A new numerical approach to
calculate the eigensystem of a matrix
that appear in the problem of
canonical correlation *

Raimundo J.B. de Sampaio
Jorge A. Leludak
Marco A.B. Candido
Pontifical Catholic University of Parand
Graduate Program in Poduction Engineering and Systems

(PPGEPS - PUCPR)

Abstract

In several many situations we need to calculate the eigenvalues and
eigenvectors of a matrix which is given as a product of many others
matrices, that is, we need to calculate the eigenvalue and eigenvectors
of a matrix M which is given as M = mims...m;. Even without
considering the complexity of the multiplication of matrices, many
times M become very ill-conditioning as soon as eigenvector is the
concern. Actually this happens even when M is a symmetric matrix,
which will be the our only concern here.
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1 Introduction

In many situations we need to relate
some variables of one set to the vari-
ables of another set. This happens,
in particular, in continuous produc-
tion process, when we need to know
how one of the set of variables impact
the other set of variables. If we can
interpret one of these set as a set of in-
dependent variables and the other set
as a set of dependent variables, and if
there is a linear relationship between
these two sets, then we can calculate
the strength of this relation, the so
called canonical correlation. We must
understand here that we are not look-
ing for a relationship among the ele-
ments of one set to the elements of an-
other set, but, in some sense, we are
looking for a relationship in between
all the elements of one set with all the
elements of the other set. To accom-
plish that, we consider all the linear
combinations in each of the sets, and
then choose that pair that has the
strongest correlation. Again we must
be aware that, in general, no linear
combination of the elements of one
set is one variable of this set. How-
ever, practical experiments has being
showing that this approach is quite
reliable when the number of variables
of both of the sets are reasonable.
The complexity of the canonical
correlation problem accounts to by a
multiplication of five matrices, and
then a calculation of the pair of max-

imum eigenvalue and the eigenvector
associated, beside the effort of obtain
the matrices itself. Even if all the
matrices were well-conditioned, this
product could be not, that is, the eigen-
vector problem associated to the max-
imum eigenvalue of the resulting ma-
trix may be very ill-conditioned.

Several times the most important
factor to be considered in the eigen-
system is exact the conditioning of
the problem and not just the num-
ber of operations to get the answer,
the so called complexity. Those as-
pects of the problem had motivated
as to consider the question of calcu-
lating the eigenvector associated to
the maximum eigenvalue of this five-
block matrix without performing the
multiplication of the matrices, even it
worse a little more the complexity of
the problem. The idea is to define an
specific new five block matrix, where
each block is one of the factors of the
multiplication matrix, and then cal-
culate it maximum eigenvalue and the
eigenvector associated.

This paper is organized as follows.
An Introduction Section where we give
some general details about the whole
work, a Preliminaries Section where
we give some definitions and results
that will be used later on, a Main
Section , where we present the main
result, and finally a section with the
proposed algorithms and some con-
clusions.



2 Preliminaries simply a’X. Performing the defini-

tions given above, we can have that,
Let X be arandom n-dimensional vec-

tor whose components are random vari- E(a"X) =a"B(X) =a" p,
ables. Each coordinate of X is a ran-
dom variable with its own marginal
probability distribution. Here it is T\ _ T

supposed that all of the probability Var(a’ X) =",
distributions are normal probability where ¥ = Cov(X).
distributions. The marginal mean and Now let X and Y be random vari-
variance of each coordinate of X isde- gples with E(X) =py and E(Y) =ps,
fined as p; = E(X;), and the variance and let Z the random variable,

o; = E(X; — ;)% Thus, putting all
together, we have that the expecta- 7 ( X ) .
tion of X is F(X) = u, an-dimensional

vector, and the variance-covariance ma-
trix is ¥ = E(X—p)(X—p)", an x
n symmetric matrix. Explicitly, the (2) =B ( X ) _ ( [ ) L

and

Then,

variance-covariance matrix is thus,

Y Ha2
and,
011 712 O1n
J21 022 O2n
¥ =Cov(X) = : S : Cov(Z) =Cov < § ) = ( gll 212
’ ) ' : 21 22
Onl On2 Onn

where Y17 is the covariance matrix

— g — )2 . . .
where oy = 07 = E(X; — ), e of X, Yss is the covariance matrix of

o, = B(X; — “’i?(X - ”k)'_ Y and X, = (2,,)7 is the covariance
The correlation coefficient p; is matrix of X and V.
calculated in terms of covariance oj; Lets call U= a”X and V= bTY
and variances o;; and oy, as then ’
Oik

Pik = Var(U) = a’¥a,

VOiin/ O kk.
This p;; measure the strength of
the linear association between the ran-
dom variables X; and X}. and,

If a is a vector in R", then a linear
combination of the variables in X is Cov(U,V) =a’ $12b.

Var(V) = b Sob,

)



The correlation between U and V'
is defined as

a’S1ob
Corr(U,V)= max
a,beR” \/(ITEHCL\/bTEQQb

Theorem 1 Suppose X € R™, Y €
R™ are random wvariables with m <
n, Cov(X) = ¥q1, Cov(Y) = Xo,
and Cov(X,Y) = ¥19. Furthermore,
suppose Cov(Z)=% has full rank. Let
U= a’X and V= bTY, then,

max Corr(U,V) = pj

which comes to be the bzggest elgen-

value of 211 Y12 X0 221211 ,and a, b
are respectively,

1
T _ Ty 2 >
a’ =uly? and V' =082

where u 1s the eigenvector associated
to the greatest eigenvalue of

1 1
—3 ~1 —3
211" XXy Yo Xiyy*,

and v 1s the eigenvector associated to
the greatest eigenvalue of

1 1
—3 —1 —3
D R IDETR NI

furthermore, Var(U) = Var(V) = 1.

Proof. See [Johnson 98] m
1 _1
Since the matrix X, Yo X1 L1250,
is symmetric, eigenvalue is no longer

a problem, but unfortunately, eigen-
vector can be very ill-conditioned. It

has noting we can do about condi-
tioning acting directly on the matrix
using similarity transformation, since
similarity transformation preserves eigen-
values. However we can get better
about conditioning if we redefine the
problem so that the matrix we have to
look for the eigenvalues-eigenvectors
is no longer a product of matrices,
and has a more favorable condition-
ing number.
From now on the matrix

1 1
NI D DI
will be immerse in a more general
class of matrices m = mymamsmasms
where my, ms, and mj are positive
definite, m; = ms and mI = my are
invertible The properties used here
for m;, = 1,2,...,5 are exactly those
one owned by thelr counterpart in

1 1
Z11221225212212112-
The rule of 222 2212 212222 1s the

same of that of 2112 Y19Y55 Lo EH with
the rule of ¥;; changed with the rule
of Y,,, and so, both matrices are in
the same class.

3 Main Results

Let M be the matrix defined by

ms
My

M = ms
mo

my



The eigenvalues of M are closely
as we are going to see.

Theorem 2 The set of eigenvalues
of M is a subset of the eigenvalues
of m = mimamszmams in the follow-
ing sense. If X is an eigenvalue of M
then \° is an eigenvalue of m.

Proof. Let A\ be an eigenvalue of
M, then there exists a non zero vector
2T = (zyw0732475) such that

1
z2

Al =3
z4
x5
Since msrs = Ar1, Mur; = Axo,
M3Ty = AT3, MaT3 = ATy, MT4 =
Azs, then we have that

MMM s MmMyimMsls — )\5I5,

and the proof is complete. m

The characteristic polynomial for
M matrix has high degree than that
one for m matrix, then the inclusion
must stand for different eigenvalues,
that is, the inclusion is in the sense
of set inclusion. Therefore we have
that the eigenvalues of matrix m =
mimsMmsmams can be obtained from
those of matrix M.

Now lets cast some properties of
related to those of m = mymomsmyms matrix M. First, matrix M is 5-cycle
in the sense that if we rotate the ma-
trix M in the clock sense to

my
msg
ma
ma
ms

then we have that,

MAMaM3mMams Ta = \° T4,

that is, we have the same eigenvalue-
eigenvector relation, but now the eigen-
vector is x4 instead of x5, as before.
Let M3 be the matrix,

ms
ma
my
ms
My

then we have now,

MyMeMsMmams Ts = \° 3.

If we let My be the matrix



once again we have the same kind of

relation, T
msmg

m4mg

5 T = T
MiMeMamams Tz = A Ty M T
mlm’{
Finally, if we let M; be the matrix,
and then
m -1
1 m;
ms my "
M = my M~ = my !
—1
ms my

mgl

mao

The existence of this matrix is a
direct consequence of invertibility of
each of the components of matrix m.
Note also that for each 1 = 1,2,3,4 |
M; M is given by

then, the eigenvalue-eigenvector ex-
pression comes to be,

Mo mngmmymms ry = >\5 XI1.

Far ahead we will see that the eigen-
value is always the same in each one mamT
of these expressions and just the eigen- . mamg .
vectors change. This is exactly what & B
we are going to use to have a better
conditioning eigenvector problem. mgm]

Another quite striking property of g mamg mamT
matrix M is that it is invertible, up msmg
on its block components. In fact if
you see M1 matrix and MM7T ma- T
trix, then you can see easily figure out MsMz = e T
how to build up M~'.In fact, M7 is Y mamd

m1i TVL,{

m5mg

m4mz

mo mg

T mym? = mamj

mgmg

mi mam3
M' = mi
- The spectrum of M;M}! is given
e by

AMMT) = kQIA(mkmg).




Now let see that all of the systems

M, x =\,

3.1 Numerical Results

_1 _1
Let m = ¥,°Y1955) Y01 Y,,° where
¥;; is defined as before, be the ma-

has exactly the same conditioning num- trix whose eigenvalues we are look-

ber. In fact, to see this you only need
to see that all of the matrices M; M}
for : = 1,2,...,5, are diagonal matri-
ces whose diagonal entries are always
the same set A,

A=U_, {mm]}.

If we use the same reasoning for M,
the results will be of the same nature
with the rule of m;m! changed re-
spectively to m; m; T, then the max-
imum of A(M;M}!) for i = 1,2,...,5
are the same, and Apax (M, M) for
1 = 1,2,...,5 are also the same, ac-
cording to the result given above, and
so cond(M;) is always the same, no
matter which matrix M; we consider
to solve the eigensystem problem.
Now we must consider the ques-

tions concerning the calculation of eigen-

vector. As we have seen, the calcula-
tion of eigenvalue is no longer a prob-
lem, and since the matrix m is sym-
metric, so it is m — A, then its condi-
tioning number is just cond(m—AI) =
Amax (M — M) /Apin(m —AI). The rule
to be used here is that every time the
conditioning of m — A[ is high we cal-
culate the eigenvector using each one
of the systems (M; — A\l)z = 0 for
1 =1,2,...,5, and by the contrary, if
the m — AI is well-conditioned we use
the system (m — Al )x = 0.

ing for. In spite of the fact that m is
a product of five matrices and sym-
metric, since 1 and Yoy are diago-
nal and X5 = X%, | the problem of
calculating the maximum eigenvector
of m can be better conditioned, since
the new problem to be solved, involv-
ing M matrix, may be better condi-
tioned, and there is not a similarity
transformation between m and M.

We relat now some limited numer-
ical experiments performed using MAT-
LAB, where all the matrices were ran-
domly generated.

For matrix 5x5

'Ul(M> Ul(m)
0,1716 | —0, 3865
0,2326 | —0,5241
0,1205 | —0,2714
0,2362 | —0,5322
0,2077 | —0,4680
v (M) | vi(m)
0,2127 | —0, 4849
0,2523 | —0,5750
0,1404 | —0, 3201
0,1861 | —0,4241
0,1710 | —0, 3898




Ul(M)

vi(m)

0,2002

0,4603

0, 1969

0,4528

0,1932

0, 4442

0, 1650

0, 3794

0,2139

0,4918

Ul(M)

v1(m)

—0, 2100

0,4834

—0,2073

0,4772

—0,1069

0, 2462

-0, 2048

0,4714

—0,2197

0, 5057

vi(M) | vi(m)
—0,1961 | 0,4449
—0,1821 | 0,4131
—0,2029 | 0,4602
—0,1730 | 0,3924
—0,2272 | 0,5154

v1 (M) v1(m)
—0,0027 | —0,0184

0,0263 | 0,1773

0,0936 0,6303
—0,0694 | —0,4677
—0,0881 | —0,5934

v1 (M) v1(m)
—0,1643 | —0,3726
—0,2360 | —0,5354
—0,2151 | —0,4878
—0,2099 | —0,4761
~0,1461 | —0,3314

v (M) | v (m)
0,1618 | -0, 3685
0,2753 | —0, 6269
0,1039 | —0, 2366
0,1801 | —0,4100
0,2183 | —0,4971
v (M) | vi(m)
0,2055 | —0,4726
0,2039 | —0, 4690
0,1595 | -0, 3668
0,1923 | —0,4423
0,2070 | —0,4760
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