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Abstract:- In this paper, the Hopfield model of artificial neural networks called HANNs for finding some task
allocations in multiple computer systems have been proposed. A multiobjective optimisation problem with two criteri
has been considered. Resource constraints have been assumed, too. Both the cost of parallel program execution ar
cost of computers have been minimised. Two models of neural networks for minimisation of the computer cost and f
minimisation of the cost of parallel program execution have been designed. Moreover, HANN for finding local Pareto
optimal solutions has been considered. Finally, some simulation results related to minimisation of the energy functic
for constructed neural networks have been included. Especially, a trajectory of energy function obtained during findir
Pareto-optimal task allocation has been presented.
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1. Introduction time of program execution, too. Another measure is the
amount of computer resources utilized.
Task allocation in multiple computer systems may decrease Figure 1 shows an example of a distributed program in

the total time of program execution by taking advantage of th@ computer network consists of 5 computers. The program is
specific efficiencies of some computers. In a network oflivided into 11 modulesl;, My,...,My;. ModuleM; is assigned to
workstations or personal computers, two or more prograrf Computer with modulMls. The above task assignment is
modules may execute concurrently for various periodsteasonable, if the number of interactions between pairs of these
Aprogram module is a collection of procedures ormodules is relatively high.
subroutines, or could be data files. A task is an execution of
a program module.

In a distributed computer system, another way for the
minimisation of the total time of program execution is @

a replacement of computers for data processing. So, the
computer with a powerful floating-point unit is supposed to be @
dedicated for tasks with numerical procedures. Similarly, the )
graphic workstation is suitable for program modules with
animation and chart processing.

In this paper, the Hopfield model of artificial neural
network — called ANN — is proposed for finding a task
allocation in distributed systems. The Hopfield models have
been applied for solving some NP-hard optimisation problems
[1, 6]. Two-objective optimisation problem with resource
constraints is considered. The cost of parallel program
execution and the cost of computers are minimised in this
problem. The non-negative convex combination technique is
developed for aggregate partial criteria. Two models of neural
networks for minimising the computers cost and the cost of
parallel program execution are constructed. Synaptic weights
and external inputs are determined by comparison between an

energy function of network and an objective function. Finally,
HANN for finding a Pareto-dgmal solution is considered. 8 10/~

2. Basic model of parallel processing

The standard problem of task assignment deals with findingigure 1: An example of distributed program that consists of

the allocation of program modules to minimise the programi modules assigned in multiple computer system with 5
execution cost [5]. An objective of optimisation can be thecomputers



A program module can be activated several times during X = [Xm i m . m m 1 T T
the program lifetime. The process (operation, task) is the execution i R | R RE KIS VAR NE 5)
of one activated program module. Some processes can be T T T T T mT
. . e X e X e Xig e X oo XX
associated with the module. As a result a set of program modules | |
{My,... Mp,... My} is mapped to a set of tasksif...m,,...ms}.

2.3. Resource constraints

2.1. Computer allocation constraints _ _
Each computer is supposed to have required amount of

Let the taskm, be executed on several computers taken frontesources for a program execution. After loading, a program

the setl :{7-[11___,7-[1. ,...7T3}. Computers are supposed to module reserves an operational memory. If the reserved

) ) memory size is changed during a module run, then a maximal
be assigned to the fixed nodes that belong to the Sefyqynt is estimated. Another resource is the capacity of hard
W ={w,...W,...,.w; } . Computers located in different discs. If modules share the other sort of memories (a tape

nodes can be characterised by the same sort. For example, tlimory, the ZIP- memory, etc.), then the capacities of

computers classified as the saty  can be assigned both to memories - cannot _be exceeded_. '_I'he following memories
z,...Z,...Zz are available in the distributed computer system

the nodem andw. Computers can be equipped with different amounts of
Computers situated in nodes can communicate t@nemories. Letd, be the capacity of memoryg in the

each other to support program module interactionscomputerr. The valued, is nonnegative and limited. We

Furthermore, one and only one computer should be allocategssyme that the task, reserves,, units of memory, and

in each node. This implies the computer allocationhgolds it during a program execution. The valag is

constraints, as follows: nonnegative and limited, too.
J The memory limit in any computer assigned to the
T _q = _I ith node cannot be exceeded. This constraint is fiatedi as
ZX'J Li=1 D) pellows:
)=t v J
where MeNd X7, i=1l, r=1R
g _OLif mjisassignedow; 1T =13 \/Zlcvrxw 12:1 jr%j, 1=11, r=1 (6)

X :EO in the other case, _ _
A program module may require the subroutine

library, a specific software environment, a DVD driver,
A vector X" describes an allocation of computers:  a high-resolution monitor, or the other components. Let
Ki,...Ks-.. Ks denote the required components. We assume that

><]T=[>{[12{JT,X]]3,2{1T,2{JT,2{T,2{1,X{JT,%]T (2)  the following component coefficients are given:

1 if m, requireghe componenkg,

: : = v=1V,s=1S
2.2. Task allocation constraints Gvs %) in the othercase, a L

OV if i; hasthecomponenks, .

An optimal task allocation should be found for minimising thed'js = %) in theothercase J =1J,s=1S

parallel program execution time. A vector can determine the

task allocation as follows: Operational requirements related to thecess to

m_rc.m m m m m-T computer components can be formulated as below:
QR DU TSNP R Ly S (o €)) v
where z@sx\w < zd'jsxi?, i=12, s=1S  (7)
v=1

m _ [Lif taskmy isassignedow;,  _—~7 . _17
Xvi = @ in the othercase, v=LVii=Ll . T
3. Multiobjective optimisation problem

Because each task ought to be allocated to any node,

then the task allocation constraints are formulated, as below” cost of computers can be calculated according to the
following formula:

I J

|
m _
XVi =1,V=:LV (4) TT\— A
izl Fo(x )—Z ZKJX” (8)
Now, the following vector can represent the task '=1)=1
allocation to computers: wherek; represents the cost of computer

Another criterion used for an allocation assessment is
the cost of a parallel program execution, which can be
calculated, as below:



4.1. The standard Hopfield model

X X Tyuikon
R0 = Z Z z vi V'X'J Z z z vuikevi Uk(g) In the gradient model of standard HANN, the neural attwm
=lv=1i= v=lu=li states are changed from the initial state

where T )
U(to) =[u(t), -, Un(tg),--.n (o)l according to the
xURB™, following differentiable equations [8]:
t; —the cost of executing the task by the computer, d M L
1, — the cost of communications between the task @Um _ _Um , Zangn(Un) +Im, M=LM, (12)
assigned to theh node and the task, assigned to dt Nm ]
thekth node, where
o8 —the set {0, 1} M  —the number of neurons,

Let the case of multiobjective optimisation problemy,,, — the global activation level aith neuron,
for finding the Pareto-optimal allocations of tasks in
a distributed computer system be considered. This problem i
formulated as (¥, F, P), where:

’Q’n — the positive passive suppress coefficient for the
neuron with the outpw,y,

Wnm — the synaptic weight from the neungnto the

1) X - a feasible solutions set neuronxy ,
| Im — the external input to the neurgy, .
— I(V+J) m _ —a\/.
X ={xUR | zxvi =1lforv=1V; (10) A matrix of synaptic weights is symmetric.
J =1 Moreover,wmm=0form=1,_M. External inputs are constant
=11 during a network operation. Signals in a neuron are

Z Lfori= 1' transformed according to the logistic activation funcfipas

=1 follows:

M< S dieod, =11, r=1R = () = —— =1M

zcvrxw—z e, 1=11 r=1R; Xm = m(Um)—qu_ v (13)

= = l+e “m™m

v , _ whereay, is a gain coefficient imth neurone ¢ >0m=1M).
Yol s S digxf’, i =11, s=18} "

= sV B ’ Theoreml. [3]

- If the non-linear activation function is substituted by

2) F - a vector quality criterion the logistic activation function, then the neural activation state

F: X - .?2 (11) equations (13)En be transformed into the following equation
system, form=1,M :
F(x) = [F1(¥), Fo()] T for xO &
whereF1(x) is calculated by (9F(x) is calculated by (8). dxm - xm(t))

WEZ\M] mn®+l %14)

Figure 2 shows the logistic activation functions for
. . . different values of gain coefficients. If the gain coefficient
4. Neural model for objective function increases, then activation function tends to the binary function

with the threshold in the point O.
There are some combinatorial optimisation problems that are

convenient for solving by an Hopfield ANN. For instance, the »f{) 1f
Travelling Salesman Problem [8], some graphs problems [4], 09
and linear minimisation problems [7] can be solved by the

3) P - the Pareto relation [2, 9]

|
!
¢

optimisation techniques based on the HopfiehdN. That is o8
why, we consider a neural network approach for optimisation o . -
of task allocation to multiprocessor systems. The modified 086/

Hopfield models for solving optimisation problems with linear 05
objective function or quasi-quadratic objective function can be |
design [3]. By introducing nonnegative convex combination 04
method for solving considered combinatorial problem with 03t
several linear objective functions, the Hopfield model can be 02r =1000
constructed. A main advantage of thoee approach consists

. . . : o1t //
in the parallel effect in numerical computations. . .
-1 -05 0 05 u) 1

Figure 4: Logistic activation functions for different
values of gain coefficients



Hopfield found the Liapunov function for the 4 3. Network HANN/F,/R for cost minimisation
differential system (13), which is given by the formula:

If the cost criteriorf; is minimised subject to constraints

1 M M M M 1 Xm L
EX==5 3 Wik~ ) I = [GirGmidin(15) M1 =TV
NEIN=1 nHEL Mg izl)ﬂ” ’
Constraints (1) and (4) can be formulated as a general J
combinatorial constraint. The bave constraint can be ZXIIT =1i=11;
represented in a general form as follows: = )

M v J
z Xm = L (16) ZCW"TS Zdj,pg?,i =11,r=1R
m=1 val j=1
wherex, is a binary variableM > L). then the energy functions of neural networks designed for

constraint satisfaction and for objective function minimisation
can be aggregated in a global function as below:
\Y V+l
An optimisation problem with one criterion is studied for E(X,B):Fz(x)+ ZBVEV(X)"' ZBiEi(X)"'
finding the minimal cost of a distributed computer system: = iV

I | R (18)
min > > Kixj- (17) +3 S BB ()
R S= e =1r=1
. where
Let a temporary assumption be made that resourceﬁv 3. B, — positive penalty coefficients
are unlimited. For thelmve problem, théseparated modified E T ’an energy function of the network UHANN/dr

networks UHANN/1J [1] can be used to satisfy the constraint — |

4.2. Network for linear constrained minimisation

J L . _

z xfl =1,i=1,1 . Values of the external inputs are satisfying the constramix\,i =1
j =1 ) =1

- - _ _ Ei— an energy function of the network UHANNJZor
calculated by 1(xj)=2J +15-AI(xj), j=1J,i=1L1, J

. . . T
K ; satisfying the constrainty Xji =1

where Al (xi?) = ! andKax IS the cost of the most Zl :

K max J
expensive processor. Figure 4 shows synaptic connections from the neuron

Figure 3 shows the minimisation of the energy ,m .
function forJ=5, a =100, =1, At = 0.2, anck=[5, 4, 3, 2, 1}. X, in the network HANNF,/R. There are two nodes, only.

It is 1=[0.5, 0.7, 0.9, 1.1, 1.8] Two separate networks The neuronxy has an external inpy,. The synaptic weight
UHANN/1/J are considered for each node number. Only 5

steps are required to find the optimal solution with givenbetween neuronsx\r,g,x\r,g is equal to -B,. If more neurones

accuracy 0.001. are considered, then each pair of them has the same synaptic

weight -28,. The above results aretamed from the network
I

4,5 . .
4 UHANN/1/I to satisfy the constram§ Xvi =1.
3,5 i=1
m .
3 The neuronx,, is connected to the neurorﬂ”2 by
2,5 a synaptic connection with the weight,,. If tasks are
2 allocated to different computers, then the synaptic weight
15 . . .
1 between neuronef,x 1 b equal toT,, that is a negative
05 value of cost communication between them. The nem@n
0 1 1 1 1 ]
' ' N— . . . .
-0,5 % 1 2 3 4 5 is connected to the neurorfj by a synaptic connection with
-1 K - iteration number the weight-t,; . If taskm, is assigned to the computgtrin the
; ; s
Figure 3: Minimization of the energy functiof in nodew;, then the synaptic weight between neuro(‘»é;g,xij )

HANN/F/R with 5 neurons is equal tot,; negative value of execution cost of this task on



an allocated computer. bave results are thined by

the comparison between an objective function and the energy E(x,A,B) = MF1(X) + AoFp(X) + Z‘B Ey(x) +
function. vev

V o+l (20)
-t ) + ZﬁiEi(X)+ZZﬁ|r Rr ()
i=V+1 i=1r=

If A;=1 andA,=0, then the network PHANN becomes
the network HANNF/R and the Pareto-suboptimal solution
can be obtained. This sort of the Pareto-optimal solution is
called a hierarchical solution. Figure 5 shows examples of
PHANN simudations for A;:=1 andA,=0. In the equilibrium
point, an energ¥ of the PHANN has constant value and it
cannot be minimised. Values of an objective functfn
increase and decrease during state modifications. However,
a trajectory of an objective functiof,; converges to an
optimal valueF;* in the equilibrium point. Values of the
energy functiork, the objective function as well as the energy
function for constraints are expressed as the real numbers.

An energy functiork; of the network UHANN/1// is
[
6, 6, Oy responsible for satisfying the constrainEX]j =1. 1t
1=1
converges to zero in the equilibrium point, becauseva
the network HANNF2/R constraint is satisfied. The other constraints are satisfied, too.
Penalty coefficients are found by systematically increasing
with AB=0.05. Coefficients from non-satisfied constraints are
The neuronX;; is connected to the static neuronetaken in the equilibrium point. Initial values of penalty
coefficients are equal to 1.

Figure 4: Synaptic connections from the neumﬂ‘L in

Qir by a synaptic connection with the weighby; . If taskm,
is assigned to the node and the limit of theth resource is
exceeded, then signal value from the neufhn is equal to 40

J \
ﬂ,%djrx}r—qu)@E and it is multiplied by synaptic
- 4

weight -e,,. Simulation results presented the relaxation of

network HANNF,/R are submitted in [2]. 25 1

20 A

5. Finding a Pareto solution 15 1

The non-negative convex combination method can be applied10 T

for finding the Pareto-suboptimal solution. The multiobjective
optimisation problem [2] is transformed to the minimisation

problem with one criterion, as follows: 0 4
0 2 4 6 8 10 12 14 16 18 20 22
'Ei{(l{ zAnFn(X)}, (19)  Figure 5: Minimisation of energy function in the network
A= PHANN with A,=1

where
N

S o =10 20, h=1N. 6. Numerical examples
= The following parameters of optimisation problem are
._assumed: a task number of\&=4), computer sorts of J£2),

The energy function of the neural network PHANN is .
constructed for finding a Pareto solution as below: two computers |E2), and three resourcle?,RD =), Matrix of

task execution timesT is %4 82% matrix of
5.

% 2 119



00O

0
communcation times T is OS, matrix of required
1

g8
o oo m
o or O

of
n 10
O

resources is % ig matrix of computer resourcésis

+

N o1 O

0r
5 5
0

decision variables for this test problem. The gain coeffigent

is equal to 200, the passive coefficigns 1, and an initial
state vectoru(ty) is [10° 0, 10° 0, 10° 0, 10° O, 10° O,

10°, 0]". New states of a network can be calculated by th

differentiable equations (13) with the step lenfyth0.2.
If A]_:l and A2=O,

F, beforeF,. F;(x*)=7.0 andF,(x*)=3. For solutiornx*, tasks
m, andny are assigned to the node. Tasksm, andm, are

5 .
% 3 18, vector of computer costsis [1, 2]. There are 12

then the network PHANN

minimises its energy function as it is shown in Figure 9.
A Pareto-optimal solutior*=[0, 1, 1, 0,0, 1, 0, 1, 1, 0, 0,"1] Accordi
is reached. It is a hierarchical solution for preferences functio

y*(0.2) has coordinates (7.3; 2). A Pareto-optimal task
assignment isx**=[1,0,1,0,0,1,0,1,1,0,1,70] It is

a hierarchical solution if functiof, is preferred againdgt;.
F1(x**)=7.3 andr,(x**)=2. In the solutiorx**, tasksm; and

m, are assigned to the node Tasksms andmy are assigned

to the node w The computers that amg-class are located
both in the nodey;, and in the nodes.

7. Concluding remarks

In this paper, the Hopfield model of artificial neural networks
for finding some task allocations in multiple computer
systems has been proposed. The cost of parallel program
execution and also the cost of computers have been
minimised. Two separated models of neural networks for
éninimisation of the computer cost and the cost of parallel
program completing have been given. Moreover, the PHANN
model for finding a Pareto-optimal solution has been
considered.

To satisfy constraints, two rules are applied.
ng to the first rule, synaptic weights and external
fhputs are determined by comparison between an energy
function and the penalty function. In this way, a task
assignment constraint and a computer assignment constraint

assigned to the node,wrhe computers is located in the 516 “considered. According to the second rule, resource

node w;, and the computers is located in the nodew,.
Penalty coefficients3,, 5 are found as follow$2.55, 2.45,

2.25, 2.25, 7.35, 7.3b]. Coefficientsf;, are elements of the

. [25 1.2 1.50
matrix o
Hs 13 1.1H
4 o—o —o———————0
38t
36}
34}
32}
3¢ o o o o o o o 4
28}
26}
24}
22t
& 72 14 ° 78 78 8

Figure 6: Results obtained by the RAININ for different values
of parametei;

Figure 6 presents results obtained by theARN

model with A;(0{0, 0.2, 0.4, 0.6, 0.8, 1}. Pareto-optimal
evaluations arg*(1) andy(0.2). The circles represent points [8]

close to the Pareto set in the objective set. We asgaf(E).

The pointy(0.2) represents the evaluation obtained by the

PHANN with A;=0.2. For different values of paramet®rthe
other evaluations are reached.

For A;=1, the pointy*(1) represent the evaluation of [9]
a solutionx* described in this section. Fa;=0.2, the point

constraints are satisfied by additional neurons, which generate
positive response if constraints are not satisfied.
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