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Abstract:  An agent-based emergent intelligence methodology is utilized to assemble agents into teams and assign 
distributed tasks to them in a dynamic environment.  The application concerns the management of military missions that 
utilize intelligent munitions that are capable of searching, detecting, identifying, and attacking targets in a battlefield.  The 
simulator follows a reactive, behavior-based design philosophy.  Agents are implemented as asynchronous threads that 
employ polymorphic signal-based communication.  Results to date indicate that the simulation framework is effective in 
evaluating ways for emergent teams to quickly solve dynamic teaming and task allocation problems. 
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1 Introduction 
Intelligent, unmanned, and autonomous flying munitions 
are of high interest to the military for their ability to 
search, detect, identify, and precisely destroy enemy 
targets.  Although small and low in cost, such weapons 
can now be equipped with multiple sophisticated 
sensors, advanced wireless communications systems, 
and avionics that provide agile flight control and 
navigation.  The concept of operation involves releasing 
large numbers of such systems in groups, allowing them 
to autonomously carry out a mission.  They are one 
specific type of Unmanned Air Vehicle (UAV) among 
many in use or under development today.  Coordination 
of multiple resources in the battlefield is a major issue.  
The traditional tenets of pre-planning, centralized 
control and decentralized execution must be re-
examined in a modern engagement of the armed forces 
[5].  For example, a mission in which many preplanned 
targets are struck in a short time, must have adaptive 
mission planning capabilities to address emerging 
threats and targets remaining.  Military mission planners 
today rely on a sophisticated and constant virtual 
forward presence in the form of UAVs for 
reconnaissance.  The success of such UAVs, like the 
Predator, has prompted a heightened interest in the 
potential of pilotless air forces [8].  In the work we 
report here, we address the need to coordinate multiple 
autonomous munitions with an adaptive approach.  The 
core problem is as follows:  given a set of deployed 
intelligent munitions, a suite of available targets, and 
dynamic attrition and new battlefield information;  form 
teams of munitions and assign them tasks in a manner 

that maximizes mission effectiveness.  Although 
centralized control using information gathered before 
mission deployment has been effective in the case of a 
small number of resources, this is likely to be inadequate 
when there are many intelligent munitions in dynamic 
environments.  We address the problem with an 
approach inspired by the observed ability of biological 
systems such as bees, wolves, and birds to form swarms, 
packs, and flocks that exhibit globally intelligent 
emergent behaviors.  Variations of this approach for 
modern warfare are being investigated and are steadily 
gaining credibility [2].  In this paper, we present the 
design and implementation of an agent-based UAV 
simulation framework for experimenting with this 
approach.   
 
The requirements of such a multi-agent system present 
several design challenges.  Some of the requirements 
include the explicit modeling of cooperation and 
communication choices, and the recognition and 
exploitation of emergent phenomena.  The resultant 
mission controls must also map back into the physical 
and control capabilities of the intelligent munitions.  
Combinatorial optimization models have also been 
developed for adaptive mission planning, but are very 
computationally intensive.   The emergent intelligent 
systems that we are developing can be used to provide 
lower bounds on the performance of those models, 
providing a benchmarking method.  The system is also 
intended to provide for the incorporation of existing 
centralized, optimal planning methods.  
 



2 Related Work 
The simulation agents are inspired by graphical Turtles 
used to explore predator and prey interactions [1,8].  
These interactions depend on models of sensations such 
as sight and smell.  Multiple Turtle-like agents with 
limited sensory abilities were used by Reynolds to 
model flocking in his Boids system [10].  StarLogo is a 
massively parallel extension of Turtle graphics in which 
thousands or tens of thousands of Turtles interact as 
independent processes [9].  Like our system, StarLogo 
was designed to explore and exploit emergent 
phenomena.  Our system involves many Turtle-like 
agents with varied, but realistic, sensory and behavioral 
capabilities. 
 
Behavioral design may follow bottom-up or top-down 
approaches.  At the individual agent level, our work is 
inspired by reactive, behavior-based approaches [4].  At 
the group-level, we follow the basic design philosophy 
ideas of  Mataric, in which a small set of basic, group-
level interaction serve as building blocks for system-
wide behavior [6].  These basic interaction include 
Avoidance, Attraction, Following, Dispersion, 
Aggregation, Homing, and Flocking.   
 
3 Simulation Design 
The ultimate goals of the system are to provide:  1) a 
means of demonstrating realistic battle scenarios, and 2) 
an end-to-end working system for experimentation with 
alternative methods for managing swarms of intelligent 
munitions. 
 
The design of the system was divided into several 
components: 1) the agents, 2) the agent’s environment, 
and 3) the mechanisms for communication.  
Communication was incorporated into the agent sensory 
requirements, and provides a fundamental way to 
support inter-agent cooperation. 
 
In designing the system, one approach would be top-
down, working from developed battle scenarios down to 
the agent and environment requirements.  An alternative 
approach would be bottom-up, developing design 
mechanisms to model basic behaviors of the agents in 
such a way that the battle scenarios could be handled 
indirectly.  Our approach is fundamentally bottom-up, 
but does have some top-down aspects, following 
something of a hybrid model. 
 

3.1 Agents 
With a bottom-up orientation, several low-level abilities 
were specified.  These abilities can be combined to form 
composite abilities.  At the lowest level, agents are able 
move by incremental changes in direction and velocity.  
In our initial experiments, agents are provided with the 
following discrete alternative available speeds:  i) a pre-
specified normal (cruise) speed, ii) a pursuit speed, 
nominally 25% faster than normal, and iii) a stationary 
speed, to represent loitering in a fixed location (or 
hovering in a helicopter-like UAV).  The model supports 
an arbitrary number of discrete speed steps.  Discrete 
choices provide modeling simplicity and yet allow a full 
range of realistic alternatives. 
 
A Homing and Aggregation behavior is fundamental to 
the simulation model.  When carrying out this behavior, 
upon detecting the appropriate signal, agents move 
towards that signal.  The reverse behavior, Fleeing and 
Dispersion, is also fundamental.  When carrying out this 
behavior, upon detecting the specified signal, agents will 
move away from that signal.  In all cases, the specific 
Agent behavior is the reaction that it takes upon 
detecting a signal.  It is important the reactions be state-
dependent.  For example, an agent active in survival or 
the execution of a critical mission task should ignore 
more trivial signals.  However, if no important tasks are 
pending at the moment, responding to nominal signals is 
appropriate behavior.  The behaviors of an agent are 
modulated through either an external signal or internal 
events (i.e., counter or timer), and based upon the state 
of the agent at that time.  Available internal states 
include wander (move in the absence of a goal), fight 
(attack a target), flee (retreat as quickly as possible), 
follow(traverse a path determined by a leader), or lost 
(move in the absence of locational information) . 
 
Following the general philosophy of reactive, behavior-
based control, sensors are coupled to actuators through 
behavioral modules.  Each behavioral module has sensor 
inputs, internal state, process logic, and actuator output.  
These behavioral modules are coupled to the sensors and 
actuators so that these resources are appropriately 
shared.  This tight coupling between sensation and 
action is characteristic of a reactive, behavior-based 
agent control philosophy [4].  Agents are supported with 
a hierarchy of behaviors that follow a subsumption-like 
architecture.  Alternatively, a summed vector approach  
could have been used [3].  The lowest module provides 
the most minimal level of control; the next layer is 
astride that layer and overrides it under the proper 



external or internal signal.  A summed vector approach 
would have required that actuator inputs be weighted.   
 
Given the state-based nature of the agents, behavioral 
modeling based on state transition diagrams is 
appropriate and intuitive.  Figure 1 shows a state 
transition diagram for an agent that wanders until it 
detects an attracting alarm signal.  It then enters the 
attracted state and homes in on that signal as long as it is 
sensed.  When no signal is sensed, the agent returns to 
the wander state.  However, if an agent detects the 
proximity of another like agent, the agent enters the 
avoid state and is repulsed away from the other agent. 
 

 
Fig. 1.  State transition diagram for agent behavioral 
modeling. 
 
In some cases signals cause complete state transitions, 
but the same signal may be handled differently in 
different states.  During searching, a proximity signal 
generated by one agent may cause another agent to 
avoid the sender by a substantial distance.  This permits 
better dispersion in an area.  However, when homing in 
on a target, the degree to which a friendly agent is 
avoided is lessened.  This permits more agents to get 
close to the target.  In some cases, a signal in one 
context causes a homing reaction while in another 
context causes dispersion.  For example, if an agent is 
leaving its home base on a search mission, and home 
base transmits a “home base” signal, the agent follows a 
disperse behavior to better search away from the base.  
However, when the agent is low on fuel, it will follow a 
homing behavior on the base signal.  Lastly, differential 
attention to different signal is permitted through a 
prioritization scheme. 
 
The need to detect a signal mandate a need for sensors.  
Each sensor is characterized in several ways as 

described below in the section on Communication.  The 
potential for sensor access is equal among all behavioral 
modules (layers).  Behavioral modules have direct input 
into another layer, like a virtual sensor.  A sensor-
controller-actuator registry is utilized to support an 
explicit mapping among these agent resources.  
 
The arbitration of signals (or behaviors) is a central issue 
in the design of reactive agents.  The question concerns 
how to represent multiple, behavior transitioning signals, 
that are evaluated simultaneously.  For example, how 
should a signal to home combined with a signal to avoid 
collision be represented?  We employ internal state 
timers to handle this situation.  Alternatively, all 
triggered behaviors could be allowed to fire 
simultaneously, which is sufficient if there is adequate 
separation of signals and behavior in an agent’s state-
space.  However, the possibility of inducing 
contradictive behavior led us to avoid this design choice. 
 
Two additional system requirements are the ability to 
dynamically create and destroy agents and for one agent 
to contain another.  Supporting agents with or within 
agents would require allow agents to be geographically 
co-located.  This is needed to model such things as a 
surface-to-air missile (SAM) launcher and its missile, a 
UAV that launches its own missile, or a cargo aircraft 
that offloads dozens of UAVs.  Allowing agents to be 
dynamically added or removed from the list of active 
agents is useful in modeling a pop-up threat or the self 
destruction of a UAV. 
 
3.2 Environment 
The agents exist within a specific environment, which is 
also the medium through which signals are carried.  For 
each signal, the environment determines its strength at 
any particular location, just as the physical properties of 
our own atmosphere or hydrosphere determines the 
characteristics of signal propagation traveling through.  
We follow a paradigm in which one imagines that an 
agent sends a message to the environment, providing the 
information that it generated a particular signal at a 
particular location.  The environment is then responsible 
for manipulating that signal according to the model 
physics of the environment.  We base the attenuation of 
signal strength on an inverse-square function. 
 
The environment also maintains a record of the physical 
elements within the environment.  Thus, Agents can 
“ask” if they have collided with something or use a 
sensor to ask if there is something nearby.  All physical 
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elements generate a nominal signal of their presence 
within the environment.  As with our environment, no 
two physical elements may occupy the same space. 
 
3.3 Communication 
Agents do not communicate directly, but rather through 
the environment.  Likewise, they act through the 
environment.  We model communication as an 
elaboration of sensation and action.  Communication is 
characterized by the existing elements of signals, 
sensors, and behaviors. 
 
Signals come in many forms.  We basically model a 
discrete set of distinct signals, say signals A, B, C, and 
D.  Each of these signals is characterized by its point of 
origin and strength.  The point of origin is the location of 
the sender (transmitter) and located in x-y coordinates.  
The strength of the signal is a relative value, scaled from 
1 to 100 and mapping into typical minimum and 
maximum transmitter capacities.  For a commercial AM 
radio, for example, the 1 represents 1 Watt, and 100 
represents 100,000 Watts.  A fourth characteristic of a 
signal is directionality.  Many signals are 
omnidirectional (e.g., radio broadcasts), radiating in all 
directions with nearly equal strength.  Other signals, 
such as a laser beam, have a very narrow angle through 
which they travel.  Two additional parameters model the 
relative angle range through which a signal is potentially 
detectable.  An omnidirectional signal has an angle 
range of 0 to 359 degrees.  A narrow signal transmitting 
to the south might have a range of 170 to 190 degrees.  
A data structure that captures these four characteristics, 
signal type, strength, origin, and directionality, is sent to 
the environment.   
 
Sensors are the sensory “organs” for the agent.  They 
can be a simple radio antenna or a directional laser 
receiver.  For each signal type, an agent needs a 
particular sensor to detect that signal.  Whether a signal 
could reach an agent is determined by the environment.  
An important design decision concerns whether the 
environment “pushes” signals to agents or agents “pull” 
them from the environment.  We utilize a pull approach, 
the agents actively collect signals from the environment.  
Essentially each sensor “asks” the environment 
questions like “what’s out there?” or “Do I hear any 
signals of type B?”  The environment then performs the 
appropriate calculations to answer the question posed by 
the agent..  The alternative would be a design in which 
the environment “tells” all nearby agents of a signal.  
This alternative is more realistic in terms of the 

operation of a real system.  However, such a design 
would often push signals that are being ignored by the 
agent, wasting computational effort in the simulation. 
 
As with the signals, sensors has several characteristics.  
These include modality or medium (sound, light, 
chemical, radio, ultrasonic, etc.), discrete or continuous, 
and directionality (ranging from omnidirectional to 
narrow-focus unidirectionality).  The directionality of 
the sensor allow the modeling of situations where 
detection of a signal is possible only when approaching 
from a particular direction.  Or, more simply, sensors 
may be shadowed by the agent itself, much as a person’s 
ears are shadowed by one’s head and outer ear.  This 
allows for bearing on a signal based on differential 
reception – that is, orienting until a signal is either 
strongest straight ahead, or equal on both sides and 
getting stronger in the direction of travel. 
 
4 Simulation Implementation 
The simulation was implemented with the Java 
Development Kit version 1.3.  It is highly object-
oriented and utilizes the concurrency features provided 
by Java Threads.  What follows is an outline of the 
major classes and their interactions within the 
simulation. 
 
4.1 Agents 
Each agent in the simulation is represented as an object 
extending, or inheriting from, the Java Thread class.  By 
doing this, not only is the simulation taking advantage of 
concurrent execution, but it is also modeling the 
autonomous agents more realistically; the agent threads, 
like UAVs, run asynchronously. 
 
The agent class is abstract; meaning that concrete 
objects cannot be created from it.  To instantiate an 
agent, a subclass is created that implements a run 
method, which is the main execution loop for an agent 
thread. Within an agent's run method are calls to various 
methods that modulate its behavior.  For example, an 
agent subclass may contain a method which enables it to 
flee from a specified location.  The decision as to which 
behavioral method is chosen for execution is modulated 
by signals it receives or internal events. 
 
In addition to the properties that the abstract agent class 
inherits from the Java Thread class, it also contains 
methods that enable it to move in within the 
environment.  These basic methods of movement are be 



aggregated by concrete agent subclasses into their 
behavioral methods mentioned above. 
 
4.2 Environment 
An environment class was created to provide a substrate 
within which the agent objects exist and communicate. It 
contains registration methods to add and remove agents 
from an environment object.  A linked-list data structure 
contains references to all of the agent objects contained 
within an environment.  More specifically, the list 
contains references to registered-agent objects. The 
registered-agent class is an aggregation of an agent and 
a collection of references to signals that have been 
transmitted past the agent.  The need for this collection 
is driven by communication modeling, described in the 
next section. 
 
4.3 Communication 
The core of the simulation framework supports 
communication between agents via the environment in 
which they are registered. This communication is 
accomplished by transmitting and receiving signal 
objects. The signal class encapsulates the origin 
location, angle of origin, angular range, strength and 
message. 
 
To transmit signal objects to the environment, the agent 
contains a transmitter.  Similarly, receivers are utilized 
for an agent to receive signals from the environment.  To 
implement these capabilities, each agent class contains a 
collection for receivers and a collection for transmitters.  
Methods are also available to dynamically add and 
remove both transmitters and receivers to their 
respective collection. 
 
As with the agent class, the signal, receiver and 
transmitter classes are abstract.  This choice was 
governed by the need for agents to have different types 
of receivers and transmitters with different properties 
(such as angular range). Since all types of receivers need 
a method to receive signals, it is made abstract.  
Similarly, with transmitters the method to transmit 
signals is made abstract.  For each pair of transmitter 
and receiver concrete subclasses, there is also a 
corresponding concrete subclass of signal, which 
implements methods for returning references to the class 
required for receiving and transmitting it. The net result 
of such a class structure is the powerful ability for 
polymorphic processing of signals by the agents and 
their environment. 
 

When an agent wishes to transmit a signal, it passes the 
information necessary to create a signal (except the 
angular range, which is only known by the transmitter) 
to an appropriate transmitter.  The transmitter then 
creates a signal object and passes it to the environment. 
Next, the environment analyzes the signal which was 
passed to it and decides which registered-agent(s) it 
would reach.  For each registered-agent the signal is to 
reach, the environment places a reference to the signal in 
the registered-agent's signal collection. 
 
The process is reversed for signal reception; however, 
the active role is still played by the agent.  The agents 
are constantly polling the environment for any new 
signals. If an agent has any new signals (e.g., the 
registered-agent's signal collection contains signals), it 
receives them en masse from the environment.  Once 
received, the agent iterates over the signals and selects 
an appropriate receiver for actual reception.  If the agent 
does not contain the appropriate receiver, the signal is 
discarded. 
 
An argument could be made that it might be more 
appropriate for the environment to do the work of 
checking if the agent has the appropriate receiver. 
However, since the agents are running as concurrent 
threads and access to the environment is synchronized, 
it is more efficient for the agent to do this work. 
 
5 Current Results 
The simulator serves as is framework to launch further 
research in UAV cooperative control.  We are applying 
the simulator to evaluate control of multiple intelligent 
munitions, but the framework is general enough to 
support other types of UAVs with alternative 
capabilities, provided that they are agent-based and 
designed to develop emergent intelligent behavior.  It is 
possible to evaluate configurations with an arbitrary 
number of autonomous agents in environments with 
varying characteristics and behaviors.  One emergent 
pattern that has been simulated concerns synchronized 
simultaneous strike team attacks.  One aspect of such an 
attack is the establishment of appropriate physical 
separation.  In general, this is a problem of N-point, 
equal-angular distribution, where N represents the 
number of directions from which agents are 
approaching.  For example, in a 3-point synchronized 
attack, agents should distribute themselves about a target 
separated by 120 degrees.  Using simple rules of 
repulsion from like agents as well as attraction to 



identified targets, this problem can be solved with 
emergent intelligence (see Fig. 2). 
 
We are also investigating the interplay between the 
relative size/strength and type of signals.  For example, 
we are investigating issues like how increasing the 
radius of a repulsive signal effects the agent distribution 
about an attractive target. 
 

Fig. 2.  UAV (small circles) and mobile target (Xs) 
agents.  Around each agent is a circle depicting signal 
range and a line indicating the direction of movement. 
 
6 Future Work 
The agent framework offers considerable potential for 
further investigations.  One overarching project goal 
involves evaluating mechanisms for combining pre-
planned missions developed by off-line optimizers with 
reactive behavior emergent intelligence capabilities.  In 
real mission planning, a balance between highly 
optimized pre-plans and reaction is likely to be effective. 
 
We are also developing a language for describing 
scenarios, such as the geographic area of interest; the 
type, number, and location of threats, targets and 
friendly agents; and strategic and tactical objectives.  
The current framework will support the implementation 
and validation of the scenario-description language. 
 
7 Conclusion 
A simulation framework for investigation of multiagent 
systems was designed, developed, and implemented.  
This framework is now poised to help answer questions 
of whether realistically bounded agents can be provided 

with behaviors that exploit emergence to derive team-
base solutions to distributed tasks in dynamic, hostile 
environments.  Early results show that the use of 
reactive behaviors and simple external signals can 
induce spatial coordination for multi-point attacks.  The 
system provides a specific control system for multiple 
UAVs.  The system also provides lower bounds on 
performance metrics for more traditional control systems 
based on optimization models, enabling benchmarking 
of performance. 
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