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Abstract: - This paper presents a method called dynamic multi-optimal learning rates for neural network (NN) 
with backpropagation (BP) training. The stability analysis of the learning rates for a 3-layer NN to minimize the 
total square error is included. The optimal learning rates can be obtained by using proper numerical method. 
These optimal learning rates are then applied to BP training to tune the corresponding weighting factors in each 
layer so that the total square error is minimized rapidly. A simulation example is performed for a nonlinear first-
order system identification. The results have indicated that the training or convergence speed is faster compared 
with the standard BP with fixed learning rates. 
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1   Introduction 
 
During the past decade, neural networks (NN) [1],[2] 
have used a variety of applications in various fields 
and tremendous achievements have been obtained. 
These applications include identification of an 
unknown system to control nonlinear ill-defined 
system [5] etc. The well-known training method called 
back propagation (BP) is mostly used to tune the 
weighting factors of NN. BP can be considered as 
gradient descent class algorithm that attempts to 
minimize the error between the desired and the NN 
outputs. The weights of the NN are adjusted so that the 
error is reduced along the descent direction.  

Learning rate in BP is an important factor that 
affects the convergence speed and stability of the NN. 
Several authors [6], [7] have focused on the study of 
learning rate in BP. Authors in [1] have developed the 
dynamic optimal learning rates of a certain class of 
fuzzy neural networks (FNNs) [3],[4]. They have 
performed the stability analysis of the learning rate 2-
layers NN by minimizing the total squared error 
between the actual and desired outputs for a set of 
training vectors. However, they only considered the 
dynamic optimal learning rate in 2-layers NN in 
certain class of FNNs.  

In this paper, we investigate the dynamic optimal 
learning rates for a 3-layer NN. Simultaneous 
equations can be derived from the Lyapunov function. 
A pair of optimal learning rates can be obtained by 
solving the simultaneous equations. The stable and 
optimal learning rates can lead to maximum reduction 
of the total square error during the back propagation 
process. System identification for a nonlinear first 
order system is simulated to verify the theoretical 
result. For performance comparison, two simulations 

for the standard BP with fixed/varied learning rate are 
also accomplished. 
 

2. Dynamic Optimal Learning Rates 
for A 3-layer Neural Network 

 
Figure 1 shows the 3-layer NN which is considered 
in this paper. 
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Fig. 1. Three-layer NN 

[ ]PxxxX m21= ∈ ℜ  N×P, input training matrix, 

[ ]T
Nxxxx �21= ∈ ℜ  N,  input training vector; 

[ ]T
Lrrrr h21= ∈ ℜ  L, output of hidden layer, 

[ ]LNL uuuU m21= ∈  ℜ  N×L, weighting matrix, 

[ ]TNiiii uuuu l21= ∈ ℜ  N, ith weighting vector, 

[ ]ZLZ wwwW m21= ∈  ℜ  L×Z, weighting matrix, 

[ ]T
Liiii wwww l21= ∈ ℜ  L, ith weighting vector, 

[ ]T
P

yyyY m

21
= ∈ ℜ  P×Z, actual output matrix, 



  

[ ]TZyyyy �21= ∈ ℜ  Z, actual output vector, 

[ ]T
PdddD �21= ∈ ℜ  P×Z, desired output matrix. 

[ ]T
Zdddd �21= ∈ ℜ  Z, desired output vector 

“T” denotes matrix transpose. The symbol “⁄” in Fig. 
1 denotes that the transfer function of each neuron is 
pure linear. 
 Given P training vectors, there should be P 
desired output vectors. The actual output matrix Y 
can be generated as: 

Y = XTUW      (1) 
The weighting matrixes U and W are trained so that 
the actual output yz will converge to its 
corresponding desired value dz. The error function is 
defined as 
  E =Y – D = XTUW – D    (2) 
And the total squared error J can be computed 
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To update U and W, we employ the famous back 
propagation method as follows: 

T
t

t
tt

tt

T
t

t
tt

tt

XEW
PZ

U
U
JUU

XEU
PZ

W
W
JWW

1

1

1

1

αα

ββ

−=
∂
∂−=

−=
∂
∂−=

+

+

 (4) 

where t denotes the tth iteration. If the zero error is 
obtained after learning, we can have D = XTUW. 
From Eq.(4), we notice that the two learning rates 
αt βt are changed for each iteration. The following 
shows how the optimal learning rates αt, βt are 
generated. 
    A candidate Lyapunov function is defined as 

V = J2       (5) 
The difference of Lyapunov function is 

22
1 tt JJV −=∆ + . If ∆V<0, the response of the 

system is to be stable and we have 
Jt+1−Jt <0.       (6) 

After some manipulations, Jt+1−Jt is a function of 
variables α, β can be expressed as 
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The coefficient A~C, I, E~H, are shown as below: 
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To get a critical point (α,β) ∈  R×R of F, the 
following simultaneous equations have to be solved 

0222

0222

22

22

=+++++=
∂
∂

=+++++=
∂
∂

GFECBAF

HFEIBAF

ααβαββα
β

αββαβαβ
α     (8) 

Furthermore, we can find minimum value of F by 
computing  
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Note that if Θ2 < ΓΦ and Φ>0, then F has a 
minimum value at (α,β). Otherwise the fixed values 
(<1) of α, β are assumed. 
 
3   Simulation Examples  
 
In this example [2], [7], the system to be identified is 
the following nonlinear form: 

y(k+1)=g[y(k),u(k)] 

where the unknown function g has the following 
form 

3
22

1

1
21 1
),( x

x
xxxg +
+

=  



  

and controller u(k)=sin(2πk /25)+sin(2πk /10). The 
series-parallel identification model is  

)](),([ˆ)1(ˆ kukyfky =+           (10) 

where f̂  is in the form of (10) with two fuzzy 
variables x1, and x2. 
    90 training data items are generated for training 
purposes. The initial values of weighting matrixes 
U2×8 and W8×1 are randomly chosen from ranges [-
0.05 0.05], [-0.005 0.005], respectively. Fig. 2 
shows the performance comparison of the proposed 
method and the standard BP. The result of the 
proposed method indicates that the total squared 
error convergences after 7 iterations. The final total 
squared error J, ≈ 0.5359 is achieved. The total 
squared errors of conventional BP methods 
converge after 45 iterations. Fig. 3 shows the 
outputs of plant and the NN model after the training 
program is completed. Better results can be 
obtained if more hidden and output nodes are used. 
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Fig. 2. Performance comparison. Case a: Optimal α, β; 
Case b: α=0.1, β=0.1; Case c: random α, β ∈ (0, 0.2). 
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 Fig. 3. Outputs of the plant y (solid) and ŷ (dashed). 

4   Conclusion 
A new approach of training NN with dynamic 
optimal learning rates BP is presented 
systemically in this paper. The stability analysis 
of these optimal learning rates is presented. By 
solving a set of simultaneous equations that are 
derived based on Lyapunov theory, the optimal 
learning rates can be computed. They are then fed 
into BP algorithm such that the minimum total 
square error can be achieved. The proposed 
method can speed up the total error convergence 
rate. Simulation examples for the nonlinear first 
order system identification are performed to 
verify the theoretical analyses. The results have 
revealed that our approach provides faster total 
squared error convergence. 
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