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Abstract

In several many situations we need to calculate the eigenvalues and
eigenvectors of a matrix which is given as a product of many others
matrices, that is, we need to calculate the eigenvalue and eigenvectors
of a matrix M which is given as M = m1m2...mk. Even without
considering the complexity of the multiplication of matrices, many
times M become very ill-conditioning as soon as eigenvector is the
concern. Actually this happens even when M is a symmetric matrix,
which will be the our only concern here.
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1 Introduction

In many situations we need to relate
some variables of one set to the vari-
ables of another set. This happens,
in particular, in continuous produc-
tion process, when we need to know
how one of the set of variables impact
the other set of variables. If we can
interpret one of these set as a set of in-
dependent variables and the other set
as a set of dependent variables, and if
there is a linear relationship between
these two sets, then we can calculate
the strength of this relation, the so
called canonical correlation. We must
understand here that we are not look-
ing for a relationship among the ele-
ments of one set to the elements of an-
other set, but, in some sense, we are
looking for a relationship in between
all the elements of one set with all the
elements of the other set. To accom-
plish that, we consider all the linear
combinations in each of the sets, and
then choose that pair that has the
strongest correlation. Again we must
be aware that, in general, no linear
combination of the elements of one
set is one variable of this set. How-
ever, practical experiments has being
showing that this approach is quite
reliable when the number of variables
of both of the sets are reasonable.

The complexity of the canonical
correlation problem accounts to by a
multiplication of five matrices, and
then a calculation of the pair of max-

imum eigenvalue and the eigenvector
associated, beside the effort of obtain
the matrices itself. Even if all the
matrices were well-conditioned, this
product could be not, that is, the eigen-
vector problem associated to the max-
imum eigenvalue of the resulting ma-
trix may be very ill-conditioned.

Several times the most important
factor to be considered in the eigen-
system is exact the conditioning of
the problem and not just the num-
ber of operations to get the answer,
the so called complexity. Those as-
pects of the problem had motivated
as to consider the question of calcu-
lating the eigenvector associated to
the maximum eigenvalue of this five-
block matrix without performing the
multiplication of the matrices, even it
worse a little more the complexity of
the problem. The idea is to define an
specific new five block matrix, where
each block is one of the factors of the
multiplication matrix, and then cal-
culate it maximum eigenvalue and the
eigenvector associated.

This paper is organized as follows.
An Introduction Section where we give
some general details about the whole
work, a Preliminaries Section where
we give some definitions and results
that will be used later on, a Main
Section , where we present the main
result, and finally a section with the
proposed algorithms and some con-
clusions.
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2 Preliminaries

Let X be a random n-dimensional vec-
tor whose components are random vari-
ables. Each coordinate of X is a ran-
dom variable with its own marginal
probability distribution. Here it is
supposed that all of the probability
distributions are normal probability
distributions. The marginal mean and
variance of each coordinate of X is de-
fined as µi = E(Xi), and the variance
σi = E(Xi − µi)

2. Thus, putting all
together, we have that the expecta-
tion of X is E(X) = µ, a n-dimensional
vector, and the variance-covariance ma-
trix is Σ = E(X−µ)(X−µ)T , a n ×
n symmetric matrix. Explicitly, the
variance-covariance matrix is thus,

Σ =Cov(X) =




σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σnn




where σii = σi = E(Xi − µi)
2, e

σik = E(Xi − µi)(X − µk).
The correlation coefficient ρik is

calculated in terms of covariance σik

and variances σii and σkk, as

ρik =
σik√

σii
√

σkk

.

This ρik measure the strength of
the linear association between the ran-
dom variables Xi and Xk.

If a is a vector in Rn, then a linear
combination of the variables in X is

simply aT X. Performing the defini-
tions given above, we can have that,

E(aT X) =aT E(X) =aT µ,

and

V ar(aT X) =aTΣa,

where Σ = Cov(X).
Now let X and Y be random vari-

ables with E(X) =µ1 and E(Y ) =µ2,
and let Z the random variable,

Z=

(
X
Y

)
.

Then,

E(Z) =E

(
X
Y

)
=

(
µ1

µ2

)
= µ.

and,

Cov(Z) =Cov

(
X
Y

)
=

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ11 is the covariance matrix
of X, Σ22 is the covariance matrix of
Y and Σ12 = (Σ21)

T is the covariance
matrix of X and Y .

Lets call U= aT X and V = bT Y ,
then,

V ar(U) = aT Σ11a,

V ar(V ) = bT Σ22b,

and,

Cov(U,V ) =aT Σ12b.
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The correlation between U and V
is defined as

Corr(U, V )= max
a,b∈Rn

aT Σ12b√
aT Σ11a

√
bT Σ22b

.

Theorem 1 Suppose X ∈ Rm, Y ∈
Rn are random variables with m 6
n, Cov(X) = Σ11, Cov(Y ) = Σ22,
and Cov(X,Y ) = Σ12. Furthermore,
suppose Cov(Z)=Σ has full rank. Let
U= aT X and V = bT Y , then,

max
a,b

Corr(U, V ) = ρ∗1

which comes to be the biggest eigen-

value of Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 , and a, b
are respectively,

aT = uT
1 Σ

− 1
2

11 and bT = vT
1 Σ

− 1
2

22

where u is the eigenvector associated
to the greatest eigenvalue of

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 ,

and v is the eigenvector associated to
the greatest eigenvalue of

Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 ,

furthermore, V ar(U) = V ar(V ) = 1.

Proof. See [Johnson 98]

Since the matrix Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22

is symmetric, eigenvalue is no longer
a problem, but unfortunately, eigen-
vector can be very ill-conditioned. It

has noting we can do about condi-
tioning acting directly on the matrix
using similarity transformation, since
similarity transformation preserves eigen-
values. However we can get better
about conditioning if we redefine the
problem so that the matrix we have to
look for the eigenvalues-eigenvectors
is no longer a product of matrices,
and has a more favorable condition-
ing number.

From now on the matrix

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11

will be immerse in a more general
class of matrices m = m1m2m3m4m5

where m1, m3, and m5 are positive
definite, m1 = m5 and mT

4 = m2 are
invertible. The properties used here
for mi, i = 1, 2, ..., 5 are exactly those
one owned by their counterpart in

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 .

The rule of Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 is the

same of that of Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 with
the rule of Σ11 changed with the rule
of Σ22, and so, both matrices are in
the same class.

3 Main Results

Let M be the matrix defined by

M =




m5

m4

m3

m2

m1




.
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The eigenvalues of M are closely
related to those of m = m1m2m3m4m5

as we are going to see.

Theorem 2 The set of eigenvalues
of M is a subset of the eigenvalues
of m = m1m2m3m4m5 in the follow-
ing sense. If λ is an eigenvalue of M
then λ5 is an eigenvalue of m.

Proof. Let λ be an eigenvalue of
M , then there exists a non zero vector
xT = (x1x2x3x4x5) such that




m5

m4

m3

m2

m1







x1

x2

x3

x4

x5


 =

λ




x1

x2

x3

x4

x5




Since m5x5 = λx1, m4x1 = λx2,
m3x2 = λx3, m2x3 = λx4, m1x4 =
λx5, then we have that

m1m2m3m4m5x5 = λ5x5,

and the proof is complete.
The characteristic polynomial for

M matrix has high degree than that
one for m matrix, then the inclusion
must stand for different eigenvalues,
that is, the inclusion is in the sense
of set inclusion. Therefore we have
that the eigenvalues of matrix m =
m1m2m3m4m5 can be obtained from
those of matrix M .

Now lets cast some properties of
matrix M . First, matrix M is 5-cycle
in the sense that if we rotate the ma-
trix M in the clock sense to

M4 =




m4

m3

m2

m1

m5




then we have that,

m1m2m3m4m5 x4 = λ5 x4,

that is, we have the same eigenvalue-
eigenvector relation, but now the eigen-
vector is x4 instead of x5, as before.
Let M3 be the matrix,

M3 =




m3

m2

m1

m5

m4




then we have now,

m1m2m3m4m5 x3 = λ5 x3.

If we let M2 be the matrix

M2 =




m2

m1

m5

m4

m3



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once again we have the same kind of
relation,

m1m2m3m4m5 x2 = λ5 x2.

Finally, if we let M1 be the matrix,

M1 =




m1

m5

m4

m3

m2




then, the eigenvalue-eigenvector ex-
pression comes to be,

m1m2m3m4m5 x1 = λ5 x1.

Far ahead we will see that the eigen-
value is always the same in each one
of these expressions and just the eigen-
vectors change. This is exactly what
we are going to use to have a better
conditioning eigenvector problem.

Another quite striking property of
matrix M is that it is invertible, up
on its block components. In fact if
you see MT matrix and MMT ma-
trix, then you can see easily figure out
how to build up M−1.In fact, MT is

MT =




mT
4

mT
3

mT
2

mT
1

mT
5




and MMT is

MM
T =




m5mT
5

m4mT
4

m3mT
3

m2mT
2

m1mT
1




and then

M−1 =




m−1
4

m−1
3

m−1
2

m−1
1

m−1
5


 .

The existence of this matrix is a
direct consequence of invertibility of
each of the components of matrix m.
Note also that for each i = 1, 2, 3, 4 ,
MiM

T
i is given by

M4M
T
4 =




m4mT
4

m3mT
3

m2mT
2

m1mT
1

m5mT
5




M3M
T
3 =




m3mT
3

m2mT
2

m1mT
1

m5mT
5

m4mT
4




M3M
T
2 =




m2mT
2

m1mT
1

m5mT
5

m4mT
4

m3mT
3




M1M
T
1 =




m1mT
1

m5mT
5

m4mT
4

m3mT
3

m2mT
2


 .

The spectrum of MiM
T
i is given

by

λ(MiM
T
i ) =

5∪
k=1

λ(mkm
T
k ).
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Now let see that all of the systems

Mi x = λ x,

has exactly the same conditioning num-
ber. In fact, to see this you only need
to see that all of the matrices MiM

T
i

for i = 1, 2, ..., 5, are diagonal matri-
ces whose diagonal entries are always
the same set Λ,

Λ = ∪5
i=1

{
mim

T
i

}
.

If we use the same reasoning for M−1
i

the results will be of the same nature
with the rule of mim

T
i changed re-

spectively to m−1
i m−T

i , then the max-
imum of λ(MiM

T
i ) for i = 1, 2, ..., 5

are the same, and λmax(M
−1
i M−T

i ) for
i = 1, 2, ..., 5 are also the same, ac-
cording to the result given above, and
so cond(Mi) is always the same, no
matter which matrix Mi we consider
to solve the eigensystem problem.

Now we must consider the ques-
tions concerning the calculation of eigen-
vector. As we have seen, the calcula-
tion of eigenvalue is no longer a prob-
lem, and since the matrix m is sym-
metric, so it is m−λI, then its condi-
tioning number is just cond(m−λI) =
λmax(m−λI)/λmin(m−λI). The rule
to be used here is that every time the
conditioning of m−λI is high we cal-
culate the eigenvector using each one
of the systems (Mi − λI)x = 0 for
i = 1, 2, ..., 5, and by the contrary, if
the m−λI is well-conditioned we use
the system (m− λI)x = 0.

3.1 Numerical Results

Let m = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 where
Σij is defined as before, be the ma-
trix whose eigenvalues we are look-
ing for. In spite of the fact that m is
a product of five matrices and sym-
metric, since Σ11 and Σ22 are diago-
nal and Σ12 = ΣT

21 , the problem of
calculating the maximum eigenvector
of m can be better conditioned, since
the new problem to be solved, involv-
ing M matrix, may be better condi-
tioned, and there is not a similarity
transformation between m and M .

We relat now some limited numer-
ical experiments performed using MAT-
LAB, where all the matrices were ran-
domly generated.

For matrix 5x5

v1(M) v1(m)

0, 1716 −0, 3865
0, 2326 −0, 5241
0, 1205 −0, 2714
0, 2362 −0, 5322
0, 2077 −0, 4680

v1(M) v1(m)

0, 2127 −0, 4849
0, 2523 −0, 5750
0, 1404 −0, 3201
0, 1861 −0, 4241
0, 1710 −0, 3898
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v1(M) v1(m)

−0, 1961 0, 4449
−0, 1821 0, 4131
−0, 2029 0, 4602
−0, 1730 0, 3924
−0, 2272 0, 5154

v1(M) v1(m)

−0, 0027 −0, 0184
0, 0263 0, 1773
0, 0936 0, 6303
−0, 0694 −0, 4677
−0, 0881 −0, 5934

v1(M) v1(m)

−0, 1643 −0, 3726
−0, 2360 −0, 5354
−0, 2151 −0, 4878
−0, 2099 −0, 4761
−0, 1461 −0, 3314

v1(M) v1 (m)

0, 1618 −0, 3685
0, 2753 −0, 6269
0, 1039 −0, 2366
0, 1801 −0, 4100
0, 2183 −0, 4971

v1(M) v1(m)

0, 2055 −0, 4726
0, 2039 −0, 4690
0, 1595 −0, 3668
0, 1923 −0, 4423
0, 2070 −0, 4760

v1(M) v1(m)

0, 2002 0, 4603
0, 1969 0, 4528
0, 1932 0, 4442
0, 1650 0, 3794
0, 2139 0, 4918

v1(M) v1(m)

−0, 2100 0, 4834
−0, 2073 0, 4772
−0, 1069 0, 2462
−0, 2048 0, 4714
−0, 2197 0, 5057
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