
Pareto Neural Model
for Finding Task Allocation

JERZY BALICKI, ZYGMUNT KITOWSKI

Computer Science Laboratory, The Naval University of Gdynia
81-103 Gdynia, ul. Smidowicza 69, Poland

Abstract:- In this paper, the Hopfield model of artificial neural networks called HANNs for finding some task
allocations in multiple computer systems have been proposed. A multiobjective optimisation problem with two criteria
has been considered. Resource constraints have been assumed, too. Both the cost of parallel program execution and the
cost of computers have been minimised. Two models of neural networks for minimisation of the computer cost and for
minimisation of the cost of parallel program execution have been designed. Moreover, HANN for finding local Pareto-
optimal solutions has been considered. Finally, some simulation results related to minimisation of the energy function
for constructed neural networks have been included. Especially, a trajectory of energy function obtained during finding
Pareto-optimal task allocation has been presented.

Key words:- Hopfield neural networks, multiobjective optimisation, task assignment

 1. Introduction

Task allocation in multiple computer systems may decrease
the total time of program execution by taking advantage of the
specific efficiencies of some computers. In a network of
workstations or personal computers, two or more program
modules may execute concurrently for various periods.
A program module is a collection of procedures or
subroutines, or could be data files. A task is an execution of
a program module.

In a distributed computer system, another way for the
minimisation of the total time of program execution is
a replacement of computers for data processing. So, the
computer with a powerful floating-point unit is supposed to be
dedicated for tasks with numerical procedures. Similarly, the
graphic workstation is suitable for program modules with
animation and chart processing.

In this paper, the Hopfield model of artificial neural
network – called HANN – is proposed for finding a task
allocation in distributed systems. The Hopfield models have
been applied for solving some NP-hard optimisation problems
[1, 6]. Two-objective optimisation problem with resource
constraints is considered. The cost of parallel program
execution and the cost of computers are minimised in this
problem. The non-negative convex combination technique is
developed for aggregate partial criteria. Two models of neural
networks for minimising the computers cost and the cost of
parallel program execution are constructed. Synaptic weights
and external inputs are determined by comparison between an
energy function of network and an objective function. Finally,
HANN for finding a Pareto-optimal solution is considered.

2. Basic model of parallel processing

The standard problem of task assignment deals with finding
the allocation of program modules to minimise the program
execution cost [5]. An objective of optimisation can be the

time of program execution, too. Another measure is the
amount of computer resources utilized.

Figure 1 shows an example of a distributed program in
a computer network consists of 5 computers. The program is
divided into 11 modules M1, M2,..., M11. Module M7 is assigned to
a computer with module M8 . The above task assignment is
reasonable, if the number of interactions between pairs of these
modules is relatively high.

Figure 1: An example of distributed program that consists of
11 modules assigned in multiple computer system with 5
computers

8 7

 4

5

6

9

11 10

 1

2

3

A program module can be activated several times during
the program lifetime. The process (operation, task) is the execution
of one activated program module. Some processes can be
associated with the module. As a result a set of program modules
{M1,...,Mm,...,MM} is mapped to a set of tasks {m1,...,mv,...,mV}.

2.1. Computer allocation constraints

Let the task mv be executed on several computers taken from
the set },...,,...,{ 1 Jj πππ=Π . Computers are supposed to

be assigned to the fixed nodes that belong to the set

},...,,...,{ 1 Ii wwwW = . Computers located in different

nodes can be characterised by the same sort. For example, two

computers classified as the sort jπ can be assigned both to

the node wi and wk.
Computers situated in nodes can communicate to

each other to support program module interactions.
Furthermore, one and only one computer should be allocated
in each node. This implies the computer allocation
constraints, as follows:

Iix
J

j
ij ,1,1

1

==∑
=

π
 (1)

where

.,1,,1
 toassigned is if1

case,other thein0 JjIiiwjxij ==




=
ππ

A vector πx describes an allocation of computers:

T
IJIjIiJijiJj xxxxxxxxxx],...,,...,,...,,...,,...,,...,,...,,...,[111111
ππππππππππ = (2)

2.2. Task allocation constraints

An optimal task allocation should be found for minimising the
parallel program execution time. A vector can determine the
task allocation as follows:

Tm
VI

m
vi

m
I

m
i

mm xxxxxx],...,,...,,...,,...,[1111= (3)

where

.,1,,1
, toassigned is taskif1

case,other thein0 IiVviwvm
xm
vi ==


=

Because each task ought to be allocated to any node,
then the task allocation constraints are formulated, as below:

Vvx
I

i

m
vi ,1 ,1

1

==∑
=

 (4)

Now, the following vector can represent the task
allocation to computers:

T
IJIjIiJiji

Jj
m
VI

m
vi

m
I

m
i

m

xxxxxx

xxxxxxxxx

],...,,...,,...,,...,,...,...,

,,...,,...,,,...,,...,,...,,...,[

11

11111111

ππππππ

πππ=
(5)

2.3. Resource constraints

Each computer is supposed to have required amount of
resources for a program execution. After loading, a program
module reserves an operational memory. If the reserved
memory size is changed during a module run, then a maximal
amount is estimated. Another resource is the capacity of hard
discs. If modules share the other sort of memories (a tape
memory, the ZIP memory, etc.), then the capacities of
memories cannot be exceeded. The following memories
z1,...,zr,...,zR are available in the distributed computer system.
Computers can be equipped with different amounts of
memories. Let djr be the capacity of memory zr in the
computer πj . The value djr is nonnegative and limited. We
assume that the task mv reserves cvr units of memory zr and
holds it during a program execution. The value cvr is
nonnegative and limited, too.

The memory limit in any computer assigned to the
ith node cannot be exceeded. This constraint is formulated as
bellows:

RrIixdxc
J

j
ijjr

V

v

m
vivr ,1,,1,

11

==≤ ∑∑
==

π (6)

A program module may require the subroutine
library, a specific software environment, a DVD driver,
a high-resolution monitor, or the other components. Let
k1,...,ks,...,kS denote the required components. We assume that
the following component coefficients are given:

SsVv
km

c sv
vs ,1,,1

case,other thein0

,component the requiresif1' ==




=

SsJj
kV

d sj
js ,1,,1

case,other thein0

,component thehas if' ==




=
 π

Operational requirements related to the access to
computer components can be formulated as below:

Ssixdxc ijjs

V

v

m
vivs ,1,2,1,'

1

' ==≤ ∑∑
=

π (7)

3. Multiobjective optimisation problem

A cost of computers can be calculated according to the
following formula:

ππ κ ij

I

i

J

j
j x=xF ∑∑

= =1 1
2)((8)

where κj represents the cost of computer πj.

Another criterion used for an allocation assessment is
the cost of a parallel program execution, which can be
calculated, as below:

m
uk

m
vi

V

v=

V

u=

I

i=
vuikij

m
vi

J

j

V

v=

I

i=
vj xxxxtxF ∑∑∑∑∑∑ +=

= 1 1 11 1 1
1)(τπ

(9)

where

,Mx %∈
tvj – the cost of executing the task mv by the computer πj,
τvj – the cost of communications between the task mv

assigned to the ith node and the task mu assigned to
the kth node,

% – the set {0, 1}.

Let the case of multiobjective optimisation problem
for finding the Pareto-optimal allocations of tasks in
a distributed computer system be considered. This problem is
formulated as (;, F, P), where:

1) ; - a feasible solutions set

|{)(JVIx +∈= %; ;,1for 1

1

Vvx
I

i

m
vi ==∑

=
 (10)

;,1for1

1

Iix
J

j
ij ==∑

=

π

;,1,,1,

11

RrIixdxc
J

j
ijjr

V

v

m
vivr ==≤ ∑∑

==

π

SsIixdxc ijjs

V

v

m
vivs ,1,,1,'

1

' ==≤ ∑∑
=

π }

2) F - a vector quality criterion

2 : 5;→F (11)

F(x) = [F1(x), F2(x)] T for x∈;
where F1(x) is calculated by (9), F2(x) is calculated by (8).

3) P - the Pareto relation [2, 9]

4. Neural model for objective function

There are some combinatorial optimisation problems that are
convenient for solving by an Hopfield ANN. For instance, the
Travelling Salesman Problem [8], some graphs problems [4],
and linear minimisation problems [7] can be solved by the
optimisation techniques based on the Hopfield ANN. That is
why, we consider a neural network approach for optimisation
of task allocation to multiprocessor systems. The modified
Hopfield models for solving optimisation problems with linear
objective function or quasi-quadratic objective function can be
design [3]. By introducing nonnegative convex combination
method for solving considered combinatorial problem with
several linear objective functions, the Hopfield model can be
constructed. A main advantage of the above approach consists
in the parallel effect in numerical computations.

4.1. The standard Hopfield model

In the gradient model of standard HANN, the neural activation
states are changed from the initial state

u t u t u t u tm M
T() [(),..., (),..., ()]0 1 0 0 0= , according to the

following differentiable equations [8]:

,1+)(
d

d

1

,M, m=Iugw
u

t

u
mnn

M

n
nm

m

mm ∑
=

+−=
η

 (12)

where
M – the number of neurons,

um – the global activation level of mth neuron,

ηm – the positive passive suppress coefficient for the
neuron with the output xm ,

wnm – the synaptic weight from the neuron xn to the

neuron xm ,

Im – the external input to the neuron xm .

A matrix of synaptic weights is symmetric.

Moreover, ,Mm=wmm 1for 0= . External inputs are constant
during a network operation. Signals in a neuron are
transformed according to the logistic activation function fm as
follows:

,,1 ,
1

1
)(

Mm

e
ufx

mm ummm =
+

==
−α (13)

where mα is a gain coefficient in mth neurone (Mmm ,1 ,0 =>α).

Theorem 1. [3]
If the non-linear activation function is substituted by

the logistic activation function, then the neural activation state
equations (13) can be transformed into the following equation

system, for ,Mm=1 :




























++

−
−= ∑

=

M

n
mnnmm

m

m

m
mm

m Itxw
tx

tx
txtx

t

x

1

)(
)(

)(1
ln

1
))(1)((

d

d α
η

(14)

Figure 2 shows the logistic activation functions for
different values of gain coefficients α . If the gain coefficient
increases, then activation function tends to the binary function
with the threshold in the point 0.

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α=1

α=10
α=100 α=1000

xm(t)

um(t)

Figure 4: Logistic activation functions for different
values of gain coefficients

Hopfield found the Liapunov function for the
differential system (13), which is given by the formula:

∑ ∫∑∑∑
== =

−−=
M

m

x

mmm
m

m

M

m
mnm

M

m

M

n
mn

m

dgxIxxwxE

1= 0

1-

11 1

)(
1

+
2

1
)(ξξ

η (15)

Constraints (1) and (4) can be formulated as a general
combinatorial constraint. The above constraint can be
represented in a general form as follows:

Lx
M

m
m =∑

1=

 (16)

where xm is a binary variable (M ≥ L).

4.2. Network for linear constrained minimisation

An optimisation problem with one criterion is studied for
finding the minimal cost of a distributed computer system:

∑ ∑
= =∈

I

i

J

j
ijj x

x 1 1

.min πκ
;

 (17)

Let a temporary assumption be made that resources
are unlimited. For the above problem, the I separated modified
networks UHANN/1/J [1] can be used to satisfy the constraint

Iix
J

j
ij ,1,1

1

==∑
=

π . Values of the external inputs are

calculated by IiJjxIJxI ijij ,1,,1,)(5.12)(==∆−+= ππ ,

where
max

)(
κ

κπ j
ijxI =∆ and κmax is the cost of the most

expensive processor.
Figure 3 shows the minimisation of the energy

function for J=5, α =100, η =1, ∆t = 0.2, and κ=[5, 4, 3, 2, 1]T.
It is I=[0.5, 0.7, 0.9, 1.1, 1.3]T. Two separate networks
UHANN/1/J are considered for each node number. Only 5
steps are required to find the optimal solution with given
accuracy 0.001.

-1
-0,5

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

0 1 2 3 4 5

4.3. Network HANN/F2/R for cost minimisation

If the cost criterion F2 is minimised subject to constraints

;,1 ,1

1

Vvx
I

i

m
vi ==∑

=

;,1,1

1

Iix
J

j
ij ==∑

=

π

;,1,,1,

11

RrIixdxc
J

j
ijjr

V

v

m
vivr ==≤∑∑

==

π

then the energy functions of neural networks designed for
constraint satisfaction and for objective function minimisation
can be aggregated in a global function as below:

,)(

)(+)()(),(

1 1

11
2

∑∑

∑∑

= =

+

+==

+

++=

I

i

R

r
irir

IV

Vi
ii

V

v
vv

xP

xExExFxE

β

βββ

 (18)

where
βv, βi , βir – positive penalty coefficients,
Ev – an energy function of the network UHANN/1/I for

satisfying the constraint 1

1=

=∑
I

i
vix

Ei – an energy function of the network UHANN/1/J for

satisfying the constraint .1

1
∑

=
=

J

j
ijxπ

Figure 4 shows synaptic connections from the neuron
m
vx 1 in the network HANN/F2/R. There are two nodes, only.

The neuron m
vx 1 has an external input βv. The synaptic weight

between neurons),(21
m
v

m
v xx is equal to -2βv. If more neurones

are considered, then each pair of them has the same synaptic
weight -2βv. The above results are obtained from the network

UHANN/1/I to satisfy the constraint 1

1=

=∑
I

i
vix .

The neuron m
vx 1 is connected to the neuron mux 2 by

a synaptic connection with the weight -τvu . If tasks are
allocated to different computers, then the synaptic weight

between neurones),(m
uk

m
vi xx is equal to -τvu that is a negative

value of cost communication between them. The neuron m
vx 1

is connected to the neuron πjx1 by a synaptic connection with

the weight -tvj . If task mv is assigned to the computer πj in the

node wi, then the synaptic weight between neurones),(π
ij

m
vi xx

is equal to -tvj negative value of execution cost of this task on
Figure 3: Minimization of the energy function E in
HANN/F1/R with 5 neurons

E

K - iteration number

an allocated computer. Above results are obtained by
the comparison between an objective function and the energy
function.

The neuron m
vx 1 is connected to the static neurone

irθ by a synaptic connection with the weight -cvr . If task mv

is assigned to the node wi and the limit of the rth resource is

exceeded, then signal value from the neuron irθ is equal to







−∑∑

==

V

v

m
vivr

J

j
ijjrir xcxd

11

πβ and it is multiplied by synaptic

weight –cvr. Simulation results presented the relaxation of
network HANN/F2/R are submitted in [2].

5. Finding a Pareto solution

The non-negative convex combination method can be applied
for finding the Pareto-suboptimal solution. The multiobjective
optimisation problem [2] is transformed to the minimisation
problem with one criterion, as follows:

,)}({min

1
∑

=∈

N

n
nn

Xx
xFλ (19)

where

.,1,0,1

1

Nnn

N

n
n =≥=∑

=
λλ

The energy function of the neural network PHANN is
constructed for finding a Pareto solution as below:

∑∑∑

∑

= =

+

+=

=

++

++=

I

i

R

r
irir

IV

Vi
ii

V

v
vv

xPxE

xExFxFxE

1 11

1
2211

)()(

+)()()(),,(

ββ

βλλβλ

 (20)

If λ1=1 and λ2=0, then the network PHANN becomes
the network HANN/F1/R and the Pareto-suboptimal solution
can be obtained. This sort of the Pareto-optimal solution is
called a hierarchical solution. Figure 5 shows examples of
PHANN simulations for λ1=1 and λ2=0. In the equilibrium
point, an energy E of the PHANN has constant value and it
cannot be minimised. Values of an objective function F1
increase and decrease during state modifications. However,
a trajectory of an objective function F1 converges to an
optimal value F1* in the equilibrium point. Values of the
energy function E, the objective function as well as the energy
function for constraints are expressed as the real numbers.

An energy function E1 of the network UHANN/1/I is

responsible for satisfying the constraint 11 =∑
I

i
ix

 �

. It

converges to zero in the equilibrium point, because above
constraint is satisfied. The other constraints are satisfied, too.
Penalty coefficients are found by systematically increasing
with ∆β =0.05. Coefficients from non-satisfied constraints are
taken in the equilibrium point. Initial values of penalty
coefficients are equal to 1.

�

�

��

��

��

��

��

��

��

� � � � � �� �� �� �� �� �� ��

.

Figure 5: Minimisation of energy function in the network
PHANN with λ1=1

6. Numerical examples

The following parameters of optimisation problem are
assumed: a task number of 4 (V=4), computer sorts of 2 (J=2),
two computers (I=2), and three resources (R=3), Matrix of

task execution times T is



















1.12.2

2.52.1

9.84.1

3.15.2

, matrix of

Figure 4: Synaptic connections from the neuron m
vx 1 in

the network HANN/F2/R

-tvj

m
vx 1

m
vx 2

m
vx 2,1+

π
11x

π
12x

-τv,v-1

-τvV

-tv1

-tvJ

-tv,J-1

-2βv

βv

βv

βV+1

βV+1

w=-2βV+1

m
vx 2,1−

βV+1

βV+1

βV+1

π
Jx1

π
1,1 −Jx

π
jx1

mx12

m
Vx 2

-τv1

-τv,v+1

-tv2

IRθ

βIR

irθ

βir

1θ

β11 djR

E

F1

E1

communLFDWLRQ WLPHV 2 LV



















0000

1000

0100

0010

, matrix of required

resources C is



















024

453

102

111

, matrix of computer resources D is









135

555
, vector of computer costs κ is [1, 2]. There are 12

decision variables for this test problem. The gain coefficient α
is equal to 200, the passive coefficientη is 1, and an initial
state vector u(t0) is [10-6, 0, 10-6, 0, 10 6, 0, 10-6, 0, 10-6, 0,
10-6, 0]T. New states of a network can be calculated by the
differentiable equations (13) with the step length ∆t=0.2.

If λ1=1 and λ2=0, then the network PHANN
minimises its energy function as it is shown in Figure 9.
A Pareto-optimal solution x*= [0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1]T
is reached. It is a hierarchical solution for preferences function
F1 before F2. F1(x*)=7.0 and F2(x*)=3. For solution x*, tasks
m2 and m3 are assigned to the node w1. Tasks m1 and m4 are
assigned to the node w2. The computer π1 is located in the
node w1, and the computer π2 is located in the node w2.
Penalty coefficients βv, βi are found as follows [2.55, 2.45,
2.25, 2.25, 7.35, 7.30]T . Coefficients βir are elements of the

matrix 







1.13.15.1

5.12.15.2
.

Figure 6: Results obtained by the PHANN for different values
of parameter λ1

Figure 6 presents results obtained by the PHANN
model with λ1∈{0, 0.2, 0.4, 0.6, 0.8, 1}. Pareto-optimal
evaluations are y*(1) and y(0.2). The circles represent points
close to the Pareto set in the objective set. We assume y=F(x).
The point y(0.2) represents the evaluation obtained by the
PHANN with λ1=0.2 . For different values of parameter λ1 the
other evaluations are reached.

For λ1=1, the point y*(1) represent the evaluation of
a solution x* described in this section. For λ1=0.2, the point

y*(0.2) has coordinates (7.3; 2). A Pareto-optimal task
assignment is x**=[1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0]T . It is
a hierarchical solution if function F2 is preferred against F1.
F1(x**)=7.3 and F2(x**)=2. In the solution x**, tasks m1 and
m2 are assigned to the node w1. Tasks m3 and m4 are assigned
to the node w2. The computers that are π1-class are located
both in the node w1 and in the node w2.

7. Concluding remarks

In this paper, the Hopfield model of artificial neural networks
for finding some task allocations in multiple computer
systems has been proposed. The cost of parallel program
execution and also the cost of computers have been
minimised. Two separated models of neural networks for
minimisation of the computer cost and the cost of parallel
program completing have been given. Moreover, the PHANN
model for finding a Pareto-optimal solution has been
considered.

To satisfy constraints, two rules are applied.
According to the first rule, synaptic weights and external
inputs are determined by comparison between an energy
function and the penalty function. In this way, a task
assignment constraint and a computer assignment constraint
are considered. According to the second rule, resource
constraints are satisfied by additional neurons, which generate
positive response if constraints are not satisfied.

References

[1] Abe, S., “Convergence Acceleration of the Hopfield

Neural Networks by Optimising Integration Step Sizes”,
IEEE Transactions on Systems, Man, and Cybernetics.
Part B: Cybernetics. vol. 28, No. 1, pp. 194 - 201, 1996.

[2] Balicki, J., “Evolutionary Neural Networks for Solving
Multiobjective Optimization Problems”, In S.
Szczepaniak (Ed.): “Computational Intelligence and
Applications”, A Springer Verlag Company, Heidelberg-
New York, pp. 108 - 118, 1999.

[3] Chong, E.K.P., Zak, S.H. “An Introduction to
Optimisation”, John Wiley&Sons, Inc., New York,
1996.

[4] Haykin, S. “Neural Networks – a Comprehensive
Foundation”, Prentice Hall Int., New Jersey, 1999.

[5] Kafil, M., Ahmad, I., “Optimal Task Assignment in
Heterogeneous Distributed Computing Systems”, IEEE
Concurrency, vol. 6, No. 3, pp. 42 – 51, 1998.

[6] Lillo, W.E., Hui, S., Zak, S.H., “Neural Networks for
Constrained Optimisation”, International Journal of
Circuit Theory and Applications, vol. 21, pp. 385-399,
1991.

[7] Sun, K.T., Fu, H.C., “A Hybrid Neural Model for
Solving Optimisation Problems”, IEEE Transactions on
Computers, vol. 42, No. 2, pp. 219 - 227, 1993.

[8] Tank, D.W., Hopfield, J.J., “Simple ‘Neural’
Optimisation Networks: an A/D Converter, Signal
Decision Circuit, and Linear Programming Circuit”,
IEEE Transactions on Circuits and Systems, vol. CAS-
33, pp. 533 - 541, 1986.

[9] Weglarz, J. (ed.), “Recent Advances in Project
Scheduling”, Kluwer Academic Publishers, Dordrecht,
1998.

F1

F2

y* (1) y(0.8)

y(0.6)

y(0.4)

y(0.2) y(0)
7 7.2 7.4 7.6 7.8 8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

