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Abstract:- In this paper, the Hopfield model of artificial neural networks called HANNs for finding some task 
allocations in multiple computer systems have been proposed. A multiobjective optimisation problem with two criteria 
has been considered. Resource constraints have been assumed, too. Both the cost of parallel program execution and the 
cost of computers have been minimised. Two models of neural networks for minimisation of the computer cost and for 
minimisation of the cost of parallel program execution have been designed. Moreover, HANN for finding local Pareto-
optimal solutions has been considered. Finally, some simulation results related to minimisation of the energy function 
for constructed neural networks have been included. Especially, a trajectory of energy function obtained during finding 
Pareto-optimal task allocation has been presented. 
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 1. Introduction 
 

Task allocation in multiple computer systems may decrease 
the total time of program execution by taking advantage of the 
specific efficiencies of some computers. In a network of 
workstations or personal computers, two or more program 
modules may execute concurrently for various periods. 
A program module is a collection of procedures or 
subroutines, or could be data files. A task is an execution of 
a program module. 

In a distributed computer system, another way for the 
minimisation of the total time of program execution is 
a replacement of computers for data processing. So, the 
computer with a powerful floating-point unit is supposed to be 
dedicated for tasks with numerical procedures. Similarly, the 
graphic workstation is suitable for program modules with 
animation and chart processing.  

In this paper, the Hopfield model of artificial neural 
network – called HANN – is proposed for finding a task 
allocation in distributed systems. The Hopfield models have 
been applied for solving some NP-hard optimisation problems 
[1, 6]. Two-objective optimisation problem with resource 
constraints is considered. The cost of parallel program 
execution and the cost of computers are minimised in this 
problem. The non-negative convex combination technique is 
developed for aggregate partial criteria. Two models of neural 
networks for minimising the computers cost and the cost of 
parallel program execution are constructed. Synaptic weights 
and external inputs are determined by comparison between an 
energy function of network and an objective function. Finally, 
HANN for finding a Pareto-optimal solution is considered.  
 

2. Basic model of parallel processing 
 
The standard problem of task assignment deals with finding 
the allocation of program modules to minimise the program 
execution cost [5]. An objective of optimisation can be the 

time of program execution, too. Another measure is the 
amount of computer resources utilized.  

Figure 1 shows an example of a distributed program in 
a computer network consists of 5 computers. The program is 
divided into 11 modules M1, M2,..., M11. Module M7 is assigned to 
a computer with module M8 . The above task assignment is 
reasonable, if the number of interactions between pairs of these 
modules is relatively high.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: An example of distributed program that consists of 
11 modules assigned in multiple computer system with 5 
computers 
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A program module can be activated several times during 
the program lifetime. The process (operation, task) is the execution 
of one activated program module. Some processes can be 
associated with the module. As a result a set of program modules 
{M1,...,Mm,...,MM} is mapped to a set of tasks {m1,...,mv,...,mV}.  
 
2.1. Computer allocation constraints 
 
Let the task mv be executed on several computers taken from 
the set },...,,...,{ 1 Jj πππ=Π . Computers are supposed to 

be assigned to the fixed nodes that belong to the set 

},...,,...,{ 1 Ii wwwW = . Computers located in different 

nodes can be characterised by the same sort. For example, two 

computers classified as the sort jπ  can be assigned both to 

the node wi and wk.  
Computers situated in nodes can communicate to 

each other to support program module interactions. 
Furthermore, one and only one computer should be allocated 
in each node. This implies the computer allocation 
constraints, as follows: 
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A vector πx  describes an allocation of computers:  
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2.2. Task allocation constraints 
 
An optimal task allocation should be found for minimising the 
parallel program execution time. A vector can determine the 
task allocation as follows:  
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Because each task ought to be allocated to any node, 
then the task allocation constraints are formulated, as below: 
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Now, the following vector can represent the task 
allocation to computers: 
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2.3. Resource constraints 
 
Each computer is supposed to have required amount of 
resources for a program execution. After loading, a program 
module reserves an operational memory. If the reserved 
memory size is changed during a module run, then a maximal 
amount is estimated. Another resource is the capacity of hard 
discs. If modules share the other sort of memories (a tape 
memory, the ZIP memory, etc.), then the capacities of 
memories cannot be exceeded. The following memories 
z1,...,zr,...,zR are available in the distributed computer system. 
Computers can be equipped with different amounts of 
memories. Let djr  be the capacity of memory zr in the 
computer πj . The value djr  is nonnegative and limited. We 
assume that the task mv reserves cvr units of memory zr and 
holds it during a program execution. The value cvr is 
nonnegative and limited, too.  

The memory limit in any computer assigned to the 
ith node cannot be exceeded. This constraint is formulated as 
bellows:  
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A program module may require the subroutine 
library, a specific software environment, a DVD driver, 
a high-resolution monitor, or the other components. Let 
k1,...,ks,...,kS denote the required components. We assume that 
the following component coefficients are given: 
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Operational requirements related to the access to 
computer components can be formulated as below: 
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3. Multiobjective optimisation problem  
 
A cost of computers can be calculated according to the 
following formula: 
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where κj represents the cost of computer πj.  

Another criterion used for an allocation assessment is 
the cost of a parallel program execution, which can be 
calculated, as below: 
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where 

,Mx %∈  
tvj – the cost of executing the task mv by the computer πj, 
τvj – the cost of communications between the task mv 

assigned to the ith node and the task mu assigned to 
the kth node, 

% – the set {0, 1}. 

Let the case of multiobjective optimisation problem 
for finding the Pareto-optimal allocations of tasks in 
a distributed computer system be considered. This problem is 
formulated as (;, F, P), where:  

1) ; - a feasible solutions set 
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2) F - a vector quality criterion 
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F(x) = [F1(x), F2(x)] T for x∈;
where F1(x) is calculated by (9), F2(x) is calculated by (8). 

3) P - the Pareto relation [2, 9] 
 
 
4. Neural model for objective function 
 
There are some combinatorial optimisation problems that are 
convenient for solving by an Hopfield ANN. For instance, the 
Travelling Salesman Problem [8], some graphs problems [4], 
and linear minimisation problems [7] can be solved by the 
optimisation techniques based on the Hopfield ANN. That is 
why, we consider a neural network approach for optimisation 
of task allocation to multiprocessor systems. The modified 
Hopfield models for solving optimisation problems with linear 
objective function or quasi-quadratic objective function can be 
design [3]. By introducing nonnegative convex combination 
method for solving considered combinatorial problem with 
several linear objective functions, the Hopfield model can be 
constructed. A main advantage of the above approach consists 
in the parallel effect in numerical computations.  
 

4.1. The standard Hopfield model 
 
In the gradient model of standard HANN, the neural activation 
states are changed from the initial state 

u t u t u t u tm M
T( ) [ ( ),..., ( ),..., ( )]0 1 0 0 0= , according to the 

following differentiable equations [8]: 
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where  
M – the number of neurons, 

um – the global activation level of mth neuron,  

ηm – the positive passive suppress coefficient for the 
neuron with the output xm , 

wnm – the synaptic weight from the neuron xn to the 

neuron xm , 

Im – the external input to the neuron xm . 

A matrix of synaptic weights is symmetric. 

Moreover, ,Mm=wmm 1for  0= . External inputs are constant 
during a network operation. Signals in a neuron are 
transformed according to the logistic activation function fm as 
follows: 
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where mα  is a gain coefficient in mth neurone ( Mmm ,1 ,0 =>α ). 

Theorem 1. [3] 
If the non-linear activation function is substituted by 

the logistic activation function, then the neural activation state 
equations (13) can be transformed into the following equation 

system, for ,Mm=1 : 
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Figure 2 shows the logistic activation functions for 
different values of gain coefficients α . If the gain coefficient 
increases, then activation function tends to the binary function 
with the threshold in the point 0. 
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Figure 4: Logistic activation functions for different 
values of gain coefficients 



Hopfield found the Liapunov function for the 
differential system (13), which is given by the formula: 
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Constraints (1) and (4) can be formulated as a general 
combinatorial constraint. The above constraint can be 
represented in a general form as follows: 
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where xm is a binary variable (M ≥ L).  
 
4.2. Network for linear constrained minimisation 

 
An optimisation problem with one criterion is studied for 
finding the minimal cost of a distributed computer system:  
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Let a temporary assumption be made that resources 
are unlimited. For the above problem, the I separated modified 
networks UHANN/1/J [1] can be used to satisfy the constraint 
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expensive processor.  
Figure 3 shows the minimisation of the energy 

function for J=5, α =100, η =1, ∆t = 0.2, and κ=[5, 4, 3, 2, 1]T. 
It is I=[0.5, 0.7, 0.9, 1.1, 1.3]T. Two separate networks 
UHANN/1/J are considered for each node number. Only 5 
steps are required to find the optimal solution with given 
accuracy 0.001. 
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4.3. Network HANN/F2/R for cost minimisation 
 

If the cost criterion F2 is minimised subject to constraints  
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then the energy functions of neural networks designed for 
constraint satisfaction and for objective function minimisation 
can be aggregated in a global function as below: 
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where 
βv, βi , βir – positive penalty coefficients, 
Ev –  an energy function of the network UHANN/1/I for 

satisfying the constraint 1
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Figure 4 shows synaptic connections from the neuron 
m
vx 1  in the network HANN/F2/R. There are two nodes, only. 

The neuron m
vx 1 has an external input βv. The synaptic weight 

between neurons ),( 21
m
v

m
v xx  is equal to -2βv. If more neurones 

are considered, then each pair of them has the same synaptic 
weight -2βv. The above results are obtained from the network 

UHANN/1/I to satisfy the constraint 1

1=

=∑
I

i
vix .  

The neuron m
vx 1 is connected to the neuron mux 2  by 

a synaptic connection with the weight -τvu . If tasks are 
allocated to different computers, then the synaptic weight 

between neurones ),( m
uk

m
vi xx  is equal to -τvu that is a negative 

value of cost communication between them. The neuron m
vx 1 

is connected to the neuron πjx1  by a synaptic connection with 

the weight -tvj . If task mv is assigned to the computer πj in the 

node wi, then the synaptic weight between neurones ),( π
ij

m
vi xx  

is equal to -tvj negative value of execution cost of this task on 
Figure 3: Minimization of the energy function E in 
HANN/F1/R with 5 neurons 

E 

K - iteration number 



an allocated computer. Above results are obtained by 
the comparison between an objective function and the energy 
function.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The neuron m
vx 1  is connected to the static neurone 

irθ  by a synaptic connection with the weight -cvr . If task mv 

is assigned to the node wi and the limit of the rth resource is 

exceeded, then signal value from the neuron irθ  is equal to 







−∑∑

==

V

v

m
vivr

J

j
ijjrir xcxd

11

πβ  and it is multiplied by synaptic 

weight –cvr. Simulation results presented the relaxation of 
network HANN/F2/R are submitted in [2]. 

 
 

5. Finding a Pareto solution 
 
The non-negative convex combination method can be applied 
for finding the Pareto-suboptimal solution. The multiobjective 
optimisation problem [2] is transformed to the minimisation 
problem with one criterion, as follows: 
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The energy function of the neural network PHANN is 
constructed for finding a Pareto solution as below: 
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If λ1=1 and λ2=0, then the network PHANN becomes 
the network HANN/F1/R and the Pareto-suboptimal solution 
can be obtained. This sort of the Pareto-optimal solution is 
called a hierarchical solution. Figure 5 shows examples of 
PHANN simulations for λ1=1 and λ2=0. In the equilibrium 
point, an energy E of the PHANN has constant value and it 
cannot be minimised. Values of an objective function F1 
increase and decrease during state modifications. However, 
a trajectory of an objective function F1 converges to an 
optimal value F1* in the equilibrium point. Values of the 
energy function E, the objective function as well as the energy 
function for constraints are expressed as the real numbers. 

An energy function E1 of the network UHANN/1/I is 

responsible for satisfying the constraint 11 =∑
I

i
ix

 �

. It 

converges to zero in the equilibrium point, because above 
constraint is satisfied. The other constraints are satisfied, too. 
Penalty coefficients are found by systematically increasing 
with ∆β =0.05. Coefficients from non-satisfied constraints are 
taken in the equilibrium point. Initial values of penalty 
coefficients are equal to 1.  
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Figure 5: Minimisation of energy function in the network 
PHANN with λ1=1 
 
6. Numerical examples 
 
The following parameters of optimisation problem are 
assumed: a task number of 4 (V=4), computer sorts of 2 (J=2), 
two computers (I=2), and three resources (R=3), Matrix of 

task execution times T is 
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Figure 4: Synaptic connections from the neuron m
vx 1 in 

the network HANN/F2/R 
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, vector of computer costs κ is [1, 2]. There are 12 

decision variables for this test problem. The gain coefficient α 
is equal to 200, the passive coefficientη is 1, and an initial 
state vector u(t0) is [10-6, 0, 10-6, 0, 10 6, 0, 10-6, 0, 10-6, 0, 
10-6, 0]T. New states of a network can be calculated by the 
differentiable equations (13) with the step length ∆t=0.2.  

If λ1=1 and λ2=0, then the network PHANN 
minimises its energy function as it is shown in Figure 9. 
A Pareto-optimal solution x*= [0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1]T 
is reached. It is a hierarchical solution for preferences function 
F1 before F2. F1(x*)=7.0 and F2(x*)=3. For solution x*, tasks 
m2 and m3 are assigned to the node w1. Tasks m1 and m4 are 
assigned to the node w2. The computer π1 is located in the 
node w1, and the computer π2 is located in the node w2. 
Penalty coefficients βv, βi are found as follows [2.55, 2.45, 
2.25, 2.25, 7.35, 7.30]T . Coefficients βir are elements of the 

matrix 







1.13.15.1

5.12.15.2
.  

 

 
 
 
 

 

 

 

 

 

 

 

Figure 6: Results obtained by the PHANN for different values 
of parameter λ1 

Figure 6 presents results obtained by the PHANN 
model with λ1∈{0, 0.2, 0.4, 0.6, 0.8, 1}. Pareto-optimal 
evaluations are y*(1) and y(0.2). The circles represent points 
close to the Pareto set in the objective set. We assume y=F(x). 
The point y(0.2) represents the evaluation obtained by the 
PHANN with λ1=0.2 . For different values of parameter λ1 the 
other evaluations are reached.  

For λ1=1, the point y*(1) represent the evaluation of 
a solution x* described in this section. For λ1=0.2, the point 

y*(0.2) has coordinates (7.3; 2). A Pareto-optimal task 
assignment is x**=[1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0]T . It is 
a hierarchical solution if function F2 is preferred against F1. 
F1(x** )=7.3 and F2(x** )=2. In the solution x**, tasks m1 and 
m2 are assigned to the node w1. Tasks m3 and m4 are assigned 
to the node w2. The computers that are π1-class are located 
both in the node w1 and in the node w2.  
 
7. Concluding remarks 
 
In this paper, the Hopfield model of artificial neural networks 
for finding some task allocations in multiple computer 
systems has been proposed. The cost of parallel program 
execution and also the cost of computers have been 
minimised. Two separated models of neural networks for 
minimisation of the computer cost and the cost of parallel 
program completing have been given. Moreover, the PHANN 
model for finding a Pareto-optimal solution has been 
considered.  

To satisfy constraints, two rules are applied. 
According to the first rule, synaptic weights and external 
inputs are determined by comparison between an energy 
function and the penalty function. In this way, a task 
assignment constraint and a computer assignment constraint 
are considered. According to the second rule, resource 
constraints are satisfied by additional neurons, which generate 
positive response if constraints are not satisfied. 
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