
 1

Formalized Symbolic Execution

ZAFIRIOS KARAISKOS CONSTANTINE LAZOS

Department of Informatics
Aristotle University of Thessaloniki

55006 Thessaloniki
GREECE

 Abstract: In this paper we present a semantics-directed description of symbolic-execution of programs. In the field of

program analysis, most of the methods have been applied on optimizing compilers. It is our belief that there is enough
theory that could support the application of program analysis methods on software construction.

 Most program analysis methods are syntax-directed, thus, they should base the description of the analysis on some
form of semantics, which is syntax-directed, such as the denotational semantics. The description, then, should be augmented
with information specific to the method, which finally would be implemented by a tool. Tools built from semantic
descriptions of programming language’s constructs serve two purposes: make the semantics useful and popular.

 Symbolic execution is a program analysis method used to reconstruct logic and computations along a program path
by executing the path with symbolic, rather than actual values of data. The results obtained by symbolic execution are the
symbolic formulae, representing the values of the program variables, and the path condition for each path examined.

 The symbolic execution approaches, traditionally act upon a control flow graph in which nodes represent program
segments, which are to be executed linearly, and the only control flow structures are (conditional) branches represented by
arcs. The control flow graph is normally structured by using an intermediate representation of the program, such as triples or
quadtruples. This is a “low level” representation of the program.

 We follow the syntax-directed approach, which is considered to be “high level”. It acts upon a program
representation, called abstract syntax tree, which includes all of the high-level control structures and the data structures
present in the source program. First, we define the abstract syntax for an example language. Then we give a semantic
description of symbolic execution, augmented with information specific to the method, in order to be able to maintain the
symbolic formulae and path conditions.

 Key–Words: Program analysis, Symbolic execution, Syntax-Directed, Semantics-directed, Program representation, Abstract
syntax tree.

1. Introduction
 Indisputably, there has been a lot of theory developed for

each one of the various computing science fields like
programming (e.g. formal program design, object-
oriented programming), programming language
semantics, program analysis. In spite of this, most of the
contemporary research effort is wasted in enriching the
existing theory (with new methods, new models) instead
of using it as a means for the development of tools. More
and more voices [15], [9], [8] are heard from the same
direction.

In the field of program analysis, most of the
methods have been applied on optimising compilers. It is
our belief that there is enough theory that could support
the application of program analysis methods on software
construction. Embedded and safety-critical systems but
also large and complex software systems demand

sophisticated tools for design, testing and maintenance of
software. Program analysis consists of designing and
writing program analysers. Program analysers are tools,
which produce results about the nature of a program from
consideration and analysis of a complete model of some
aspect of the program. An important characteristic of
such tools is that they do not necessitate execution of the
subject program, yet produce results relevant to all
possible executions. A very straightforward example of
such a tool is a syntax analyser. At the end of a syntax
scan it is possible to infer that the program is free of
syntactic errors.

Symbolic evaluation is an advanced static program
analysis method with a lot of interesting applications:
symbolic testing, infeasible path detection, test data
generation, program verification, program reduction, and
software maintenance [2]. Recently, it has been applied
to the reaching definition problem, to worst-case
execution time analysis, to cache hit prediction, to alias

 2

analysis, to pointer analysis for detecting memory leaks,
and to parallelizing compilers [1], [3]. Symbolic
evaluation is used to reconstruct logic and computations
along a program path by executing the path with
symbolic, rather than actual values of input variables. A
path through the program is selected and the statements
on the path are executed. Initialised variables are
assigned the corresponding constant value; uninitialised
variables are assigned the undefined value Λ . Input
values needed as read-in values, are represented by
symbolic names. Throughout the execution, the
representations of all program variables are maintained as
algebraic expressions in terms of these symbolic names.
The algebraic expressions are formed by the evaluation
of any assignment statement along the path. A branch
predicate, evaluated over the algebraic expressions of the
variables at a decision point, results in a constraint which
is then conjoined with all previously evaluated
constraints for this path to form the path condition,
denoted by PC. The path condition is used to determine
the feasibility of the program path been examined.

Previous symbolic execution approaches act upon a
control flow graph in which nodes represent program
segments, which are to be executed in linear fashion, and
the only control flow structures are (conditional)
branches represented by arcs. The control flow graph is
normally constructed using an intermediate
representation of the program, such as triples or
quadtruples. This is a "low level" representation of the
program. A "high level" approach acts upon a program
representation, called abstract syntax tree (AST), which
includes all of the high-level control structures and the
data structures present in the source program. Another
advantage of this approach is that the AST representation
of the programs is suitable for different program
processing tools such as editors, translators, debuggers,
optimisers, and so forth [4].

We took the latter a little further according to the
tool-oriented approach [8]. Software is written in some
programming language and the language has syntax.
Thus, the program analysis method needs to base the
description of the analysis on some form of semantics,
which is syntax-directed, such as the denotational
semantics. The language definition then augmented with
information specific to the method becomes the input of
the tool generator. This way a semantics-directed1 tool is
developed. Tools built from semantic descriptions of
programming language's constructs serve two purposes:

1 Semantics directed means that the structure of the program

analysis reflects the structure of the semantics [10].

make the semantics useful [8] and popular [12]. There is
also a nice side effect; such tools do not have to be
proven correct, as they are semantics-directed.

This paper reports on the research performed for the
formal description of symbolic execution, in the
framework of constructing a symbolic evaluation tool,
which will eliminate drawbacks such as restricted
program models and analysis that covers only linear
symbolic expressions. The described system
symbolically executes programs written in a small
example programming language.

2. The Symbolic Evaluator
Our system has been built in stages (in a Linux
environment). First the lexical analyser was constructed
using a lex-like tool, and then the syntax and static-
semantic analyser were constructed with the help of a
yacc-like tool. During the third stage the formal
description of symbolic execution was written using
techniques from continuation semantics. The formal
description was implemented in ML. For the C programs
we used the C compiler provided by the system. The ML
program has been compiled with the Camlc2 compiler.
All object files have been linked together to produce the
symbolic evaluator. The symbolic evaluator reads a
program written in the example programming language,
performs the lexical, syntax, and static-semantic analysis,
and if the program is found to be correct, it produces the
AST. Finally, the AST is traversed and the actions are
executed, which produce the symbolic (algebraic)
expressions for the variables and the path conditions for
the executed paths.

2.1 Syntax of Example Programming Language

2.1.1 Abstract Syntax
The concrete syntax contains details needed only for the
syntax analysis. For the definition of the meaning of the
syntactic forms these details may be ignored and only the
structure of possible language constructs that can occur in
the programs may be used. The abstract syntax delineates
the needed structure. The variety of abstract syntax and
its tolerance of ambiguity raise questions concerning its
nature and its relation to the language defined by the

2 Camlc compiles and links Caml Light source files. The Caml

Light is a dialect of the functional programming language
ML. INRIA holds all ownership rights to the Caml Light
system.

 3

concrete syntax. Answers can be found by analysing the
syntax of the languages in an algebraic context.
 We defined a signature G that corresponds exactly
to the BNF definition of the example programming
language [5], [13]. Each nonterminal became a sort in G
and each production became an operator whose syntax
captures the essence of the production. The terminals do
not appear in the signature since they are embodied in the
unique names of the operators.

The term algebra TG, for the signature G, has as
carriers the sets terms(s,G), which contain all ground
terms of sort s constructed using the operators in G. The
algebra TG is initial in the collection of all G-algebras,
thus, for any G-algebra Α there is a unique
homomorphism h: Α→ΤG .
 Consider the following signature:
♦ Sorts: progr, type, decl, dcltr, expression, stmt.
♦ Operators:

astEmptyProgram : progr
astProgram : decl, stmt -> progr
astEmptyDeclSeq : decl
astDeclSeq : decl, decl -> decl
astDeclaration : type, dcltr -> decl
INT : type
astVarDcltr : dcltr
astArrayDcltr : dcltr, expression -> dcltr
astDcltrSeq : dcltr, dcltr -> dcltr
astWhileStmt : expression, stmt -> stmt
astIfElseStmt : expression, stmt, stmt -> stmt
astIfStmt : expression, stmt -> stmt
astEmptyStmtSeq : stmt
astStmtSeq : stmt, stmt -> stmt
astExprStmt : expression -> stmt
astNullStmt : stmt
astReadStmt : expression -> stmt
astPrintStmt : expression -> stmt
astArrayElem : expression, expression -> expression
astConst : expression
astId : expression
astMinus : expression -> expression
astNot : expression -> expression
astMult : expression, expression -> expression
astDiv : expression, expression -> expression
astMod : expression, expression -> expression
astAdd : expression, expression -> expression
astSub : expression, expression -> expression
astGreater : expression, expression -> expression
astGrEq : expression, expression -> expression
astLess : expression, expression -> expression
astLeEq : expression, expression -> expression
astEq : expression, expression -> expression
astNotEq : expression, expression -> expression
astAnd : expression, expression -> expression
astOr : expression, expression -> expression
astAssign : expression, expression -> expression

Figure 1. The operators of the new signature (also
an abstract syntax for the example programming

language).

We defined an algebra Α with carriers consisting
of terms constructed using the above operators, and a
mapping h: Α→ΤG defined inductively using a family
of functions Sh ,Α . h is a homomorphism and because the
G-algebra TG is initial, the homomorphism is unique and
the algebra Α is a G-algebra too.

The operators, in figure 1, form a version of the
abstract syntax for the example programming language.
Thus, each version of the abstract syntax of a
programming language is an algebra for the signature
associated with the grammar that forms the concrete
syntax of the language. Algebras acting as abstract syntax
will contain confusion (i.e. the mapping h will not be
one-to-one), reflecting the abstracting process. By
confusing elements in the algebra, we are suppressing
details in the syntax.

The syntax analysis concludes by constructing the
AST. We let the AST be constructed by creating a node
for each operator of the abstract syntax (see figure 2-1).
Each node in an AST has been implemented as a record
with fields: the name of the operator, a pointer to the
symbol (table) node, and pointers to the subtrees. We
wrote the function MkNode() to create the nodes of
AST's using the underlying productions of the grammar
to schedule the calls of it. The function returns a pointer
to a newly created node.

2.2 Semantics-directed Symbolic Execution
 We shall define symbolic execution using the techniques

of denotational semantics and especially continuation
semantics. The reasons behind our decision are: a formal
definition is precise, it would guide us to the (possibly)
best way of implementing symbolic execution, it would
provide us techniques to cope with functions and
complex data-structures, it would make it convenient to
experiment with methods handling simplification of
constraints. We will take the engineering approach as M.
Gordon did in [6]. For the theoretical basis of
denotational semantics the reader is referred to the books
by Stoy [14], Schmidt [11], Gunter [7].

A denotational definition consists of three parts: the
abstract syntax definition of the language, the semantic
domains, and the valuation functions.

The abstract syntax gives the structure of the
syntactic constructs of the language being described and
is presented in the previous subsection. The semantic
domains provide the denotations, which are usually
abstract mathematical objects such as numbers,
functions, or terms, and are used to define the meaning of
the syntactic constructs of the language. The denotation

 4

of a syntactic construct must depend only on the
denotations of its subconstructs (this is called
compositionality) and so it contributes to the semantics of
any complete program in which it may occur. The
valuation functions map programs, fragments of
programs, or particular constructs of the language to their
denotations. Given that syntactic constructs have an
unambiguous structure, the valuation functions may be
defined inductively by specifying, for each syntactic
construct, its denotation in terms of the denotations of its
components (if there are any). The conventional way of
writing such an inductive definition in denotational
semantics is as a collection of semantic equations, one
for each operator of the abstract syntax. The notation for
expressing the semantic equations is traditionally based
on λ-notation.

2.2.1 Semantic Domains

2.2.1.1 The one element domain
Domain: Unit
Operations: (): Unit

2.2.1.2 The SymbExp domain
Let the algebraic system consisting of the set Values :

Values = Int ∪ SymbVal
where SymbVal = {$1,$2,...},

together with the collection of operations in Values:
umin, neg: Values → Values
times, div, mod, plus, minus, ls, le, gr, ge, eq, ne,

and, or: Values x Values → Values
The domain SymbExp consists of the algebraic
expressions (with respect to the algebraic system), which
are defined inductively as follows (using prefix notation):
1. Each member of Values is an algebraic expression.
2. If e is an algebraic expression then so is ()eiϑ , for

each unary operation iϑ .
3. If e1 and e2 are algebraic expressions then so is

()21 ,eeiϑ , for each binary operation iϑ .
Defined in this fashion, algebraic expressions are
completely parenthesised.

2.2.1.3 Computer Store Locations
The computer store consists of consecutive locations,
which are capable of holding storable values (see next
section).
Domain: Location
Operations: nextloc and some more. nextloc returns the
next unused location in the list of locations.

2.2.1.4 Denotable, Storable, and Expressible
values
The Dvalue domain contains all the values that identifiers
may represent. The Svalue domain contains the storable
values - the values that can be held in locations. The
Evalue domain contains the values, which expressions
can produce.

Dvalue=SymbExp+Location+Array+NoVal
Svalue=Dvalue
Evalue=Svalue

where Array = Location
NoVal = Unit

2.2.1.5 Output
The output is the domain PathCond which is defined
recursively as the domain of path conditions, each one
been either error, telos or an algebraic expression paired
with another path condition - 'unwinding' this we see a
path condition is either a finite string of algebraic
expressions ending with error or telos, or an infinite
string of algebraic expressions.
Domain: PathCond = {error,telos} + (PathCond x
SymbExp)

2.2.1.6 Environment
The environment consists of two components. The Map
component tells what the identifiers mean in the
expression - that is, what values the identifiers denote -
and is specified by a function from name to Dvalue. The
Location is the pool of storage locations. We shall use e,
e', e1, e2 etc. to range over Environment.
Domain: Environment = Map x Location

where Map=name → Dvalue
Operations: accessdv, reserveloc.

2.2.1.7 Store
Associates locations with storable values. We shall use s,
s', s1, s2 etc. to range over Store.
Domain: Store = Dvalue → Svalue

2.2.1.8 Statement continuations
Statement continuations were first developed for
modelling unrestricted branches ("gotos") in general
purpose programming languages, but their utility in
developing nonstandard evaluation orderings has made
them worthy of study in their own right. In case of
statement sequence, say st1;st2;, the option must exist of
deciding whether the execution can go on from st1 to st2.
This is realised by making the value of a statement a
function taking one more parameter, called continuation.
This new parameter, say c, is the dynamic effect of the
remainder of the program, which may be ignored, as in

 5

the case of goto, or never reached, as in the case of a
"loop forever" situation. A continuation represents a
program's complete computation upon a store, so the
continuation may contain some final "cleaning up"
instructions that produce a final output. The output can be
the domain of stores, buffers, messages, or whatever. In
our case the output is the domain PathCond. We shall
use c, c', c1, c2 etc. to range over Cont.
Domain: Cont = Store → PathCond
Operations: The fork operation will be used to realise the
parallel noninterfering processing of statements. Hereto
we will use the operation:
kai: PathCond x PathCond → PathCond.

fork: Cont → Cont → Cont
fork = λc1.λc2.λs.(c1 s) kai (c2 s)

Computing is divided between c1 and c2 and the
partial results are joined using kai. This is a nontraditional
use of parallelism on stores; the traditional form of
parallelism allows interference and uses a single-store.
The fork operation suggests that noncommunicating
continuations can work together to build answers rather
than deleting each other's updates.

2.2.1.9 Expression continuations
In continuation form, expression evaluation breaks into
explicit steps. In each step intermediate values may be
produced that must be preserved along the way. In our
example programming language, the expressions may
update the store, so the domain is:
Econt = Evalue → Cont
We shall use k, k', k1, k2 etc. to range over Econt.

2.2.1.10 Declaration continuations
Since declarations pass an environment, together with a
possibly changed store, to the rest of the program we
define the domain of declaration continuations by:
Dcont = Environment → Cont
We shall use u, u', u1, u2 etc. to range over Dcont.

2.2.2 Valuation Functions
The valuation functions, generally, map terms of the G-
algebra TG to algebraic expressions of the domain
SymbExp as far as the evaluation of expressions is
concerned, and members of the domain PathCond as far
as the execution of statements is concerned.

An identifier declaration causes an environment
update. A new location is reserved, which together with
the current environment create a new environment in
which the variable binds to the location. The new
environment is passed to the rest of the program.

The valuation function for statements has the

environment as argument in order to be used in the
evaluation of expressions. It carries over a declaration
continuation and an expression continuation to be used
where needed. The statement continuation contains the
point where the execution will be transferred. The
statement execution produces a statement continuation
given a store.

For the evaluation of expressions, the environment
is needed mainly to look up the denotable values of
identifiers (for detailed description see the section for
semantic domains), the declaration continuation and
statement continuation is carried over to be used where is
needed, and the expression continuation which contains
the point where the evaluation will be transferred. The
expression evaluation produces a statement continuation
given a store.

To distinguish the different values extracted from
expressions we talk about lvalues and rvalues. The rvalue
is obtained by dereferencing the value obtained with the
valuation function E, and this is realised by another
valuation function, called R. In the example
programming language, the result of the evaluation of
expressions may be an lvalue or not an lvalue (thus, an
rvalue). When the evaluation produces not an lvalue the
R semantic equations are the same with the E semantic
equations.

In the light of the above explanations let us see the
functionality of the valuation functions P, D, S, E, and R:

P: progr → Environment → Dcont → Econt →
Cont → Store → PathCond
D: decl → Environment → Econt → Cont → Dcont
→ Store → PathCond
S: stmt → Environment → Dcont → Econt → Cont
→ Store → PathCond
E: exp → Environment → Dcont → Cont → Econt
→ Store → PathCond
R: exp → Environment → Dcont → Cont → Econt
→ Store → PathCond

2.2.3 Semantic Equations
Each semantic function passes the appropriate
intermediate result to its continuation. The result of
running a program is the output together with an
indication of whether the program halted normally or via
an error. We will present only the semantic equations that
define the statements, in order not to extend the paper
further.
The execution of the null statement goes on with the
continuation.

 6

S(astNullStmt) e u k c s = c s
The expression is evaluated and the execution goes on
with the continuation. The evaluated result is not further
needed. The evaluation of the expression has been done
for the case it would cause side effects (update of the
store).

S(astExpStmt(exp)) e u k c s = E(exp) e u c {λ n. λ s.c(s)} s
The expression is evaluated and the result is used to
update the path condition for the "true" and "false"
branches. This clause suggests parallel but noninterfering
execution of statements. Computing is divided between
(st1) and (st2), which goes on with own continuations.
This way "all" execution paths can be followed.

S(astIfElse(exp,st1,st2)) e u k c s = R(exp) e u c {λ n.fork(S(st1)
e u k {λ s.<c(s),n>}) (S(st2) e u k {λ s.<c(s), neg(n)>})} s
The expression is evaluated and the result is used to
update the path condition for the "true" and implied
"false" branches. We have again parallel but
noninterfering execution. The first executes the statement
and goes on with the continuation. The second just goes
on with the continuation.

S(astIf(exp,st)) e u k c s = R(exp) e u c {λ n.fork(S(st) e u k
{λ s.<c(s),n>}) (λ s.<c(s),neg(n)>)} s
The expression is evaluated and the result is used to
update the path condition for the one loop and no loop
branches. We have again parallel but noninterfering
execution.

S(astWhile(exp,st)) e u k c s = R(exp) e u c {λ n.fork(S(st) e u
k {λ s.<c(s),n>}) (λ s.<c(s), neg(n)>)} s

3. Conclusion
The first of our objectives have been accomplished. We
have given a formal description of the abstract syntax of
the example programming language and a semantics-
directed description of symbolic execution. We also have
transformed the formal description of symbolic execution
to an ML program. The ML program symbolically
executes a program in the example language and
produces, for each program path, the path condition and
for each variable the respective algebraic expression. The
results are very encouraging and it seems that the
implementation is very efficient in contrast to other
implementations found in the literature.

 As future work we will transform the semantics-
directed description of a "real" programming language to
an ML program. This description will include all data
structures and control structures encountered in the
language. Next we will implement the constraints
simplifier possibly using interval algebra.

4. References

[1] Blieberger, J., B. Burgstaller, and B. Scholz,
Symbolic data flow analysis for detecting dealocks in
Ada tasking programs, Ada-Europe 2000 International
Conference on Reliable Software Technologies. (to
appear).

[2] Coward, D. and D. Ince, The symbolic execution of
software: the SYM-BOL system, Chapman & Hall, 1995.

[3] Fahringer, T., Symbolic analysis techniques for
program parallelization, Journal of Future Generation
Computer Systems, Elsevier Science, vol 13, 1997/98, pp.
385-396.

[4] Ghezzi, C. and M. Jazayeri, Syntax directed symbolic
execution, Proceedings of COMPSAC 80, 1980, pp. 539-
545.

[5] Goguen, J.A., J.W. Thatcher, E.G. Wagner, and J.B.
Wright, Initial algebra semantics and continuous
algebras, Journal of the ACM, vol 24, no 1, 1977, pp. 68-
95.

[6] Gordon, M.J.C., The denotational description of
programming languages, Springer-Verlag, 1979.

[7] Gunter, C.A., Semantics of programming languages:
structures and techniques, MIT Press, 1992.

[8] Heering, J., and P. Klint, Semantics of programming
languages: a tool-oriented approach, ACM SIGPLAN
Notices, March 2000.

[9] Le Metayer, D., Program analysis for software
engineering: new applications, new requirements, new
tools, ACM Computing Surveys, vol 28, no 4es, 1996.

[10] Nielson, F., H.R. Nielson, and C. Hankin, Principles
of program analysis, Springer-Verlang, 1999.

[11] Schmidt, D.A., Denotational semantics: a
methodology for language development, Allyn and
Bacon, 1986.

[12] Schmidt, D.A., On the need for a popular formal
semantics, ACM Computing Surveys, vol 28, no 4es,
1996.

[13] Slonneger, K. and B.L. Kurtz, Formal syntax and
semantics of programming languages, Addison-Wesley,
1995.

[14] Stoy, J.E., Denotatioal semantics: the Scott-
Stratchey approach to programming language theory,
MIT Press, 1977.

[15] Wilhelm, R., Program analysis – a toolmaker's
perspective, ACM Computing Surveys, vol 28, no 4es,
1996.

