a low 
power consumption architecture that is based on the 
1D tree architecture [5] is presented. It features the 
high data utilisation by using parallel pipelining and 
the low clock rate by introducing dual-register/buffer 
techniques that reduce idle clock cycles. 
   The rest of the paper is organised as follows. In 
section 2, two typical ME algorithms are briefly 
described. Section 3 presents the proposed VLSI 
architecture in detail. In section 4, the performance of 
the core architecture is analysed in terms of minimum 
clock rate and minimum memory bandwidth 
requirement. Finally, conclusions are drawn and future 
work on the core architecture is suggested in section 5. 
 



 

2  Motion Estimation Algorithms 
Recently, MPEG-4 video standard, which is widely 
used in conventional video transmission and storage, 
has been introduced to wireless multimedia 
applications [2]. It adopts block-matching algorithms 
with alpha binary plane to archive motion estimation 
[3][6]. Fig.1 illustrates the principle of block matching 
motion estimation algorithms. First, the video frames 
are segmented into N×N blocks. Every block within 
the current frames is matched to the corresponding 
blocks within the search range on the previous frame 
under given algorithms. A measurement of the 
difference between the current block and candidate 
blocks is calculated. Then, a motion vector for the 
position of the candidate block, which has the 
minimum measurement with the current block, is 
generated. It is used to replace the real motion of the 
objects in the compressed video stream [3]. Thus, 
temporal redundancy is reduced.  
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Fig.1  Principle of block-matching algorithms 

 
 
2.1  Full-search block-matching algorithm 
Because of its low distortion and regular data flow, the 
full-search algorithm is the most popular algorithm 
used in ME. In the full-search block-matching 
algorithm, the current block is matched to every 
candidate blocks within the (2p+N)× (2p+N) search 
window, where (-p, p-1) is pixel search range. For 
every candidate block, every pixel must be matched as 
well as the blocks, and then a sum of absolute 
difference (SAD) is calculated. It is given by 
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where Ik, Ik-1 are the intensity values of the pixels in 
current and previous blocks, respectively, which are 
located at position (x, y). When the SAD of the current 
candidate block is obtained, the SAD of the next 
candidate block is calculated. Then two SADs are 
compared to find smaller one to be stored as the 
minimum SAD. This process continues until all blocks 
are matched and a final minimum SAD, whose 
position is pointed by motion vector, is generated [3]. 
 
 
2.2  Object-oriented motion estimation 
The recently finalised MPEG-4 standard emphasises 
object-oriented video coding, which is different from 
previous visions of video compression standards [6]. 
To support the motion estimation of arbitrary-shaped 
objects, an alpha binary plane has to be defined. The 
alpha plane contains information as to whether a pixel 
is inside the object or not [3]. Thus, the SAD for the 
object can be represented below: 
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where Alpha (x, y) is the binary value for the (x, y) 
pixel in the current block. The value is one when the 
pixel is inside the object; otherwise, it is zero, as 
shown in Fig.2. 
 

 0 0  0  0 0 0  0  0  0

 0  0  0  1 1  1  1  0  0

 0 0  0  1 1  1  1  0  0

 0  0  0  1  1  1  1  0  0

 0  0  0  1  1  1 1  0  0

 0  0  0  1  1 1  1  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0
 

 
Fig.2  Illustration of alpha binary plane 



 
 
 

3  Proposed Architecture 
In this section, we describe the core architecture of the 
proposed ME engine and its main components, in 
particular the PE array, since it is the most 
computationally intensive part of the whole 
architecture.  
 
 
3.1  System overview 
The Fig.3 shows the block diagram of the ME engine, 
which includes five components: memory unit, 
address generator, PE array, minimum unit and control 
CPU [3].  
   The memory unit is divided into two modules. One is 
to store current frame data and alpha plane data; the 
other is for previous frame data. The address generator 
computes the addresses, at which the candidate pixels 
for the block matching are stored. It also fetches pixel 
data from the memory unit and feeds them into the PE 
array. In the PE array, the absolute difference between 
previous and current frames is computed and sent to 
the minimum unit. Then, the SADs of all 
parallel-processed blocks are accumulated in the 
minimum unit, and are compared to find the minimum 
one to be stored in minimum SAD register. At the same 
time, a minimum flag signal is output to the control 
CPU, which, jointly with address generator, gives the 
location where the MV is found. 
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Fig.3  System overview 
 

 
3.2  PE array 
The PE array is the key component of the ME engine. 
It determines the performance of the system in terms of 
memory bandwidth and minimum clock rate for real 
time processing. Its architecture is based on a 1D tree 
architecture [5] with additional preload cycles. To 
increase the parallelism of the data flow, a group of 
parallel-pipelined processing elements have been used 
in the PE array, as shown in Fig.4. 
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Fig.4  PE array architecture 

 
In this architecture, motion estimation is carried out in 
two stages, preload and matching. In preload cycles, as 
shown in Fig.5, current block data and alpha plane data 
are preloaded into the PE array. They are stored locally 
in the appropriate PEs. Then, as illustrated in Fig.6, 
showing matching cycles, the previous block data are 



loaded into the PEs by parallel pipelining. Before 
matching to the preloaded current data, the previous 
data must align with the current data. It takes NPE clock 
cycles to align the previous data with the current data, 
where NPE is the number of PEs. While the SAD 
calculation starts, the previous data shift from the left 
to right within the PE array until they match the 
corresponding current data already in the PE array. In 
every clock cycle, NPE absolute difference values for 
each of the parallel-processed blocks are calculated; 
these are summed by the adders physically below the 
PE array (Fig.4). The summed result is then sent to the 
minimum unit to calculate the SADs for each of the 
matching points and find the minimum SAD for the 
motion vector. 
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Fig.5  Preload cycles 

 
 
 

1, 4 
 
1, 1 

 
 
1, 2 

 
 
1, 3 

 
 
1, 4 

 
 
1, 1 

 
 
1, 2 

 
 
1, 3 

 
 
1, 4 

1, 1 
 
1, 1 

1, 2 
 
1, 2 

1, 3 
 
1, 3 

1, 4 
 
1, 4 

 
 
 
 
Data unaligned 
 
 
 
 
Data unaligned  
 
 
 
 
 
 

1, 1 1, 2 1, 3 1, 4 

Previous data 

 1, 1 1, 2 1, 3 
 

    
 

Data aligned  

 
Fig.6  Matching cycles 

 
Apparently, there should be NPE processing elements in 
the PE array. Here, we assume that NPE is 16, and as an 
example, full search BMA has been chosen to evaluate 
this architecture. In this case, Np blocks of the 

candidates can be processed simultaneously, and 
pipelining can be organised as in Fig.7. 
 
 

Therefore, the parallel pipeline is organized like this : 
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Fig.7  Pipeline organisation 

   
3.3  Dual register/buffer  
The architecture presented in section 3.2 has 
demonstrated that current data and alpha plane data 
need to be loaded only once when processing Np 
candidate blocks. Hence, as Np is increased, the 
bandwidth required for processing current data is 
sharply reduced. However, extra clock cycles are 
needed to preload current data and align the previous 
data with current data, thus the PEs are in idle status 
during the preloading and the aligning. For instance, 
NPE / 4 (with four preload bus) cycles are needed to 
preload current data and alpha plane data, and NPE 
cycles are needed to deal with data alignment. This can 
cause a high clock speed requirement. To solve this 
problem, a dual register/buffer structure has been 
adopted in the processing element. As illustrated in 
Fig.8, in each of the PEs, there are two 8-bit registers 
for the previous data and two 9-bit registers for the 
current and alpha plane data, respectively, to allow 
preloading and matching to be performed 
simultaneously. While the PEs are matching the data in 
register Group A, the following data are preloaded into 
register Group B. In addition, when the matching 
operations of the data in Group A are finished, the PE 
switches operational mode so that the PEs match the 
data in Group B, while the Group A register is during 
preloading cycles. 
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Fig.8  Dual register architecture 
 
 

3.4  High Parallelism 
High-paralleled processing is different from other 
architectures [3]-[5], it can be easily achieved on this 
architecture, since the architecture is capable of 
processing higher numbers of blocks in parallel (more 
than 16), such as 32, 64 or 128, etc. Fig.9 illustrates the 
data flow organisation of the architecture processing 
32 blocks in parallel. In this illustration the pixel 
search range is (-p, p-1)  p = 8, and the block size is 
N×N, where N is 16. When the data in the first row 
(from (1, 1) to (1,16)) of the current block is in the PE 
array, as shown in Fig.9 (a), all the previous data need 
to be matched in the search range, as shown in Fig.9 
(b). The data required to match the first sixteen blocks 
is the first row of the search range, as shown in Fig.9 
(c). To achieve high-paralleled processing, we simply 
load the data of blocks 17-32, the second row of the 
search range, after completing the matching of blocks 
1-16 without changing the current data, as shown in 
Fig.9 (d). Hence, there is neither the need to access the 
memory for another group of current data, nor for 
preloading cycles. Furthermore, with a dual 
register/buffer structure, the data in the second row are 
loaded into register Group B at the same time of 
matching the first row data in register Group A. This 
allows the alignment cycles to be skipped for the 
previous data. 
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Fig.9  Data flow for previous block (search range) 

 
 

4  Performance Analysis 
This section analyses the minimum clock rate and the 
minimum bandwidth requirements, which reflect the 
performance of the proposed architecture and the main 
considerations for its VLSI design and 
implementation. 
4.1  System requirement 
This core architecture is proposed for the 3G mobile 
platform, which currently has 64kbits bandwidth to 
upload and transfer data. As a result, a minimum 
compression rate of 70 is required to achieve real time 
video applications with acceptable visual quality [4]. If 
we adopt QCIF as typical video format in mobile 
applications, the quantity of uncompressed video data 
per frame in kilobits should be 
176×144×8 /1024=198kbits, 
and the quantity of compressed data should be 



198 / 70 =2.829kbits. 
Therefore, the video transmission rate over the 3G 
platform should be 
64 / 2.829 = 22.628 frames/second. 
Taking into consideration the bandwidth requirements 
of audio and protocol, the maximum frame rate is 
going to be 20 frames per second, which determines 
the minimum clock rate for real time processing. 
 
 
4.2  Minimum clock rate 
To meet the real-time processing condition, 
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per second, where Nh × Nv is the frame size. It is 
176×144 for the example specified above. N×N is the 
block size, which equals 16×16 in our case. For every 
current block, there are Ncan = (2p)×(2p) candidate 
blocks in the search range, where p  specifies the 
search range (-p, p-1).  Therefore, there are 
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matched per second. The current blocks are divided 
into a group of NPE - pixel sub-blocks, in which the 
pixels can be matched simultaneously within the PE 
array. The number of clock cycles to match a sub-block 
with Np candidate blocks, which are processed 
simultaneously, is defined as Csub. In addition, the 
number of clock cycles needed to preload current data 
and alpha plane data is defined as Cpre, and the number 
of the cycles for matching and aligning are defined as 
Cmatch and Calign, respectively. 
Thus, we have 
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where NPE  is the number of processing elements; Npre 
is the number of preload bus; Nsub is the number of 

sub-blocks within a block in the current frame. 
Moreover, Csub/Np is the number of clock cycles 
required to match a sub-block to one of the parallel 
processed blocks.  
   Therefore, the minimum clock rate required for 
real-time processing is given by: 
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For the PE array with the dual register/buffer structure, 

there are only 1−PEN  preload cycles in the 

beginning of motion estimation process. Hence, the 
minimum clock rate can be calculated as: 

1)2(12

1//

2

2
2

_

2
__

−+
××

×××××=

−+×××××=

PE
vh

PEp

p
doubleclk

PEvhcansubpdoublesubdoubleclk

N
N

fpsNN
N
Np

NN
N

pC

NNNNfpsNNNCC

The pictorial representation of these formulas is given 
in Fig.10, which clearly shows the relationship 
between the minimum clock speed and Np  (where Npre 
is 4). It can be easily seen from the figure that the 
minimum clock speed required reduces while Np 
increases for single register structures; also the dual 
register structure requires much lower clock speed 
than the single register structure. 
 

 

Fig.10  Relationship between clock speed and Np 

 
 
4.3  Minimum memory bandwidth 
Power consumption is another important consideration 
for the intended mobile applications. For ME 
algorithms, memory access operations are the 
dominant factor that contribute to the power 



consumption, rather than clock rate [3]. For 
parallel-pipelined architecture, as illustrated in Fig.7; 
if MBW represents the total amount of data fed to the PE 
array per second, MBW is equal to the quantity of 
memory access for every candidate block multiplied 
by quantity of candidate blocks. Therefore,  
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where Qcurrent & alpha is the quantity of current and alpha 
data memory access for every sub-block; and Qprevious  
is the quantity of previous memory access for Np 
candidate sub-blocks.  
Then,  
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   If the preload bus is a 9-bit bus, 8 bits are needed for 
the current block and 1 bit for the alpha plane data. The 
matching data bus is an 8-bit bus for the previous data. 
The above formula can also be represented pictorially, 
as shown in Fig.11. 
 

 
Fig.11 Relationship between Minimum Memory 

Bandwidth and Np 
 
   From this figure, it is clear that memory bandwidth is 
sharply reduced while Np increases, especially when 
the Np is between 16 and 32. In addition, architectures 
with single and dual register/buffer structures have the 

same quantity of memory access per second. Therefore, 
they have the same minimum memory bandwidth 
requirement. Table 1 presents detailed results for clock 
speed and memory bandwidth analysis; N cycle being 
the numbers of clock cycles needed to match one 
current block. 
 
Table 1. Clock speed and memory bandwidth 

 
Np 

CLK Single 
Register 

CLK 
Double 
Register 

Memory 
Bandwidth 
(bytes/s) 

N cycle 
with Single 

Register 

N cycle 
with 

Double 
Register 

 
Bytes 
/MB 

16 17,740,800 8,110,080 24,837,120 8,960 4,096 12,544 

32 16,727,040 8,110,096 20,275,200 8,448 4,096 10,240 

64 16,220,160 8,110,096 17,994,240 8,192 4,096 9,088 

128 15,966,720 8,110,096 16,853,760 8,064 4,096 8,512 

256 15,840,000 8,110,096 16,283,520 8,000 4,096 8,224 

 

5  Conclusions and future work 
This paper presents the core architecture of a highly 
parallel-processing motion estimation engine, aiming 
at 3G mobile applications. Initial analysis shows that 
the architecture requires relatively low memory 
bandwidth and clock rate, and is therefore suitable for 
low power consumption and low cost VLSI 
design/implementation. Moreover, due to the adoption 
of the dual-register structure, the architecture 
significantly speeds up data processing and therefore 
provides high throughput. These make the architecture 
ideal for the mobile video applications. Future work 
following on from this proposed architecture will 
include detailed performance evaluation and the 
comparisons with a wide range of existing 
architectures, as well as architectural refinement, 
design and optimisation for the targeted applications.  
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