
An Agent-based Simulation for Modeling Intelligent Munitions
KARL ALTENBURG, JOSEPH SCHLECHT, KENDALL E. NYGARD

Department of Computer Science and Operations Research
North Dakota State University

Fargo, ND 58105
USA

Abstract: An agent-based emergent intelligence methodology is utilized to assemble agents into teams and assign
distributed tasks to them in a dynamic environment. The application concerns the management of military missions that
utilize intelligent munitions that are capable of searching, detecting, identifying, and attacking targets in a battlefield. The
simulator follows a reactive, behavior-based design philosophy. Agents are implemented as asynchronous threads that
employ polymorphic signal-based communication. Results to date indicate that the simulation framework is effective in
evaluating ways for emergent teams to quickly solve dynamic teaming and task allocation problems.

Key-Words: Autonomous agents, Simulation, Intelligent munitions, Unmanned Air Vehicles

1 Introduction
Intelligent, unmanned, and autonomous flying munitions
are of high interest to the military for their ability to
search, detect, identify, and precisely destroy enemy
targets. Although small and low in cost, such weapons
can now be equipped with multiple sophisticated
sensors, advanced wireless communications systems,
and avionics that provide agile flight control and
navigation. The concept of operation involves releasing
large numbers of such systems in groups, allowing them
to autonomously carry out a mission. They are one
specific type of Unmanned Air Vehicle (UAV) among
many in use or under development today. Coordination
of multiple resources in the battlefield is a major issue.
The traditional tenets of pre-planning, centralized
control and decentralized execution must be re-
examined in a modern engagement of the armed forces
[5]. For example, a mission in which many preplanned
targets are struck in a short time, must have adaptive
mission planning capabilities to address emerging
threats and targets remaining. Military mission planners
today rely on a sophisticated and constant virtual
forward presence in the form of UAVs for
reconnaissance. The success of such UAVs, like the
Predator, has prompted a heightened interest in the
potential of pilotless air forces [8]. In the work we
report here, we address the need to coordinate multiple
autonomous munitions with an adaptive approach. The
core problem is as follows: given a set of deployed
intelligent munitions, a suite of available targets, and
dynamic attrition and new battlefield information; form
teams of munitions and assign them tasks in a manner

that maximizes mission effectiveness. Although
centralized control using information gathered before
mission deployment has been effective in the case of a
small number of resources, this is likely to be inadequate
when there are many intelligent munitions in dynamic
environments. We address the problem with an
approach inspired by the observed ability of biological
systems such as bees, wolves, and birds to form swarms,
packs, and flocks that exhibit globally intelligent
emergent behaviors. Variations of this approach for
modern warfare are being investigated and are steadily
gaining credibility [2]. In this paper, we present the
design and implementation of an agent-based UAV
simulation framework for experimenting with this
approach.

The requirements of such a multi-agent system present
several design challenges. Some of the requirements
include the explicit modeling of cooperation and
communication choices, and the recognition and
exploitation of emergent phenomena. The resultant
mission controls must also map back into the physical
and control capabilities of the intelligent munitions.
Combinatorial optimization models have also been
developed for adaptive mission planning, but are very
computationally intensive. The emergent intelligent
systems that we are developing can be used to provide
lower bounds on the performance of those models,
providing a benchmarking method. The system is also
intended to provide for the incorporation of existing
centralized, optimal planning methods.

2 Related Work
The simulation agents are inspired by graphical Turtles
used to explore predator and prey interactions [1,8].
These interactions depend on models of sensations such
as sight and smell. Multiple Turtle-like agents with
limited sensory abilities were used by Reynolds to
model flocking in his Boids system [10]. StarLogo is a
massively parallel extension of Turtle graphics in which
thousands or tens of thousands of Turtles interact as
independent processes [9]. Like our system, StarLogo
was designed to explore and exploit emergent
phenomena. Our system involves many Turtle-like
agents with varied, but realistic, sensory and behavioral
capabilities.

Behavioral design may follow bottom-up or top-down
approaches. At the individual agent level, our work is
inspired by reactive, behavior-based approaches [4]. At
the group-level, we follow the basic design philosophy
ideas of Mataric, in which a small set of basic, group-
level interaction serve as building blocks for system-
wide behavior [6]. These basic interaction include
Avoidance, Attraction, Following, Dispersion,
Aggregation, Homing, and Flocking.

3 Simulation Design
The ultimate goals of the system are to provide: 1) a
means of demonstrating realistic battle scenarios, and 2)
an end-to-end working system for experimentation with
alternative methods for managing swarms of intelligent
munitions.

The design of the system was divided into several
components: 1) the agents, 2) the agent’s environment,
and 3) the mechanisms for communication.
Communication was incorporated into the agent sensory
requirements, and provides a fundamental way to
support inter-agent cooperation.

In designing the system, one approach would be top-
down, working from developed battle scenarios down to
the agent and environment requirements. An alternative
approach would be bottom-up, developing design
mechanisms to model basic behaviors of the agents in
such a way that the battle scenarios could be handled
indirectly. Our approach is fundamentally bottom-up,
but does have some top-down aspects, following
something of a hybrid model.

3.1 Agents
With a bottom-up orientation, several low-level abilities
were specified. These abilities can be combined to form
composite abilities. At the lowest level, agents are able
move by incremental changes in direction and velocity.
In our initial experiments, agents are provided with the
following discrete alternative available speeds: i) a pre-
specified normal (cruise) speed, ii) a pursuit speed,
nominally 25% faster than normal, and iii) a stationary
speed, to represent loitering in a fixed location (or
hovering in a helicopter-like UAV). The model supports
an arbitrary number of discrete speed steps. Discrete
choices provide modeling simplicity and yet allow a full
range of realistic alternatives.

A Homing and Aggregation behavior is fundamental to
the simulation model. When carrying out this behavior,
upon detecting the appropriate signal, agents move
towards that signal. The reverse behavior, Fleeing and
Dispersion, is also fundamental. When carrying out this
behavior, upon detecting the specified signal, agents will
move away from that signal. In all cases, the specific
Agent behavior is the reaction that it takes upon
detecting a signal. It is important the reactions be state-
dependent. For example, an agent active in survival or
the execution of a critical mission task should ignore
more trivial signals. However, if no important tasks are
pending at the moment, responding to nominal signals is
appropriate behavior. The behaviors of an agent are
modulated through either an external signal or internal
events (i.e., counter or timer), and based upon the state
of the agent at that time. Available internal states
include wander (move in the absence of a goal), fight
(attack a target), flee (retreat as quickly as possible),
follow(traverse a path determined by a leader), or lost
(move in the absence of locational information) .

Following the general philosophy of reactive, behavior-
based control, sensors are coupled to actuators through
behavioral modules. Each behavioral module has sensor
inputs, internal state, process logic, and actuator output.
These behavioral modules are coupled to the sensors and
actuators so that these resources are appropriately
shared. This tight coupling between sensation and
action is characteristic of a reactive, behavior-based
agent control philosophy [4]. Agents are supported with
a hierarchy of behaviors that follow a subsumption-like
architecture. Alternatively, a summed vector approach
could have been used [3]. The lowest module provides
the most minimal level of control; the next layer is
astride that layer and overrides it under the proper

external or internal signal. A summed vector approach
would have required that actuator inputs be weighted.

Given the state-based nature of the agents, behavioral
modeling based on state transition diagrams is
appropriate and intuitive. Figure 1 shows a state
transition diagram for an agent that wanders until it
detects an attracting alarm signal. It then enters the
attracted state and homes in on that signal as long as it is
sensed. When no signal is sensed, the agent returns to
the wander state. However, if an agent detects the
proximity of another like agent, the agent enters the
avoid state and is repulsed away from the other agent.

Fig. 1. State transition diagram for agent behavioral
modeling.

In some cases signals cause complete state transitions,
but the same signal may be handled differently in
different states. During searching, a proximity signal
generated by one agent may cause another agent to
avoid the sender by a substantial distance. This permits
better dispersion in an area. However, when homing in
on a target, the degree to which a friendly agent is
avoided is lessened. This permits more agents to get
close to the target. In some cases, a signal in one
context causes a homing reaction while in another
context causes dispersion. For example, if an agent is
leaving its home base on a search mission, and home
base transmits a “home base” signal, the agent follows a
disperse behavior to better search away from the base.
However, when the agent is low on fuel, it will follow a
homing behavior on the base signal. Lastly, differential
attention to different signal is permitted through a
prioritization scheme.

The need to detect a signal mandate a need for sensors.
Each sensor is characterized in several ways as

described below in the section on Communication. The
potential for sensor access is equal among all behavioral
modules (layers). Behavioral modules have direct input
into another layer, like a virtual sensor. A sensor-
controller-actuator registry is utilized to support an
explicit mapping among these agent resources.

The arbitration of signals (or behaviors) is a central issue
in the design of reactive agents. The question concerns
how to represent multiple, behavior transitioning signals,
that are evaluated simultaneously. For example, how
should a signal to home combined with a signal to avoid
collision be represented? We employ internal state
timers to handle this situation. Alternatively, all
triggered behaviors could be allowed to fire
simultaneously, which is sufficient if there is adequate
separation of signals and behavior in an agent’s state-
space. However, the possibility of inducing
contradictive behavior led us to avoid this design choice.

Two additional system requirements are the ability to
dynamically create and destroy agents and for one agent
to contain another. Supporting agents with or within
agents would require allow agents to be geographically
co-located. This is needed to model such things as a
surface-to-air missile (SAM) launcher and its missile, a
UAV that launches its own missile, or a cargo aircraft
that offloads dozens of UAVs. Allowing agents to be
dynamically added or removed from the list of active
agents is useful in modeling a pop-up threat or the self
destruction of a UAV.

3.2 Environment
The agents exist within a specific environment, which is
also the medium through which signals are carried. For
each signal, the environment determines its strength at
any particular location, just as the physical properties of
our own atmosphere or hydrosphere determines the
characteristics of signal propagation traveling through.
We follow a paradigm in which one imagines that an
agent sends a message to the environment, providing the
information that it generated a particular signal at a
particular location. The environment is then responsible
for manipulating that signal according to the model
physics of the environment. We base the attenuation of
signal strength on an inverse-square function.

The environment also maintains a record of the physical
elements within the environment. Thus, Agents can
“ask” if they have collided with something or use a
sensor to ask if there is something nearby. All physical

wander attracted

avoid

silence proximity

proximity

silence

alarm

silence alarm

proximity
alarm

elements generate a nominal signal of their presence
within the environment. As with our environment, no
two physical elements may occupy the same space.

3.3 Communication
Agents do not communicate directly, but rather through
the environment. Likewise, they act through the
environment. We model communication as an
elaboration of sensation and action. Communication is
characterized by the existing elements of signals,
sensors, and behaviors.

Signals come in many forms. We basically model a
discrete set of distinct signals, say signals A, B, C, and
D. Each of these signals is characterized by its point of
origin and strength. The point of origin is the location of
the sender (transmitter) and located in x-y coordinates.
The strength of the signal is a relative value, scaled from
1 to 100 and mapping into typical minimum and
maximum transmitter capacities. For a commercial AM
radio, for example, the 1 represents 1 Watt, and 100
represents 100,000 Watts. A fourth characteristic of a
signal is directionality. Many signals are
omnidirectional (e.g., radio broadcasts), radiating in all
directions with nearly equal strength. Other signals,
such as a laser beam, have a very narrow angle through
which they travel. Two additional parameters model the
relative angle range through which a signal is potentially
detectable. An omnidirectional signal has an angle
range of 0 to 359 degrees. A narrow signal transmitting
to the south might have a range of 170 to 190 degrees.
A data structure that captures these four characteristics,
signal type, strength, origin, and directionality, is sent to
the environment.

Sensors are the sensory “organs” for the agent. They
can be a simple radio antenna or a directional laser
receiver. For each signal type, an agent needs a
particular sensor to detect that signal. Whether a signal
could reach an agent is determined by the environment.
An important design decision concerns whether the
environment “pushes” signals to agents or agents “pull”
them from the environment. We utilize a pull approach,
the agents actively collect signals from the environment.
Essentially each sensor “asks” the environment
questions like “what’s out there?” or “Do I hear any
signals of type B?” The environment then performs the
appropriate calculations to answer the question posed by
the agent.. The alternative would be a design in which
the environment “tells” all nearby agents of a signal.
This alternative is more realistic in terms of the

operation of a real system. However, such a design
would often push signals that are being ignored by the
agent, wasting computational effort in the simulation.

As with the signals, sensors has several characteristics.
These include modality or medium (sound, light,
chemical, radio, ultrasonic, etc.), discrete or continuous,
and directionality (ranging from omnidirectional to
narrow-focus unidirectionality). The directionality of
the sensor allow the modeling of situations where
detection of a signal is possible only when approaching
from a particular direction. Or, more simply, sensors
may be shadowed by the agent itself, much as a person’s
ears are shadowed by one’s head and outer ear. This
allows for bearing on a signal based on differential
reception – that is, orienting until a signal is either
strongest straight ahead, or equal on both sides and
getting stronger in the direction of travel.

4 Simulation Implementation
The simulation was implemented with the Java
Development Kit version 1.3. It is highly object-
oriented and utilizes the concurrency features provided
by Java Threads. What follows is an outline of the
major classes and their interactions within the
simulation.

4.1 Agents
Each agent in the simulation is represented as an object
extending, or inheriting from, the Java Thread class. By
doing this, not only is the simulation taking advantage of
concurrent execution, but it is also modeling the
autonomous agents more realistically; the agent threads,
like UAVs, run asynchronously.

The agent class is abstract; meaning that concrete
objects cannot be created from it. To instantiate an
agent, a subclass is created that implements a run
method, which is the main execution loop for an agent
thread. Within an agent's run method are calls to various
methods that modulate its behavior. For example, an
agent subclass may contain a method which enables it to
flee from a specified location. The decision as to which
behavioral method is chosen for execution is modulated
by signals it receives or internal events.

In addition to the properties that the abstract agent class
inherits from the Java Thread class, it also contains
methods that enable it to move in within the
environment. These basic methods of movement are be

aggregated by concrete agent subclasses into their
behavioral methods mentioned above.

4.2 Environment
An environment class was created to provide a substrate
within which the agent objects exist and communicate. It
contains registration methods to add and remove agents
from an environment object. A linked-list data structure
contains references to all of the agent objects contained
within an environment. More specifically, the list
contains references to registered-agent objects. The
registered-agent class is an aggregation of an agent and
a collection of references to signals that have been
transmitted past the agent. The need for this collection
is driven by communication modeling, described in the
next section.

4.3 Communication
The core of the simulation framework supports
communication between agents via the environment in
which they are registered. This communication is
accomplished by transmitting and receiving signal
objects. The signal class encapsulates the origin
location, angle of origin, angular range, strength and
message.

To transmit signal objects to the environment, the agent
contains a transmitter. Similarly, receivers are utilized
for an agent to receive signals from the environment. To
implement these capabilities, each agent class contains a
collection for receivers and a collection for transmitters.
Methods are also available to dynamically add and
remove both transmitters and receivers to their
respective collection.

As with the agent class, the signal, receiver and
transmitter classes are abstract. This choice was
governed by the need for agents to have different types
of receivers and transmitters with different properties
(such as angular range). Since all types of receivers need
a method to receive signals, it is made abstract.
Similarly, with transmitters the method to transmit
signals is made abstract. For each pair of transmitter
and receiver concrete subclasses, there is also a
corresponding concrete subclass of signal, which
implements methods for returning references to the class
required for receiving and transmitting it. The net result
of such a class structure is the powerful ability for
polymorphic processing of signals by the agents and
their environment.

When an agent wishes to transmit a signal, it passes the
information necessary to create a signal (except the
angular range, which is only known by the transmitter)
to an appropriate transmitter. The transmitter then
creates a signal object and passes it to the environment.
Next, the environment analyzes the signal which was
passed to it and decides which registered-agent(s) it
would reach. For each registered-agent the signal is to
reach, the environment places a reference to the signal in
the registered-agent's signal collection.

The process is reversed for signal reception; however,
the active role is still played by the agent. The agents
are constantly polling the environment for any new
signals. If an agent has any new signals (e.g., the
registered-agent's signal collection contains signals), it
receives them en masse from the environment. Once
received, the agent iterates over the signals and selects
an appropriate receiver for actual reception. If the agent
does not contain the appropriate receiver, the signal is
discarded.

An argument could be made that it might be more
appropriate for the environment to do the work of
checking if the agent has the appropriate receiver.
However, since the agents are running as concurrent
threads and access to the environment is synchronized,
it is more efficient for the agent to do this work.

5 Current Results
The simulator serves as is framework to launch further
research in UAV cooperative control. We are applying
the simulator to evaluate control of multiple intelligent
munitions, but the framework is general enough to
support other types of UAVs with alternative
capabilities, provided that they are agent-based and
designed to develop emergent intelligent behavior. It is
possible to evaluate configurations with an arbitrary
number of autonomous agents in environments with
varying characteristics and behaviors. One emergent
pattern that has been simulated concerns synchronized
simultaneous strike team attacks. One aspect of such an
attack is the establishment of appropriate physical
separation. In general, this is a problem of N-point,
equal-angular distribution, where N represents the
number of directions from which agents are
approaching. For example, in a 3-point synchronized
attack, agents should distribute themselves about a target
separated by 120 degrees. Using simple rules of
repulsion from like agents as well as attraction to

identified targets, this problem can be solved with
emergent intelligence (see Fig. 2).

We are also investigating the interplay between the
relative size/strength and type of signals. For example,
we are investigating issues like how increasing the
radius of a repulsive signal effects the agent distribution
about an attractive target.

Fig. 2. UAV (small circles) and mobile target (Xs)
agents. Around each agent is a circle depicting signal
range and a line indicating the direction of movement.

6 Future Work
The agent framework offers considerable potential for
further investigations. One overarching project goal
involves evaluating mechanisms for combining pre-
planned missions developed by off-line optimizers with
reactive behavior emergent intelligence capabilities. In
real mission planning, a balance between highly
optimized pre-plans and reaction is likely to be effective.

We are also developing a language for describing
scenarios, such as the geographic area of interest; the
type, number, and location of threats, targets and
friendly agents; and strategic and tactical objectives.
The current framework will support the implementation
and validation of the scenario-description language.

7 Conclusion
A simulation framework for investigation of multiagent
systems was designed, developed, and implemented.
This framework is now poised to help answer questions
of whether realistically bounded agents can be provided

with behaviors that exploit emergence to derive team-
base solutions to distributed tasks in dynamic, hostile
environments. Early results show that the use of
reactive behaviors and simple external signals can
induce spatial coordination for multi-point attacks. The
system provides a specific control system for multiple
UAVs. The system also provides lower bounds on
performance metrics for more traditional control systems
based on optimization models, enabling benchmarking
of performance.

References
[1] Abelson H, diSessa AA. 1980. Turtle Geometry: The
Computer as a Medium for Exploring Mathematics. MIT
Press: Cambridge, MA, 477 p.

[2] Adams TK. 2000. The real military revolution.
Parameters: US Army War College Quarterly. Autumn:
54-65.

[3] Arkin RC. 1992. Cooperation without
communication: multiagent schema-based robot
navigation. Journal of Robotic Systems. 9(3):351-364.

[4] Brooks RA. 1986. A layered control system for a
mobile robot. IEEE Journal of Robotics and
Automation. 2(1):14-23.

[5] Grant R. 2002. The ware nobody expected. Air Force
Magazine. 85(4, April):34-40.

[6] Mataric M. 1993. Synthesizing group behaviors. pp
1-10. In: 1993 IJCAI Workshop Series: Dynamically
Interacting Robots. 139 p.

[7] Murphy E. 2001. Last of a dying breed? IEEE
Spectrum. 38(12, December): 17.

[8] Papert S. 1980. Mindstorms: Children, Computers,
and Powerful Ideas. Basic Books: New York, 230 p.

[9] Resnick M. 1994. Turtles, Termites, and Traffic
Jams: Explorations in Massively Parallel Microworlds.
MIT Press: Cambridge, MA, 163 p.

[10] Reynolds CW. 1987. Flock, herds, and schools: A
distributed behavioral model. Computer Graphics
21(4):265-280.

This research was sponsored by the U. S. Air Force
Office of Scientific Research

