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Abstract: - Some techniques for reconstructing attractors from time series are shown in this paper. First, the 
time delay for obtaining the extra coordinates used for the reconstruction is selected using the Average Mutual 
Information (AMI); second, the embedding dimension of the attractor is obtained determining the False 
Nearest Neighbours (FNN). An important feature of this reconstruction algorithm is that it only needs one 
state variable measurement for reconstructing the attractor. Finally, some attractor reconstructions are shown 
for two different cases: Chua's circuit and certain epileptic data measured during a seizure, which shows 
random-like behaviour. 
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1   Introduction 
Chaotic dynamics have been widely studied in 
several disciplines during the last decades. A 
chaotic signal is generated by a deterministic 
dynamical system, but because of its sensitivity 
to initial conditions, it is long-term 
unpredictable. Some methods have been 
developed for situations where the system 
dynamics are known, given by a mathematical 
model. However, in a real situation one 
normally has only a time series, obtained from 
the measurement of a typical system variable. In 
this case, obtaining fundamental invariants of 
the system, like the local dimension of the 
steady state dynamics and the reconstruction of 
the corresponding attractor, is very important 
but it is not an easy problem. There are some 
techniques developed in [1], [2], [4] and [6] for 
the reconstruction of attractors. These 
techniques are used to choose the parameters of 
the reconstruction. 
In this paper we have applied some of these 
techniques to study the behaviour from Chua's 

circuit and some epileptic signals in steady-
state. The main objective is to analyse the 
complex dynamics of these two cases to help in 
the selection of a suitable control strategy. This 
analysis relies on the availability of only a time 
series, obtained from a measured variable of the 
system. So, given a time series obtained from 
some measured variables of Chua's circuit or an 
electroencephalograph, possibly showing an 
irregular behaviour, the objective is to 
determine the stochastic or deterministic nature 
of the system dynamics, as well as some 
fundamental parameters. In particular, we are 
interested in calculating the global and local 
dimension of the system dynamics, and to 
reconstruct the corresponding attractor. 
The paper is organized as follows. In section 2 
some basic concepts on dynamical systems are 
reviewed. Section 3 gives a description of the 
technique used for the attractor reconstruction. 
The Chua's Circuit is described and a 
reconstructed attractor for this system is shown 
in Section 4. In section 5 some basic concepts of 



epilepsy are reviewed and a reconstructed 
attractor for an epileptic signal is shown. Finally 
some concluding remarks are given. 
 
 
2   Some Concepts on Dynamical 
Systems 
Consider a system given by 

( )& , ,x f x t= µ     (1) 

where x ∈ ℜn is the state, f : ℜn → ℜn is a 
smooth vector field, and µ denotes the system 
parameters. The solution of (1) is some vector 
function x = x(t) that describes the trajectories in 
the state space constructed with its coordinates. 
Depending on the parameter values the system 
may display different steady states, ranging from 
equilibrium points to chaotic attractors. 
 
Definition 1 (Chaotic Attractor) [9]. Consider a 
Cr (r ≥ 1) autonomous vector field on ℜn, 
defining a system like (1). Denote the flow 
generated by (1) as φ(t,x), and assume that Λ ⊂ 
ℜn is a compact set, invariant under φ(t,x). Then 
Λ is said to be chaotic if 
i. Sensitive dependence on initial conditions. 

There exists ε > 0 such that, for any x ∈ Λ and 
any neighbourhood U of x, there exist y ∈ U 
and t > 0 such that φ φ ε( , ) ( , )t x t y− > . 

ii. Topological transitivity. For any two open 
sets U,V ⊂ Λ, there exists t ∈ ℜ such that 
φ( , )t U V∩ ≠ ∅ .       � 

 
Systems showing this behaviour are called 
chaotic. In recent years, many techniques have 
been developed for the analysis of the dynamics 
of this kind of systems, in the next section some 
of them are described, but before we will give 
some definitions and a useful theorem. 
 
Definition 2. (Capacity Dimension) [8]. Let A 
be a bounded subset of ℜn. Let Nδ(A) the 
smallest number of sets of maximum diameter δ 
that cover A. Then, the capacity dimension is 
defined, if it exists, by: 

dim ( ) lim
log ( )

log( / )K A
N A

=
→δ

δ

δ0 1
  (2) 

               � 

Typically, this quantity is not an integer number 
for a chaotic attractor A. When this situation 
occurs it is said that A is a fractal set. 
 
Theorem 1. (Embedding Theorem) [3]. Let A 
be a compact and E a subspace of finite 
dimension such that 

dimE > 2 dimK(A)+1   (3) 
where dimK is the capacity dimension. Then the 
set of projections π: A→E, such that π is 
injective, is dense among all projections with 
respect to the norm operator topology.              � 
 
Definition 3. (Embedding Dimension) [5]. The 
dimension dimE = dE in (3) is called the 
Embedding dimension and it is the dimension 
for which the attractor is fully unfolded, i.e. the 
dimension in which two points far away each 
other in the original space are not projected near 
each other in the observation space.      � 
 
Due to this theorem, it is possible to reconstruct 
the attractor in some previously determined 
embedding dimension. The problem here is to 
find this dimension from a time series. In the 
next sections some prescriptions for finding this 
dimension, and some other necessary 
parameters for the attractor reconstruction will 
be given. 
 
 
3   Attractor Reconstruction 
There are no analytical solutions to equations 
describing chaotic phenomena, even an 
approximate solution is not easy to find. Some 
analysis techniques for this kind of systems 
involve perturbation methods [8] for setting 
approximate solutions of (1). An important 
point here is that usually, it is possible to 
measure at least one of the variables involved in 
the time evolution of the system. There are 
some methods for analysing the chaotic 
phenomena by using time series. These methods 
are based on the embedding theorem for the 
reconstruction of the attractor, and some 
prescriptions have been proposed to calculate 
some important system parameters [4], [6]. Due 
to this theorem, it is possible to reconstruct the 



attractor if the embedding dimension is 
previously determined. Two problems arise 
here, the first one is how to find this dimension 
from a time series and the second one is how to 
determine the time delay factor (multiple of the 
sampling period). In what follows some 
prescriptions for solving this problems, and 
some other necessary parameters for the 
attractor reconstruction, will be given. 
There are several procedures to reconstruct a 
chaotic attractor from discrete time 
measurements [2]. In general, the solution relies 
on choosing a suitable sampling period for the 
signal such that topological characteristics of 
the attractor can be reproduced. The attractor 
reconstruction is then accomplished by using 
time delay versions of a scalar quantity s(t), 
observed from time t0 to some final time, as 
coordinates for the state space. Let us define 
x(n) = s(t0 + n∆t), n = 1,2,..., for some initial 
time t0 and a sampling interval ∆t. From the 
observations, d-dimensional vectors 
y(n) = [x(n), x(n + T), ... , x(n + (d-1)T)] (4) 
are used to trace out the orbit of the system. 
Thus, the problem arising here is what values of 
time delay factor T and the embedding 
dimension d = dE to choose. The next two 
subsections deal with those problems. 
 
3.1   Average Mutual Information (AMI) 
Before formally describing the idea of mutual 
information, we have to consider some 
restrictions. First, if the value of T is too short, 
coordinates x(n) and x(n+T) would not be 
independent enough. And second, if T is too 
large, every connection between these 
coordinates would be numerically subject to be 
random like one with respect to the other. In [4] 
it is suggested to base the selection of T in a 
fundamental aspect of chaos: the information 
generation. The average mutual information 
concept is based on the Shannon’s idea for 
information. Let us consider two measurements 
ai and bj from sets A = {ai} = x(n) and     B= 
{bj} = x(n+T) respectively. The mutual 
information between measurement ai and 
measurement bj is the quantity learned by 
measurement ai about measurement bj. In bits, 
this is given as follows: 

( )
( ) ( )log
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where PAB(a, b) is the joint probabilistic density 
for measurements in A and B. PA(a) and PB(b) 
are the individual probability densities for the 
measurements in A and  B, respectively. The 
average of all these statistic information is 
called Average Mutual Information between A 
and B and it may be written as [2]:  
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In terms of x(n) and x(n+T): 
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     (7) 
The prescription for determining if the values of 
x(n) and x(n+T) are independent enough such 
that we can use them to construct the vector y(n) 
is to take T where the first minimum of the I(T) 
occurs.  
 
3.2   Global False Nearest Neighbours 
Theorem 1 tells us that if the attractor 
dimension defined by the orbits associated to (1) 
is dimK(A), then the attractor will unfold in an 
integer embedding dimension dE>2dimK(A)+1 as 
a maximum value. In an embedding dimension 
that is too small to unfold the attractor, not all 
the points that lie close to one another will be 
neighbours because of the dynamics, some of 
them will actually be far from each other and 
appear as neighbours, because the geometric 
structure of the attractor has been projected 
down onto a smaller space. In a d-dimensional 
space and denoting the rth nearest neighbour of 
y(n) by yr(n),  the square of the Euclidean 
distance between these two points is given by: 

( ) ( )[ ]R n r x n kT x n kTd r
k

d
2 2

0

1
( , ) = + − +∑

=

−  (8) 

In a (d+1)-dimensional space we add x(n+dT) as 
a coordinate to each of the vectors y(n). Again, 
the squared Euclidean distance in this 
dimension between both points is: 

( ) ( )[ ]R n r R n r x n dT x n dTd d r+ = + + − +1
2 2 2

( , ) ( , )  (9) 

 
A criterion to find false neighbours may be the 
increase in distance between y(n) and yr(n) when 



going from dimension d to d+1. The increase of 
distance can be stated as: 

R n r R n r
R n r
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                (10) 
Where RTH is some threshold. For our case we 
took RTH ≥ 15, this result was founded 
experimentally. 
 
 
4   Reconstruction of Chua´s Attractor 
Chua’s circuit is a well-known oscillator that 
exhibits bifurcations and chaotic behaviour. We 
have chosen this system in order to validate our 
reconstructions before applying the method to 
other signals. The circuit contains three linear 
energy-storage elements (an inductor and two 
capacitors), a linear resistor and a nonlinear 
resistor NR [7]. 

 
Fig. 1 Chua´s Circuit 
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where G = 1 / R and f (vC1) is a piecewise-linear 
function defined by 
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Fig. 2 Three-segment piecewise linear v-i 

characteristic of the nonlinear resistor 
 

For the so-called Double Scroll Attractor, the 
circuit was constructed using the following 
values for the parameters: C1 = 56 nF, C2 = 5.6 
nF, L = 10 mH, Ga = -409.0909 µs, Gb = -
757.5757 µs, Bp = 1 V, R = 1820 Ω resistor. The 
following results are the computations of the 
Global Embedding Dimension using the Global 
False Nearest Neighbours and the time delay T 
using the Average Mutual Information. We have 
measured the voltage in C1 using an Analog 
Devices RTI-820 acquisition board on a PC, 
obtaining the time series for VC1. The signals 
have been sampled every 0.001 seconds, and we 
have used only the first 10,000 samples for each 
reconstruction, without transients. 
The AMI is calculated between the original 
signal and its delay version for each time delay 
factor T  (multiples of the sampling period), the 
T for the double scroll attractor is set in the first 
minimum (Figure 3) which turns out to be T=8.  

 
Fig. 3 Average Mutual Information for a 

Chaotic Attractor 
 
Now the percentage of FNN is calculated, from 
figure 4 it is observed that in d=3 there are no 
false neighbours so the embedding dimension is 
fixed to dE=3. 

 
Fig. 4 Percentage of False Nearest Neighbours 

 



Figure 5 shows the original attractor, and finally 
figure 6 shows the reconstructed attractor for the 
obtained parameters.  
 

 
Fig. 5 Two-dimensional projection of the 

attractor 

 
Fig. 6 Chaotic attractor reconstructed using vC1 

 
 
5   Reconstruction of Epileptic 
Attractors 
Epilepsy is a generic term that involves a group 
of illness characterized by crises. This is a 
clinical condition, which is revealed by 
recurrence of spontaneous crises related with an 
abnormal electrical discharge in the brain. 
Epileptic crises are sudden involuntary 
alterations, which are related with changes in 
the motor, sensitive and conscious activities 
with a stereotyped pattern. They are not caused 
by alcohol, stress, fever or any other acute 
problem. 
Epileptic crises can be originated in neurons 
capable of producing electrical discharges like 
the ones in the hippocampus or in the neocortex. 
The epileptic discharge follows a fail in the 
inhibitory mechanisms, particularly, the 
Gamma-Aminobutiric Acid (GABA). The 
electroencephalograms (EEG) obtained during 

an epileptic seizure show an apparently random-
like behaviour. 
We use some measurements from an EEG 
during an epileptic seizure as an example of 
using these techniques without having prior 
knowledge about the dynamics of the system we 
are dealing with. 

 
Fig. 7 Measured signal during an epileptic 

seizure 
 
Figure 7 shows a measured signal during an 
epileptic seizure, the AMI is shown in figure 8. 

 
Fig. 8 Average Mutual Information for an 

epileptic signal 
 
Using the value T=7 from the computed AMI, 
the reconstructed attractor in dE=3 is shown in 
figure 9. 

 
Fig. 9 Attractor reconstruction from an epileptic 

measured signal 
 
 



6   Concluding Remarks 
 In this work some reconstructions for the 
different attractors have been shown. An 
important feature of these algorithms is that we 
only need one state variable time series for 
reconstructing the attractor. The computation of 
the FNN and the AMI for determining the 
embedding dimension and the time delay is an 
important tool for knowing some dynamical 
properties. An advantage of this kind of 
techniques is that we do not need to have the 
system's mathematical model, it is enough to 
have a time series for the reconstruction.  
The stochastic or deterministic nature of the 
measured signals is determined using both, AMI 
and FNN techniques. For a stochastic signal the 
AMI plot does not have a strict minima and the 
FNN plot never reaches the 0% value. 
These analysis techniques are helpful for better 
understanding of different nonlinear 
phenomena, using the algorithms presented in 
this paper it is possible to know some important 
dynamic properties of this phenomena by 
reconstructing the attractor. 
The preliminary results for analysing epileptic 
signals will be used by our group, with several 
further analysis, for analytically classifying 
different kind of seizures. 
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