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Abstract: - An investigation into the dynamic characterisation of a rectangular flexible plate structure is 
presented and a simulation algorithm characterising the behaviour of the plate is developed using finite 
difference methods. A thin, rectangular plate, with all edges clamped, is considered. The investigation is 
accomplished by varying the width over the length ratio of the plate. The algorithm is implemented within the 
Matlab environment and allows application and sensing of a disturbance signal at any mesh point on the plate. 
Such a provision is desirable for the design and development of active vibration control techniques for the 
system. The performance of the developed algorithm shows that it converges faster than previously reported 
work. The simulation algorithm thus developed and validated forms a suitable test and verification platform for 
development of active vibration control strategies for flexible rectangular plate structures of various width over 
length ratios. 
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1 Introduction 
Plates are elements of practical importance in many 
engineering applications. Study of the natural 
modes, frequencies and the dynamic behaviour of 
thin isotropic rectangular plates is a subject that has 
received considerable attention due to its technical 
importance, for the last decade. In addition to being 
a problem of academic interest, many applications 
of rectangular plates are found in industry. In 
recent years, circular and rectangular thin plates 
have been used as ultrasonic radiators in ultrasonic 
ranging, ultrasonic leviation, and ultrasonic drying. 
The reason is that radiators of this plate in flexural 
vibration can improve the acoustic impedance 
matching between the piezoelectric transducers and 
air medium [1]. The control of a vibrating plate is, 
however, a complex problem. This is due the 
highly non-linear dynamics of the system, which 
involve complex processes. Accordingly, there is a 
growing need for developing suitable modelling 
and control strategies for such systems. 
 
It is crucial to obtain an accurate model of the plate 
structures in order to control the vibration of a plate 
efficiently. An accurate model will lead to the 
realisation of satisfactory control. Various 
approaches such as finite element (FE) method and 

boundary element (BE) formulation have 
previously been considered for modelling thin flat 
plates [2-3]. The computational complexity and 
consequent software coding involved in both the 
BE formulation and the FE method constitute 
major disadvantages of these techniques, especially 
in real-time applications. The relatively reduced 
amount of complexity in computation involved in 
the finite difference (FD) method makes the 
technique more suitable in real-time applications. 
Moreover, in applications involving a uniform 
structure, such as the plate system considered here, 
the FD method is found to be more appropriate. 
 

2 The Dynamic Equation of a Plate 
In this section the classical dynamic equations of 
motion of a thin rectangular plate are developed. 
The thin plate is assumed to undergo a small 
deflection, w . Considering all the forces and the 
effect of shear forces xQ and yQ , in terms of the 
moments Mx, My and Mxy on bending yield [4-5] 
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where w  is the lateral deflection in the z direction, 
ρ  is the mass density per unit area, q (x, y) q = is 
the transverse external force at point (x, y) and has 

dimensions of force per unit area, 2
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flextural rigidity, with υ  representing the Poisson 
ratio, h  the thickness of the plate and E  the 
Young’s modulus. 
 
Equation (1) represents the dynamic equation 
characterising the behaviour of the flexible plate in 
lateral motion. Solution of this equation can be 
obtained by considering the corresponding 
boundary and initial conditions. It is noted that the 
model thus utilised incorporates no damping. To 
construct a suitable simulation environment 
characterising the behaviour of the plate as a 
platform for test and verification of controller 
designs, a numerical approach based on FD 
methods is considered. 
 
 

3 The Finite Difference Simulation   
Algorithm 

 
Unlike analytical solutions, the FD method 
computes solutions of the model only at discrete 
points. Therefore, an important step in this method 
is dividing the computation domain into small 
regions and assigning each region a reference index 
[6]. The x-axis is represented with the reference 
index i and the y-axis with the reference index j, 
where xix ∆=  and yjy ∆= . In the case of a 
rectangular plate structure, a three dimensional 
coordinate system is considered. The additional 
dimension is time t, which is represented with a 
reference index k, where tkt ∆= . 
 
For each nodal point in the interior of the grid (xi, 
yj, tk), (i = 0,1, …n; j = 0, …m; and k = 0, 1…p), a 
Taylor series expansion is used to generate the 
central difference formulae for the partial 
derivative terms of the response (deflection), w (x, 
y, t) = wi, j, k of the plate at point xix ∆= , 

yjy ∆= and tkt ∆= [6-7]. Thus, using first-order 
approximations at the mesh point inside the plate, 
on the boundary and as well as at the fictitious 
points outside the plate, a general solution of the 

partial differential equation (PDE) in equation (1) 
can be obtained in the discrete form as:  
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wi, j, k+1  is the deflection of nodal point (xi, yj) of the 
plate at time step k+1.  
 
For simulation purposes, it is natural to assume that 
initially the plate has no deflection. In other words 
the forces and moments of the plate due to its 
weight are neglected [5]. Therefore, 

0w
0tkj,i, =

=
 

The boundary condition along a clamped edge, say 
y=a, is  

ayw =  =  
ayy

w

=∂
∂ =  0 

 

4 The algorithm development 
 
To realise the simulation algorithm based on the 
FD formulation in equation (2), a rectangular plate 



 

with width = a, length = b and thickness = h is 
considered. The plate is divided into n sections in 
the x direction and m sections in the y direction. 
The length of each section accordingly is, ∆x = b/n 
and the width is ∆y = a/m.   
 
Using equation (2), a difference equation 
corresponding to each nodal point is developed.  It 
follows from this equation that, to obtain the 
deflection of certain points on the plate, the 
deflection of fictitious points outside the defined 
interval are required. These correspond to points 
outside the rectangular plate. The known boundary 
conditions related to the dynamic equation of the 
plate are utilized to eliminate these fictitious points. 
Using matrix notation, equation (2) can be written 
in a compact form as 
 
 

  F B        W-  W2    AW    W k j, i,1k j, i,k j, i,k j, i,1k j, i, ++= −+  (3) 
 
 
where, 1k j, i,W +  is the deflection of grid points i = 1, 
2,…, n and j = 1, 2,…, m at time step k+1. k j, i,W  
and 1-k j, i,W  are the corresponding deflections at 
time steps k and k-1 respectively. A is a constant 
n×n matrix whose entries depend on physical 
dimensions and characteristics of the plate and the 
number of sections the plate is divided into, F is an 
n×1 matrix known as the forcing matrix and B is a 
scalar constant related to the time step ∆t and ρ is 
mass per unit area of the plate. 
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where P ca =1 , Q ca =2 , Tca =3

, S ca =4 , Rca =5
, 

Uca =6
 and 
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The algorithm is developed using an iterative 
scheme based on equation (3) within the Matlab 
environment, and it allows application and sensing 
of a disturbance signal at any mesh point on the 
plate. Such a provision is desirable for the design 
and development of active vibration control 
techniques for the system. 
 
 

5 The algorithm stability 
 
The stability of the algorithm can be examined by 
ensuring that the iterative scheme described in 
equation (3) always converges to a solution. 
Therefore, for the simulation algorithm to be stable 
at all the time, a well-known Von Neumann 
stability condition is realised. Accordingly, it is 
found that a necessary and sufficient condition for 
stability of the simulation algorithm is 
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For the algorithm developed, by setting the 
parameters ρ andy  ,x ∆∆  to certain values, the 
sampling time, t∆ , is varied so that it satisfies the 
requirement in equation (4) and hence stability is 
achieved.  The sampling time is chosen to be the 
biggest value possible within the stability region. 
This is because, in the simulation environment, as 
the sampling time is smaller, for the algorithm to 
complete the computation within certain time, it is 
required to undergo more iteration rather than 
having a bigger sampling time. 
 
 

6 The Algorithm Implementation 
 
In the simulation results presented here, an 
aluminium type thin flat rectangular plate is 
considered. The plate is clamped at all edges. The 
parameters of the plate are listed in Table 1. 
 
 

Table 1: Parameters of the plate 

Parameter Value (in S.I unit) 

Length, b 1.000 m 
Width, a 0.500 m 
Thickness, h 0.0032004 m 
Mass density per area, ρ 2700 kg/m2 
Young’s Modulus, E 7.11× 1010N/m2 
Second Moment of Inertia, I 5.1924× 10-11m2 
Poisson’s Ratio, ν 0.3 

 
 
For implementation of the simulation algorithm 
using the FD method, the plate is divided into 20 
sections in the x and 10 sections in the y directions. 
The width over length ratio, a/b = 0.5. A sampling 
time of 001.0=∆t  seconds is chosen which 
satisfies the stability requirement, and the response 
of the plate is considered over 4 seconds.  
Throughout these simulation exercises, a finite 
duration step input force per unit area with an 
amplitude F=0.5N is applied to the centre-point of 
the plate from 2.0=t  second to 5.0=t  second. The 
maximum deflection occurs at the centre-point of 
the plate. The time domain response and the 
corresponding spectral density at x = 0.3 m and 
y=0.3 m of the plate are shown in Fig. 1 and Fig. 2, 
respectively. It is noted that the plate response is 
characterised by a set of resonance modes, among 

which the first few (1-3) are the dominant ones. 
Fig.3 and Fig. 4 show the corresponding plate 
deflection at 327.0=t sec and 641.0=t sec when 
maximum and minimum deflections occur, 
respectively. 
 
 
 

 
Fig.1: Finite difference simulated time-domain 
response of the plate at the point x=0.3 m and 

y=0.3m. 
 

 
Fig.2: Finite difference simulated frequency-

domain response of the plate at the point x=0.3 m 
and y=0.3m. 

 



 

 
Fig. 3: Response of the plate to a finite duration 

step, t= 0.327seconds 

 

 
Fig. 4: Response of the plate to a finite duration 

step, t= 0.641 seconds 

7 Algorithm Validation  
 
The performance of the developed algorithm in 
characterising the dynamic behaviour of the system 
is assessed in relation to the frequency parameters, 

( )Da /2 ρωλ = , where ω  is the frequency in 
radian/sec, previously reported using other methods 
[4, 7]. The frequency parameters as a function of 
a/b ratio for the lowest three modes, as previously 
reported [7] are listed in Table 2 and these are 
treated as true values for comparison purposes.  
 
The simulation was carried out by varying the 
width to length ratio a/b from 0.9 to 0.2. A 
comparison between the previously reported results 
with the simulation results is shown in Table 2. 
 
It is noted that the modes obtained using the 
simulation algorithm are very close to the true 
value with small percentage error. Therefore, it can 
be concluded that the simulation algorithm 
characterises the behaviour of the rectangular plate 
with various width to length ratios reasonably 
accurate and to acceptable levels. 

Table 2: Modes of vibration of the system with various a/b ratios. 

Mode 1 Mode 2 Mode 3 
a/b 

True Sim. Error 
(%) True Sim. Error 

(%) True Sim. Error 
(%) 

0.9 32.663 36.437 11.554 109.308 109.312 0.003 129.530 129.555 0.019 

0.8 29.888 31.988 7.026 89.255 89.569 0.352 127.504 124.757 2.154 

0.7 27.642 29.389 6.320 71.769 71.025 1.036 125.798 120.010 4.601 

0.6 25.889 26.990 4.252 56.914 57.580 1.170 119.351 113.360 5.019 

0.5 24.577 24.991 1.684 44.769 43.735 2.309 87.252 82.500 5.446 

0.4 23.644 23.192 1.911 35.417 34.387 2.908 61.495 57.580 6.366 

0.3 23.017 21.593 6.186 28.858 28.350 1.759 42.253 38.686 8.442 

0.2 22.633 20.400 9.862 24.868 25.192 1.302 29.968 32.590 8.749 
 



 

8 Conclusion 
 
An investigation into dynamic modelling and 
simulation of a flexible rectangular isotropic plate 
structure using finite difference methods has been 
presented. The stability of the algorithm has been 
discussed to ensure the convergence of the 
algorithm. The algorithm is implemented in Matlab 
environment, and it allows application and sensing 
of a disturbance signal at any mesh point on the 
plate. The results obtained reveal that the algorithm 
provides a reasonably accurate characteristic 
behaviour of the rectangular plate. 
 
The simulation algorithm thus developed and 
validated forms a suitable test and verification 
platform in subsequent investigations for 
development of active vibration control strategies 
for flexible plate structures. 
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