
A Parallel Processing Engine for Motion Estimation in MPEG-4

Multimedia Applications

RUI GAO, DONGLAI XU and JOHN P. BENTLEY
School of Science and Technology

University of Teesside
Borough Road, Middlesbrough, TS1 3BA

UNITED KINGDOM

Abstract: In this paper, a parallel VLSI processing architecture for MPEG-4 standard motion estimation
implementation is proposed. It possesses the characteristics of low memory bandwidth and low clock rate
requirements, thus primarily aiming at 3G mobile applications. Based on one dimensional tree architecture, the
processing core employs dual-register/buffer technique to reduce the preload and alignment cycles. As an
example, a full-search block matching algorithm has been mapped on this architecture using a 16-elements PE
array, which has the ability to calculate motion vectors of QCIF video sequences in real time at 8.2 MHz clock
rate and using 15.5 Mbytes/s memory bandwidth.

Key-Words: Motion estimation, VLSI, parallel architecture, MPEG, multimedia, video compression

1 Introduction
The third generation (3G) wireless system has recently
been becoming popular in wireless
telecommunications. It provides the high-speed mobile
platform with Internet Protocol (IP) [1], which allows
many types of IP-based internet applications to be
implemented on the 3G platform, such as e-mail
service, web page browsing and image/video
transmission. Among these, real-time video
applications are becoming an increasingly important
part of mobile multimedia [2]. However, due to the
inherently huge size of video data, video compression
techniques are required to reduce the size of the video
data. This is achieved by exploiting the redundant data
of the video stream. There are two types of redundancy
in the uncompressed video stream: temporal and
spatial redundancy. Generally, spatial redundancy is
reduced by discrete cosine transformation (DCT) and
other transformation techniques, while the temporal
redundancy is reduced by motion estimation (ME)
techniques. ME operations can normally take up to
80% of the computational burden of the completely

video compression procedure [3]. Therefore, it is the
most important component in real-time video
applications. Many VLSI architectures for ME have
been proposed. However, most of them target MPEG
video coding standards, which are mainly for
conventional video applications, such as videophone,
video conferencing, video broadcasting, etc. These
architectures are not particularly suitable for mobile
and low power applications [4]. In this paper, a low
power consumption architecture that is based on the
1D tree architecture [5] is presented. It features the
high data utilisation by using parallel pipelining and
the low clock rate by introducing dual-register/buffer
techniques that reduce idle clock cycles.
 The rest of the paper is organised as follows. In
section 2, two typical ME algorithms are briefly
described. Section 3 presents the proposed VLSI
architecture in detail. In section 4, the performance of
the core architecture is analysed in terms of minimum
clock rate and minimum memory bandwidth
requirement. Finally, conclusions are drawn and future
work on the core architecture is suggested in section 5.

2 Motion Estimation Algorithms
Recently, MPEG-4 video standard, which is widely
used in conventional video transmission and storage,
has been introduced to wireless multimedia
applications [2]. It adopts block-matching algorithms
with alpha binary plane to archive motion estimation
[3][6]. Fig.1 illustrates the principle of block matching
motion estimation algorithms. First, the video frames
are segmented into N×N blocks. Every block within
the current frames is matched to the corresponding
blocks within the search range on the previous frame
under given algorithms. A measurement of the
difference between the current block and candidate
blocks is calculated. Then, a motion vector for the
position of the candidate block, which has the
minimum measurement with the current block, is
generated. It is used to replace the real motion of the
objects in the compressed video stream [3]. Thus,
temporal redundancy is reduced.

(x+dx, y+dy)

(x+N+dx, y+N+dy)

Candidate blockCandidate MV

2p+N

2p+N

Previous Frame

Current Frame

Nh

Nv

Current block

(x, y)

(x+N, y+N)

x

yt

Fig.1 Principle of block-matching algorithms

2.1 Full-search block-matching algorithm
Because of its low distortion and regular data flow, the
full-search algorithm is the most popular algorithm
used in ME. In the full-search block-matching
algorithm, the current block is matched to every
candidate blocks within the (2p+N)× (2p+N) search
window, where (-p, p-1) is pixel search range. For
every candidate block, every pixel must be matched as
well as the blocks, and then a sum of absolute
difference (SAD) is calculated. It is given by

∑∑ −+

= −
−+

=
++−=

1
1

1),(),(),(Ny

yn kk
Nx

xm
dyndxmInmIdydxSAD

where Ik, Ik-1 are the intensity values of the pixels in
current and previous blocks, respectively, which are
located at position (x, y). When the SAD of the current
candidate block is obtained, the SAD of the next
candidate block is calculated. Then two SADs are
compared to find smaller one to be stored as the
minimum SAD. This process continues until all blocks
are matched and a final minimum SAD, whose
position is pointed by motion vector, is generated [3].

2.2 Object-oriented motion estimation
The recently finalised MPEG-4 standard emphasises
object-oriented video coding, which is different from
previous visions of video compression standards [6].
To support the motion estimation of arbitrary-shaped
objects, an alpha binary plane has to be defined. The
alpha plane contains information as to whether a pixel
is inside the object or not [3]. Thus, the SAD for the
object can be represented below:

),(),(),(),(1
1

1 yxAlphadyndxmInmIdydxSAD Ny

yn kk
Nx

xm
×++−= ∑∑ −+

= −
−+

=

where Alpha (x, y) is the binary value for the (x, y)
pixel in the current block. The value is one when the
pixel is inside the object; otherwise, it is zero, as
shown in Fig.2.

 0 0 0 0 0 0 0 0 0

 0 0 0 1 1 1 1 0 0

 0 0 0 1 1 1 1 0 0

 0 0 0 1 1 1 1 0 0

 0 0 0 1 1 1 1 0 0

 0 0 0 1 1 1 1 0 0

 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0

Fig.2 Illustration of alpha binary plane

3 Proposed Architecture
In this section, we describe the core architecture of the
proposed ME engine and its main components, in
particular the PE array, since it is the most
computationally intensive part of the whole
architecture.

3.1 System overview
The Fig.3 shows the block diagram of the ME engine,
which includes five components: memory unit,
address generator, PE array, minimum unit and control
CPU [3].
 The memory unit is divided into two modules. One is
to store current frame data and alpha plane data; the
other is for previous frame data. The address generator
computes the addresses, at which the candidate pixels
for the block matching are stored. It also fetches pixel
data from the memory unit and feeds them into the PE
array. In the PE array, the absolute difference between
previous and current frames is computed and sent to
the minimum unit. Then, the SADs of all
parallel-processed blocks are accumulated in the
minimum unit, and are compared to find the minimum
one to be stored in minimum SAD register. At the same
time, a minimum flag signal is output to the control
CPU, which, jointly with address generator, gives the
location where the MV is found.

Current
Frame

Alpha Plane
Data

Previous Frame
Data
(Search Range)

Memory Unit

Address
Generator

PE Array

Minimum Unit

Multiplexer

SAD Register
Array

Min. SAD Register

Counter

CPU
MV

ME Engine

Video data

Minimum Flag

System
 Bus

Control CPU

Fig.3 System overview

3.2 PE array
The PE array is the key component of the ME engine.
It determines the performance of the system in terms of
memory bandwidth and minimum clock rate for real
time processing. Its architecture is based on a 1D tree
architecture [5] with additional preload cycles. To
increase the parallelism of the data flow, a group of
parallel-pipelined processing elements have been used
in the PE array, as shown in Fig.4.

8-bits processing bus, for previous data
9-bits preload bus, eight bits for current data, one bit
for alpha plane data

PE PE PE PE

MV
Npe stages pipeline
with two preload bus

Pipelines

MIN
Unit

ADD ADD ADDADD

Fig.4 PE array architecture

In this architecture, motion estimation is carried out in
two stages, preload and matching. In preload cycles, as
shown in Fig.5, current block data and alpha plane data
are preloaded into the PE array. They are stored locally
in the appropriate PEs. Then, as illustrated in Fig.6,
showing matching cycles, the previous block data are

loaded into the PEs by parallel pipelining. Before
matching to the preloaded current data, the previous
data must align with the current data. It takes NPE clock
cycles to align the previous data with the current data,
where NPE is the number of PEs. While the SAD
calculation starts, the previous data shift from the left
to right within the PE array until they match the
corresponding current data already in the PE array. In
every clock cycle, NPE absolute difference values for
each of the parallel-processed blocks are calculated;
these are summed by the adders physically below the
PE array (Fig.4). The summed result is then sent to the
minimum unit to calculate the SADs for each of the
matching points and find the minimum SAD for the
motion vector.

PE PE PE PE

1, 1 1, 2

1, 3 1, 4

Current data and alpha data

Fig.5 Preload cycles

1, 4

1, 1

1, 2

1, 3

1, 4

1, 1

1, 2

1, 3

1, 4

1, 1

1, 1

1, 2

1, 2

1, 3

1, 3

1, 4

1, 4

Data unaligned

Data unaligned

1, 1 1, 2 1, 3 1, 4

Previous data

 1, 1 1, 2 1, 3

Data aligned

Fig.6 Matching cycles

Apparently, there should be NPE processing elements in
the PE array. Here, we assume that NPE is 16, and as an
example, full search BMA has been chosen to evaluate
this architecture. In this case, Np blocks of the

candidates can be processed simultaneously, and
pipelining can be organised as in Fig.7.

Therefore, the parallel pipeline is organized like this :

1,Np+s-1 1,Np-1+s-1 … … … … 1,Np+1 1,Np

1,Np-1+s-1 1,Np-2+s-1 … … … … 1,Np 1,Np-1

… … … … … … … …

1,Npe+1 1,Npe 1,Npe-1 … … 1.4 1,3 1,2

 1,Npe 1,Npe-1 1,Npe-2 … … 1,3 1,2 1,1

1,Np+Npe-1 1,Np-1+Npe-1 … … 1,Npe+1 1,Np 1,Npe-1 … … … 1,2 1,1

1,1 – 1, Npe, Npe pixels from every parallel processed
block are in the pipeline.

N
p Parallel Processed

Blocks

Fig.7 Pipeline organisation

3.3 Dual register/buffer
The architecture presented in section 3.2 has
demonstrated that current data and alpha plane data
need to be loaded only once when processing Np
candidate blocks. Hence, as Np is increased, the
bandwidth required for processing current data is
sharply reduced. However, extra clock cycles are
needed to preload current data and align the previous
data with current data, thus the PEs are in idle status
during the preloading and the aligning. For instance,
NPE / 4 (with four preload bus) cycles are needed to
preload current data and alpha plane data, and NPE
cycles are needed to deal with data alignment. This can
cause a high clock speed requirement. To solve this
problem, a dual register/buffer structure has been
adopted in the processing element. As illustrated in
Fig.8, in each of the PEs, there are two 8-bit registers
for the previous data and two 9-bit registers for the
current and alpha plane data, respectively, to allow
preloading and matching to be performed
simultaneously. While the PEs are matching the data in
register Group A, the following data are preloaded into
register Group B. In addition, when the matching
operations of the data in Group A are finished, the PE
switches operational mode so that the PEs match the
data in Group B, while the Group A register is during
preloading cycles.

PE

M
ultiplexer

PE

M
ultiplexer

Register Group A

Register Group B

Registers for previous data Registers for current & alpha plane data

Fig.8 Dual register architecture

3.4 High Parallelism
High-paralleled processing is different from other
architectures [3]-[5], it can be easily achieved on this
architecture, since the architecture is capable of
processing higher numbers of blocks in parallel (more
than 16), such as 32, 64 or 128, etc. Fig.9 illustrates the
data flow organisation of the architecture processing
32 blocks in parallel. In this illustration the pixel
search range is (-p, p-1) p = 8, and the block size is
N×N, where N is 16. When the data in the first row
(from (1, 1) to (1,16)) of the current block is in the PE
array, as shown in Fig.9 (a), all the previous data need
to be matched in the search range, as shown in Fig.9
(b). The data required to match the first sixteen blocks
is the first row of the search range, as shown in Fig.9
(c). To achieve high-paralleled processing, we simply
load the data of blocks 17-32, the second row of the
search range, after completing the matching of blocks
1-16 without changing the current data, as shown in
Fig.9 (d). Hence, there is neither the need to access the
memory for another group of current data, nor for
preloading cycles. Furthermore, with a dual
register/buffer structure, the data in the second row are
loaded into register Group B at the same time of
matching the first row data in register Group A. This
allows the alignment cycles to be skipped for the
previous data.

Data in PE array (first row)

Current block parallel-
processed
blocks

All previous data required for
the first row of the current
block

(b)

(a)

Search range

16 parallel-processed blocks

Search range

Data for blocks 1-16

16 parallel-processed blocks

Data for blocks 17-32

Search range

(c) (d)

Fig.9 Data flow for previous block (search range)

4 Performance Analysis
This section analyses the minimum clock rate and the
minimum bandwidth requirements, which reflect the
performance of the proposed architecture and the main
considerations for its VLSI design and
implementation.
4.1 System requirement
This core architecture is proposed for the 3G mobile
platform, which currently has 64kbits bandwidth to
upload and transfer data. As a result, a minimum
compression rate of 70 is required to achieve real time
video applications with acceptable visual quality [4]. If
we adopt QCIF as typical video format in mobile
applications, the quantity of uncompressed video data
per frame in kilobits should be
176×144×8 /1024=198kbits,
and the quantity of compressed data should be

198 / 70 =2.829kbits.
Therefore, the video transmission rate over the 3G
platform should be
64 / 2.829 = 22.628 frames/second.
Taking into consideration the bandwidth requirements
of audio and protocol, the maximum frame rate is
going to be 20 frames per second, which determines
the minimum clock rate for real time processing.

4.2 Minimum clock rate
To meet the real-time processing condition,

fps
N

NN vh ×
×

2 current blocks have to be matched

per second, where Nh × Nv is the frame size. It is
176×144 for the example specified above. N×N is the
block size, which equals 16×16 in our case. For every
current block, there are Ncan = (2p)×(2p) candidate
blocks in the search range, where p specifies the
search range (-p, p-1). Therefore, there are

2
2)2(pfps

N
NN vh ××

×
 candidate blocks to be

matched per second. The current blocks are divided
into a group of NPE - pixel sub-blocks, in which the
pixels can be matched simultaneously within the PE
array. The number of clock cycles to match a sub-block
with Np candidate blocks, which are processed
simultaneously, is defined as Csub. In addition, the
number of clock cycles needed to preload current data
and alpha plane data is defined as Cpre, and the number
of the cycles for matching and aligning are defined as
Cmatch and Calign, respectively.
Thus, we have

NNCCCC pmatchalignpresub /)(×++=

PEsub NNN /2=

prePEpre NNC /=

1−= PEalign NC

pCmatch 2= ,

where NPE is the number of processing elements; Npre
is the number of preload bus; Nsub is the number of

sub-blocks within a block in the current frame.
Moreover, Csub/Np is the number of clock cycles
required to match a sub-block to one of the parallel
processed blocks.
 Therefore, the minimum clock rate required for
real-time processing is given by:

PEp

vhpPEprePE
clk

vhcansubpsubclk

NNN
NNfpspNNNpNNN

C

NNNfpsNNNCC

××

××××××+−+
=

×××××=

2

22

2

)2(]/)21(/[

//

For the PE array with the dual register/buffer structure,

there are only 1−PEN preload cycles in the

beginning of motion estimation process. Hence, the
minimum clock rate can be calculated as:

1)2(12

1//

2

2
2

_

2
__

−+
××

×××××=

−+×××××=

PE
vh

PEp

p
doubleclk

PEvhcansubpdoublesubdoubleclk

N
N

fpsNN
N
Np

NN
N

pC

NNNNfpsNNNCC

The pictorial representation of these formulas is given
in Fig.10, which clearly shows the relationship
between the minimum clock speed and Np (where Npre
is 4). It can be easily seen from the figure that the
minimum clock speed required reduces while Np
increases for single register structures; also the dual
register structure requires much lower clock speed
than the single register structure.

Fig.10 Relationship between clock speed and Np

4.3 Minimum memory bandwidth
Power consumption is another important consideration
for the intended mobile applications. For ME
algorithms, memory access operations are the
dominant factor that contribute to the power

consumption, rather than clock rate [3]. For
parallel-pipelined architecture, as illustrated in Fig.7;
if MBW represents the total amount of data fed to the PE
array per second, MBW is equal to the quantity of
memory access for every candidate block multiplied
by quantity of candidate blocks. Therefore,

2
Pr& //)(NNNfpsNNNQQM vhcansubpeviousalphacurrentbw ×××××+=

9& ×= PEalphacurrent NQ

8)12(×−+= pN
N

N
Q p

previous ,

where Qcurrent & alpha is the quantity of current and alpha
data memory access for every sub-block; and Qprevious
is the quantity of previous memory access for Np
candidate sub-blocks.
Then,

PEp

vhPE
bw NNN

NNfpspNpNN
M

××
××××××−++×

= 2

22)2(]8)12(9[

 If the preload bus is a 9-bit bus, 8 bits are needed for
the current block and 1 bit for the alpha plane data. The
matching data bus is an 8-bit bus for the previous data.
The above formula can also be represented pictorially,
as shown in Fig.11.

Fig.11 Relationship between Minimum Memory

Bandwidth and Np

 From this figure, it is clear that memory bandwidth is
sharply reduced while Np increases, especially when
the Np is between 16 and 32. In addition, architectures
with single and dual register/buffer structures have the

same quantity of memory access per second. Therefore,
they have the same minimum memory bandwidth
requirement. Table 1 presents detailed results for clock
speed and memory bandwidth analysis; N cycle being
the numbers of clock cycles needed to match one
current block.

Table 1. Clock speed and memory bandwidth

Np

CLK Single
Register

CLK
Double
Register

Memory
Bandwidth
(bytes/s)

N cycle
with Single

Register

N cycle
with

Double
Register

Bytes
/MB

16 17,740,800 8,110,080 24,837,120 8,960 4,096 12,544

32 16,727,040 8,110,096 20,275,200 8,448 4,096 10,240

64 16,220,160 8,110,096 17,994,240 8,192 4,096 9,088

128 15,966,720 8,110,096 16,853,760 8,064 4,096 8,512

256 15,840,000 8,110,096 16,283,520 8,000 4,096 8,224

5 Conclusions and future work
This paper presents the core architecture of a highly
parallel-processing motion estimation engine, aiming
at 3G mobile applications. Initial analysis shows that
the architecture requires relatively low memory
bandwidth and clock rate, and is therefore suitable for
low power consumption and low cost VLSI
design/implementation. Moreover, due to the adoption
of the dual-register structure, the architecture
significantly speeds up data processing and therefore
provides high throughput. These make the architecture
ideal for the mobile video applications. Future work
following on from this proposed architecture will
include detailed performance evaluation and the
comparisons with a wide range of existing
architectures, as well as architectural refinement,
design and optimisation for the targeted applications.

References:
[1] Z. E. Lee-Hamlin, Evolution in the Technological
Revolution: Preparing for 3G Wireless Technology,
National Urban League Technology Policy Alert,
January, 2001.
[2] S. N. Fabri, S. Worral, A. Sadka, and A. Kondoz,
Real-time Video Communications over GPRS,
University of Surrey, Unite Kingdom.
[3] P. Kuhn, Algorithms, Complexity Analysis And
VLSI Architecture for MPEG-4 Motion Estimation,

KLUWER ACDEMIC PUBLISHERS, 2001.
[4] A. A. J. Roach and A. Moini, VLSI Architecture
for Motion Estimation on a Single-chip Video Camera,
In Visual Communications and Image Processing 2000,
Proceedings of SPIE, Vol.4067, 2000.
[5] Y. S. Jehng, L. G. Chen and T. D. Chiueh, An
Efficient and Simple VLSI Tree Architecture for
Motion Estimation Algorithms, IEEE
TRANSACTIONS ON SIGNAL PROCESSING, Vol.41,
No.2, February 1993.
[6] T. Ebrahimi and C. Horne, MPEG-4 Natural Video
Coding - An Overview, Signal Processing: Image
communication, Vol.15, 2000, pp.365-385.

