
1. Introduction 
A major problem in speech recognition system is 
the decision of the suitable feature set which can 
faithfully describe in an abstract way the original 
highly redundant speech signal. Several techniques 
have been developed so far for solving this 
problem. It has been known that, the cochlea, the 
main component of the inner ear, performs the 
filterbank based frequency analysis on the speech 
signal to extract the relevant features. Thus, most 
techniques are pivoting around the filterbank 
methodology in extracting the features. The 
difference in the design of the filterbank offers the 
extraction of different features from the signal. The 
main parameters in the filterbank filter design are 
the frequency response, which defines the shape of 
the filters, the centre frequency and the bandwidth. 
These parameters can be selected based on the 
human auditory system. Dominant speech analysis 
techniques for ASR, namely Mel frequency 
cepstrum [1] and perceptual linear predictive (PLP) 
[2], try to emulate the human auditory perception. 
The Mel cepstrum technique uses filters with 
centre frequencies spaced equally on a linear scale 
from 100 to 1000Hz and equally on logarithmic 
scale above that. Above 1000Hz each centre 
frequency is 1.1 times the centre frequency of the 
previous filter.  The shape of the magnitude 

frequency response of each filter is normally 
considered triangular. The Q factor, the ratio of the 
centre frequency to the filter bandwidth, is constant 
along the whole spectral band. Each vector of log 
energy calculated from the filterbank outputs is 
processed by an inverse cosine transform to create 
what is called Mel frequency cepstral coefficients 
(MFCCs). The cosine basis attempt to approximate 
Karhunen-Loeve basis, which provides the 
necessary decorrelation between the feature 
vectors, and project the spectrum on directions of 
maximum global variability [3]. These MFCCs are 
considered as the extracted features from the 
speech signal, which in turn are presented to the 
speech recogniser for classification task. To 
improve the speech recognition rate the feature 
vectors are normally augmented by vectors 
representing the delta (speed) and the delta-delta 
(acceleration) of the spectral components, MFCCs 
[4]. The PLP differs from the Mel cepstrum in the 
type of filter shapes and smoothing of the short-
term spectrum coming out of its filterbank. The 
Mel cepstrum technique uses the truncation of the 
MFCCs for smoothing while the PLP approximates 
the cubic-root compressed modified spectrum by 
an autoregressive model and computes the model’s 
cepstral coefficients.  
In this paper we developed a compromise between 
different front ends to design a model that is more 
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coherent to the auditory models and having the 
advantages of the Mel cepstrum and the PLP front 
ends in being fast. Our technique based on the 
Gammatone auditory filter bank in extracting the 
relevant features. Gammatone filter modelling is a 
physiologically based strategy followed in 
mimicking the structure of the peripheral auditory 
processing stage. It models the cochlea by a bank 
of overlapping bandpass filters. The performance 
of this technique will be measured using the F-ratio 
as a figure of merit to show the classification 
ability of our technique against the classical Mel-
cepstrum and the PLP techniques. Also the 
recognition rate of a CHMM based ASR system 
will be compared by using the above three 
techniques. Our Gammatone based method 
outperformed the classical Mel-cepstrum and the 
PLP methods in both classification and recognition 
rate tests.  
 
2. Gammatone Auditory Filterbank 
Gammatone filter (GTF) modeling is a 
physiologically motivated strategy followed in 
mimicking the structure of the peripheral auditory 
processing stage. It models the cochlea by a bank 
of overlapping bandpass filters. The impulse 
response of each filter follows the Gammatone 
function shape. This function was introduced by 
Aertsen and Johannesma [5]. It has the following 
classical form: 
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Where γ(n,b) is a normalization constant 
depending on the order, n, and the bandwidth 
related factor, b, w is the radian center frequency, φ 
is the phase shift and u(t) is a unit step function. 
This function has also been modified for the sake 
of computation simplification by removing the 
cosine term from the classical form [6; 7]. The 
name of this filter derived from its relation to the 
Gamma function, which has for n>0 the form: 
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The tone is referring to the cosine term, which 
represents a tone at the center frequency. 
Gammatone filter is very similar to the rounded 
exponential function, reox(p). Reox function is 
normally used in representing the magnitude 
response of the human auditory filters [8]. This 
function is a parameterisation form of the auditory 
filters response using notched noise masker 

technique. It is known that 3rd – 5th order 
Gammatone filter gives very good approximation 
to the reox(p) filter over a 60dB range [9]. The 
main advantage of Gammatone filter over the reox 
filter is that the former belongs to linear time 
invariant system family, while the later is not. This 
means that the Gammatone filters can be 
represented by a transfer function and 
consequently be electronically implemented while 
the reox filter lack this property due to unknown 
phase response [10].  Also, the Gammatone 
filterbank can very well model the non-linear 
frequency characteristics of the cochlea even it is 
belonging to the linear system family.  The 
Gammatone function corresponding to a cochlea 
filter centered at 1000Hz and with bandwidth of 
125Hz is shown in Fig. 1. This figure shows also 
that the Gammatone function is a good fit to the 
impulse response of the auditory nerve fibre as 
measured with reversed-correlation (revcor) 
technique [11].  
 
 
 
 
 
 
 
 
 
 
 
3. Bandwidth and centre frequency of 
the GTF 
The bandwidth of each filter in the Gammatone 
filterbank is determined according to the auditory 
critical band (CB) corresponding to its centre 
frequency. The CB is the bandwidth of the human 
auditory filter at different characteristic 
frequencies along the cochlea path. The first 
determination of the CB was done by Fletcher in 
1938 [12]. He assumed that the auditory filters 
were rectangular which was greatly simplifying the 
formulation of the signal and the noise powers 
within the CB. Although the rectangular critical 
band concept is not realistic but it is very useful. 
The bandwidth of the actual auditory filters can be 
related to it by suggesting an equivalent 
rectangular bandwidth (ERB) filter that has a unit 
height and a bandwidth ERB. It passes the same 
power as the real filter do when subjected to white 
noise input. 
This definition of ERB implies the mathematical 
formula: 
 

Figure 1: The Gammatone function 
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Where the maximum value of the filter transfer 
function, |H(f)| , is  unity. Several physiologically 
motivated formulas have been derived for the ERB 
values and our preference is with that suggested by 
Glasberg et al. [9; 13]. It follows the following 
formula at centre frequency Fc: 
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This formula gives the highest selectivity factor, Q 
factor, among all the other suggested ones. The Q 
factor is the ratio between the centre frequency and 
the bandwidth of each filter.  
Thus to determine the bandwidth of each filter, 
which is now represented by the ERB value, the 
centre frequency of each filter has to be ready 
beforehand. In the human auditory system, there 
are around 3000 inner hair cells along the 3.5-cm 
spiral path cochlea. Each hair cell could resonate to 
a certain frequency within a suitable critical 
bandwidth. This means that there are 
approximately 3000 bandpass filters in the human 
auditory system. This resolution of filters can not 
be implemented practically using computational 
modelling techniques. However we can 
approximate this high resolution into some 
possibly implemented one. This can be achieved 
by specifying certain overlapping between the 
contiguous filters. The percentage-overlapping 
factor, v, will specify the number of channels, 
filters, required to cover the useful frequency band. 
This band is decided according to the requirements 
of the application. In our speech recognition 
system this band is in the range of 100 - 11025Hz, 
as this is the useful information distribution band. 
If we depend on Glassberg and Moore [13] 
recommendation and if we suppose that the 
information carrying band is bounded by fH Hz and 
fL Hz with v overlapping spacing the number of 
filters will be: 
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Then the center frequency can be calculated by  
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Having decided the locations of the center 
frequency of each filter the bandwidth can be 
calculated from (4) and we can now proceed to the 
implementation stage. 
 
4. Gammatone Filter Implementation 
The previous sections described a physiologically 
motivated way for deciding the bandwidth and the 
center frequency of each filter in the Gammatone 
filterbank. The implantation of a band pass filter 
from its time domain function is a straightforward 
procedure in signal processing. It is simply started 
by finding the Laplace transform of the 
Gammatone function then map it into the digital 
form using bilinear transform or impulse invariant 
transform. There are several methods in 
representing and implementing the Gammatone 
function. Lyon suggested an all pole version by 
discarding the zeros from the transfer function of 
the Gammatone filter aiming for simple 
parameterization [10]. Lyon all pole version 
reduces the computation but on the cost of loosing 
selectivity sharpness at low frequency. Other form 
was also suggested by Cooke, [7], in which he 
used the complex data to realize fourth order filter. 
The computations still as that of the eighth order 
filter with real data. Cooks method needs pre-
multiplication of the input signal by a complex 
exponential at the specified center frequency, 
filtering with a beseband Gammatone filter, post-
multiplication by that exponential. Malcolm Slaney 
describes one simple way of implementation 
procedure of the Gammatone based filters [14]. 
Fourth order Gammatone filter is also used in the 
design as it gives the best reox function fit. It 
requires eighth order digital filter to realize. Our 
preference is with Slaney method because it 
preserves the original form of the Gammatone 
filter, and of the simplicity of implementation. The 
frequency response of a 20-channel filterbank, 
covering 100-11025 Hz band, after the pre-
emphasis by the equal loudness curve is shown in 
Fig. 2.  
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Figure 2: Frequency response of a Gammatone 
filterbank 



The bandwidth of the channels is logarithmically 
proportional with the centre frequency.  
Fig. 3 shows the relation between the channel 
number, the centre frequency and the bandwidth. 
The tips of the filters moving along the centre of 
the horny shaped curve. The highest the channel 
number is the lowest the centre frequency and 
bandwidth are, which is in consistency with 
equation (6). The bandwidths of the filters are 
logarithmically varied with the channel numbers. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Speech analysis using Gammatone 
filterbank 
The physiologically motivated Gammatone filters 
can be used as weighting coefficients for speech 
signals. In this case the energy within each filter is 
calculated by finding the magnitude of the Fourier 
transform of the speech signal and multiplying it 
by its corresponding weighting filter. The filters’ 
outputs are subjected to equal loudness pre-
emphasis filter. From this stage we experimented 
two options. The first option, Gamma-cepst is 
rapping the energy spectra into cepstral 
coefficients domain using the inverse cosine 
transform. This transformation produces highly 
uncorrelated features, which are necessary for the 
HMM processing. To reduce the high 
dimensionality of the analyzed speech into low 
dimensionality space, a smoothing by truncating 
the output coefficients to 13 coefficients is 
necessary. The second option, Gamma-PLP, is to 
augment similar steps used in preparing the PLP 
coefficients. The block diagrams of both options 
are depicted in Fig. 4. 
 
6. Evaluation based on the F-ratio 
The F-ration is a measure that can be used to 
evaluate the effectiveness of a particular feature. It 
has been widely used as a figure of merit for 

feature selection in speaker recognition 
applications [15]. It is defined as the ratio of the 
between-class variance (B) and the within-class 
variance (W).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the contest of feature selection for pattern 
classification, the F-ratio can be considered as a 
strong catalyst to select the features that maximise 
the separation between different classes and 
minimise the scatter within these classes. The F-
ratio technique can be formulated as follows: 
Let us consider that the number of training feature 
vectors, training patterns, in the jth class of K 
classes be equal to Nj. Thus the F-ration of the ith 
feature can be defined by 
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 where Bi is the between-class variance and Wi is 
the pooled within-class variance of the ith feature. 
These can be mathematically defined by 
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where µij and Wij are the mean and variance of the 
ith feature, respectively, for the jth class, and µi is 
the overall mean of the ith feature.  

Figure 4: Block diagrams of two feature extraction 
paradigms. (a) Gamma-PLP      (b) Gamma-cepst 
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Figure 3: Gammatone filterbank characteristics 
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In our approach in using the F-ratio we make use 
of the HMM properties to facilitate the 
implementation of this technique. The HMM 
technique used is implicitly considering the 
Gaussian behaviour of the feature vectors which 
satisfies one condition needed by the F-ratio 
method. The second condition, uncorrelation, is 
satisfied by using the diagonal covariance within 
the structure of the HMM. 
In our approach we applied the F-ratio, formula 
(7), on each model, corresponding to a certain 
word, considering each state as a separate class. 
Then we averaged the resultant F-ratios of the 
different words. In this case K refers to the number 
of states in the HMM. The F-ratio averaging is 
straightforward according to the formula 
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where H is the number of models to be dealt with. 
The averaged F-ratio values can be sorted into 
descending order then the top Q features are 
selected, which simply determine the most vital 
features within the whole set of features. The 
number of coefficients of the full feature vector is 
Q=39, in proportion of 13 (power and 12 MFCCs) 
with their delta and delta-delta coefficients. The F-
ratio of 10 models and their average is depicted in 
Fig. 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is obvious from this figure that the static 
coefficients set, Q1 to Q13, are more important than 
the dynamic delta coefficients set, Q14 to Q26, 
which in turn more important than the delta-delta 
coefficients set , Q27 to Q39. This motivated us to 
select the most prominent coefficients from the 
feature vectors. We selected the top 28 ranked 

coefficients in proportion of staic=11, delt=9, and 
delta-delta=8. This selection has proved to be 
better than the original 39 coefficients and be used 
in all our experiments.  
We compared the F-ratio characteristics of the 
Mel-cepst, Gamma-cepst, Gamma-PLP, and PLP 
models to evaluate the classification performance 
of them. Fig. 6 shows this comparison which 
indicates that the models performance from the 
highest to the lowest is in the following order: 
Gamma-cepst, Gamma-PLP, PLP, and Mel-cepst. 
Their corresponding F-ratio total means, 
mean(Fave), are 1.57, 1.45, 1.30, and 1.19.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To consolidate the consistency of classification 
property with the recognition performance we 
embedded the above four features into a standard 
CHMM based ASR system. The models are left-to-
right, 9 states, 5 mixture models suitable for 
medium size, speaker independent isolated word 
recognition [16;17]. 
The testing datasets are DATASET-I that includes 
the 35 English digits, and DATASET-II that 
includes 105 randomly selected words. The 
recognition rates are depicted in Table 1.  
 
 

 DATASET-I DATASET-II 
Mel-cespt 97.3 92.6 

PLP 98.1 92.9 
Gamma-PLP 98.8 95.7 
Gamma-cepst 99.6 98.2 

 
 
 
 
For DATASET-I all the paradigms have almost the 
same performance while in DATASET-II, larger 

Figure 5: F-ratio of the between states procedure. 
The thick red line indicates the mean of the between 
states F-ratio. 

Table 1: Recognition rate performance results 
of the four  feature sets. 
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size data, the Gamma-cepst outperforms the 
features, which is consistent with the F-ratio 
results. 
 
7. Conclusion 
An auditory motivated technique has been 
described to extract significant feature sets from 
the speech signal. It is mainly based on the 
Gammatone filterbank. Gammatone Auditory filter 
banks are non-uniform bandpass filters, designed 
to imitate the frequency resolution of human 
hearing. Two paradigms shown in Fig. 4 have been 
implemented and tested. They outperform their 
classical counterparts, i.e. mel frequency and PLP 
techniques. The classification performances have 
been tested since they are strong cue to the 
recognition performances. Intuitively, the more 
distant the classes are from each other, the better 
the chance of successful recognition of class 
membership of patterns.  It is reasonable, therefore, 
to select as the feature space that d-dimensional 
subspace of the pattern representation space in 
which the classes are maximally separated.  
In comparison to the conventional mel frequency 
and PLP techniques, Gammatone based features 
were embedded in a standard CHMM based ASR 
system and the recognition rates were calculated.  
Table 1 shows that our technique outperforms the 
conventional feature based ASR systems and the 
Gamma-cepst features are the best performing 
paradigm.  
The F-ratio computation has two roles the first one 
is to show the classification performances. The 
second one is to select the most prominent 
features. We have seen that using 28 coefficients in 
proportion of: static=11, delta=9, and delta-delat=8 
are performing better than the original 39 
coefficients. 
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