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 Abstract: In this paper we present a semantics-directed description of symbolic-execution of programs. In the field of 

program analysis, most of the methods have been applied on optimizing compilers. It is our belief that there is enough 
theory that could support the application of program analysis methods on software construction. 

 Most program analysis methods are syntax-directed, thus, they should base the description of the analysis on some 
form of semantics, which is syntax-directed, such as the denotational semantics. The description, then, should be augmented 
with information specific to the method, which finally would be implemented by a tool. Tools built from semantic 
descriptions of programming language’s constructs serve two purposes: make the semantics useful and popular. 

 Symbolic execution is a program analysis method used to reconstruct logic and computations along a program path 
by executing the path with symbolic, rather than actual values of data. The results obtained by symbolic execution are the 
symbolic formulae, representing the values of the program variables, and the path condition for each path examined.  

 The symbolic execution approaches, traditionally act upon a control flow graph in which nodes represent program 
segments, which are to be executed linearly, and the only control flow structures are (conditional) branches represented by 
arcs. The control flow graph is normally structured by using an intermediate representation of the program, such as triples or 
quadtruples. This is a “low level” representation of the program. 

 We follow the syntax-directed approach, which is considered to be “high level”. It acts upon a program 
representation, called abstract syntax tree, which includes all of the high-level control structures and the data structures 
present in the source program. First, we define the abstract syntax for an example language. Then we give a semantic 
description of symbolic execution, augmented with information specific to the method, in order to be able to maintain the 
symbolic formulae and path conditions. 

 Key–Words: Program analysis, Symbolic execution, Syntax-Directed, Semantics-directed, Program representation, Abstract 
syntax tree. 

1. Introduction 
 Indisputably, there has been a lot of theory developed for 

each one of the various computing science fields like 
programming (e.g. formal program design, object-
oriented programming), programming language 
semantics, program analysis. In spite of this, most of the 
contemporary research effort is wasted in enriching the 
existing theory (with new methods, new models) instead 
of using it as a means for the development of tools. More 
and more voices [15], [9], [8] are heard from the same 
direction. 

In the field of program analysis, most of the 
methods have been applied on optimising compilers. It is 
our belief that there is enough theory that could support 
the application of program analysis methods on software 
construction. Embedded and safety-critical systems but 
also large and complex software systems demand 

sophisticated tools for design, testing and maintenance of 
software. Program analysis consists of designing and 
writing program analysers. Program analysers are tools, 
which produce results about the nature of a program from 
consideration and analysis of a complete model of some 
aspect of the program. An important characteristic of 
such tools is that they do not necessitate execution of the 
subject program, yet produce results relevant to all 
possible executions. A very straightforward example of 
such a tool is a syntax analyser. At the end of a syntax 
scan it is possible to infer that the program is free of 
syntactic errors.  

Symbolic evaluation is an advanced static program 
analysis method with a lot of interesting applications: 
symbolic testing, infeasible path detection, test data 
generation, program verification, program reduction, and 
software maintenance [2]. Recently, it has been applied 
to the reaching definition problem, to worst-case 
execution time analysis, to cache hit prediction, to alias 
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analysis, to pointer analysis for detecting memory leaks, 
and to parallelizing compilers [1], [3]. Symbolic 
evaluation is used to reconstruct logic and computations 
along a program path by executing the path with 
symbolic, rather than actual values of input variables. A 
path through the program is selected and the statements 
on the path are executed. Initialised variables are 
assigned the corresponding constant value; uninitialised 
variables are assigned the undefined value Λ . Input 
values needed as read-in values, are represented by 
symbolic names. Throughout the execution, the 
representations of all program variables are maintained as 
algebraic expressions in terms of these symbolic names. 
The algebraic expressions are formed by the evaluation 
of any assignment statement along the path. A branch 
predicate, evaluated over the algebraic expressions of the 
variables at a decision point, results in a constraint which 
is then conjoined with all previously evaluated 
constraints for this path to form the path condition, 
denoted by PC. The path condition is used to determine 
the feasibility of the program path been examined.  

Previous symbolic execution approaches act upon a 
control flow graph in which nodes represent program 
segments, which are to be executed in linear fashion, and 
the only control flow structures are (conditional) 
branches represented by arcs. The control flow graph is 
normally constructed using an intermediate 
representation of the program, such as triples or 
quadtruples. This is a "low level" representation of the 
program. A "high level" approach acts upon a program 
representation, called abstract syntax tree (AST), which 
includes all of the high-level control structures and the 
data structures present in the source program. Another 
advantage of this approach is that the AST representation 
of the programs is suitable for different program 
processing tools such as editors, translators, debuggers, 
optimisers, and so forth [4]. 

We took the latter a little further according to the 
tool-oriented approach [8]. Software is written in some 
programming language and the language has syntax. 
Thus, the program analysis method needs to base the 
description of the analysis on some form of semantics, 
which is syntax-directed, such as the denotational 
semantics. The language definition then augmented with 
information specific to the method becomes the input of 
the tool generator. This way a semantics-directed1 tool is 
developed. Tools built from semantic descriptions of 
programming language's constructs serve two purposes: 

                                                           
1 Semantics directed means that the structure of the program 

analysis reflects the structure of the semantics [10]. 

make the semantics useful [8] and popular [12]. There is 
also a nice side effect; such tools do not have to be 
proven correct, as they are semantics-directed. 

This paper reports on the research performed for the 
formal description of symbolic execution, in the 
framework of constructing a symbolic evaluation tool, 
which will eliminate drawbacks such as restricted 
program models and analysis that covers only linear 
symbolic expressions. The described system 
symbolically executes programs written in a small 
example programming language. 

2. The Symbolic Evaluator 
Our system has been built in stages (in a Linux 
environment). First the lexical analyser was constructed 
using a lex-like tool, and then the syntax and static-
semantic analyser were constructed with the help of a 
yacc-like tool. During the third stage the formal 
description of symbolic execution was written using 
techniques from continuation semantics. The formal 
description was implemented in ML. For the C programs 
we used the C compiler provided by the system. The ML 
program has been compiled with the Camlc2 compiler. 
All object files have been linked together to produce the 
symbolic evaluator. The symbolic evaluator reads a 
program written in the example programming language, 
performs the lexical, syntax, and static-semantic analysis, 
and if the program is found to be correct, it produces the 
AST. Finally, the AST is traversed and the actions are 
executed, which produce the symbolic (algebraic) 
expressions for the variables and the path conditions for 
the executed paths. 

2.1 Syntax of Example Programming Language 

2.1.1 Abstract Syntax 
The concrete syntax contains details needed only for the 
syntax analysis. For the definition of the meaning of the 
syntactic forms these details may be ignored and only the 
structure of possible language constructs that can occur in 
the programs may be used. The abstract syntax delineates 
the needed structure. The variety of abstract syntax and 
its tolerance of ambiguity raise questions concerning its 
nature and its relation to the language defined by the 

                                                           
2 Camlc compiles and links Caml Light source files. The Caml 

Light is a dialect of the functional programming language 
ML. INRIA holds all ownership rights to the Caml Light 
system. 
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concrete syntax. Answers can be found by analysing the 
syntax of the languages in an algebraic context. 
 We defined a signature G that corresponds exactly 
to the BNF definition of the example programming 
language [5], [13]. Each nonterminal became a sort in G 
and each production became an operator whose syntax 
captures the essence of the production. The terminals do 
not appear in the signature since they are embodied in the 
unique names of the operators.  

The term algebra TG, for the signature G, has as 
carriers the sets terms(s,G), which contain all ground 
terms of sort s constructed using the operators in G. The 
algebra TG is initial in the collection of all G-algebras, 
thus, for any G-algebra Α  there is a unique 
homomorphism                  h: Α→ΤG . 
 Consider the following signature: 
♦ Sorts: progr, type, decl, dcltr, expression, stmt. 
♦ Operators:  
 

astEmptyProgram : progr 
astProgram : decl, stmt  ->  progr 
astEmptyDeclSeq : decl 
astDeclSeq : decl, decl  ->  decl 
astDeclaration : type, dcltr  ->  decl 
INT : type 
astVarDcltr : dcltr 
astArrayDcltr : dcltr, expression  ->  dcltr 
astDcltrSeq : dcltr, dcltr  ->  dcltr 
astWhileStmt : expression, stmt  ->  stmt 
astIfElseStmt : expression, stmt, stmt  ->  stmt 
astIfStmt : expression, stmt  ->  stmt 
astEmptyStmtSeq : stmt 
astStmtSeq : stmt, stmt  ->  stmt 
astExprStmt : expression  ->  stmt 
astNullStmt : stmt 
astReadStmt : expression  ->  stmt 
astPrintStmt : expression  ->  stmt 
astArrayElem : expression, expression  ->  expression 
astConst : expression 
astId : expression 
astMinus : expression  ->  expression 
astNot : expression  ->  expression 
astMult : expression, expression  ->  expression 
astDiv : expression, expression  ->  expression 
astMod : expression, expression  ->  expression 
astAdd : expression, expression  ->  expression 
astSub : expression, expression  ->  expression 
astGreater : expression, expression  ->  expression 
astGrEq : expression, expression  ->  expression 
astLess : expression, expression  ->  expression 
astLeEq : expression, expression  ->  expression 
astEq : expression, expression  ->  expression 
astNotEq : expression, expression  ->  expression 
astAnd : expression, expression  ->  expression 
astOr : expression, expression  ->  expression 
astAssign : expression, expression  ->  expression 

Figure 1. The operators of the new signature (also 
an abstract syntax for the example programming 

language). 

We defined an algebra Α  with carriers consisting 
of terms constructed using the above operators, and a 
mapping  h: Α→ΤG defined inductively using a family 
of functions Sh ,Α . h is a homomorphism and because the 
G-algebra TG is initial, the homomorphism is unique and 
the algebra Α is a G-algebra too.  

The operators, in figure 1, form a version of the 
abstract syntax for the example programming language. 
Thus, each version of the abstract syntax of a 
programming language is an algebra for the signature 
associated with the grammar that forms the concrete 
syntax of the language. Algebras acting as abstract syntax 
will contain confusion (i.e. the mapping h will not be 
one-to-one), reflecting the abstracting process. By 
confusing elements in the algebra, we are suppressing 
details in the syntax. 

The syntax analysis concludes by constructing the 
AST. We let the AST be constructed by creating a node 
for each operator of the abstract syntax (see figure 2-1). 
Each node in an AST has been implemented as a record 
with fields: the name of the operator, a pointer to the 
symbol (table) node, and pointers to the subtrees. We 
wrote the function MkNode() to create the nodes of 
AST's using the underlying productions of the grammar 
to schedule the calls of it. The function returns a pointer 
to a newly created node. 

2.2 Semantics-directed Symbolic Execution 
 We shall define symbolic execution using the techniques 

of denotational semantics and especially continuation 
semantics. The reasons behind our decision are: a formal 
definition is precise, it would guide us to the (possibly) 
best way of implementing symbolic execution, it would 
provide us techniques to cope with functions and 
complex data-structures, it would make it convenient to 
experiment with methods handling simplification of 
constraints. We will take the engineering approach as M. 
Gordon did in [6]. For the theoretical basis of 
denotational semantics the reader is referred to the books 
by Stoy [14], Schmidt [11], Gunter [7].  

A denotational definition consists of three parts: the 
abstract syntax definition of the language, the semantic 
domains, and the valuation functions.  

The abstract syntax gives the structure of the 
syntactic constructs of the language being described and 
is presented in the previous subsection. The semantic 
domains provide the denotations, which are usually 
abstract mathematical objects such as numbers, 
functions, or terms, and are used to define the meaning of 
the syntactic constructs of the language. The denotation 



 4 

of a syntactic construct must depend only on the 
denotations of its subconstructs (this is called 
compositionality) and so it contributes to the semantics of 
any complete program in which it may occur. The 
valuation functions map programs, fragments of 
programs, or particular constructs of the language to their 
denotations. Given that syntactic constructs have an 
unambiguous structure, the valuation functions may be 
defined inductively by specifying, for each syntactic 
construct, its denotation in terms of the denotations of its 
components (if there are any). The conventional way of 
writing such an inductive definition in denotational 
semantics is as a collection of semantic equations, one 
for each operator of the abstract syntax. The notation for 
expressing the semantic equations is traditionally based 
on λ-notation. 

2.2.1 Semantic Domains 

2.2.1.1 The one element domain 
Domain: Unit 
Operations: (): Unit 

2.2.1.2 The SymbExp domain 
Let the algebraic system consisting of the set Values : 

Values = Int ∪  SymbVal  
where SymbVal = {$1,$2,...}, 

together with the collection of operations in Values: 
umin, neg: Values →  Values 
times, div, mod, plus, minus, ls, le, gr, ge, eq, ne, 

and, or: Values x Values →  Values 
The domain SymbExp consists of the algebraic 
expressions (with respect to the algebraic system), which 
are defined inductively as follows (using prefix notation): 
1. Each member of Values is an algebraic expression. 
2. If e is an algebraic expression then so is ( )eiϑ , for 

each unary operation iϑ . 
3. If e1 and e2 are algebraic expressions then so is 

( )21 ,eeiϑ , for each binary operation iϑ . 
Defined in this fashion, algebraic expressions are 
completely parenthesised. 

2.2.1.3 Computer Store Locations 
The computer store consists of consecutive locations, 
which are capable of holding storable values (see next 
section). 
Domain: Location 
Operations: nextloc and some more. nextloc returns the 
next unused location in the list of locations. 

2.2.1.4 Denotable, Storable, and Expressible 
values 
The Dvalue domain contains all the values that identifiers 
may represent. The Svalue domain contains the storable 
values - the values that can be held in locations. The 
Evalue domain contains the values, which expressions 
can produce. 

Dvalue=SymbExp+Location+Array+NoVal 
Svalue=Dvalue 
Evalue=Svalue 

where Array = Location 
NoVal = Unit 

2.2.1.5 Output 
The output is the domain PathCond which is defined 
recursively as the domain of path conditions, each one 
been either error, telos or an algebraic expression paired 
with another path condition - 'unwinding' this we see a 
path condition is either a finite string of algebraic 
expressions ending with error or telos, or an infinite 
string of algebraic expressions.  
Domain: PathCond = {error,telos} + (PathCond x 
SymbExp) 

2.2.1.6 Environment 
The environment consists of two components. The Map 
component tells what the identifiers mean in the 
expression - that is, what values the identifiers denote - 
and is specified by a function from name to Dvalue. The 
Location is the pool of storage locations. We shall use e, 
e', e1, e2 etc. to range over Environment. 
Domain: Environment = Map x Location 

where Map=name →  Dvalue 
Operations: accessdv, reserveloc.  

2.2.1.7 Store  
Associates locations with storable values. We shall use s, 
s', s1, s2 etc. to range over Store. 
Domain: Store = Dvalue →  Svalue 

2.2.1.8 Statement continuations 
Statement continuations were first developed for 
modelling unrestricted branches ("gotos") in general 
purpose programming languages, but their utility in 
developing nonstandard evaluation orderings has made 
them worthy of study in their own right. In case of 
statement sequence, say st1;st2;, the option must exist of 
deciding whether the execution can go on from st1 to st2. 
This is realised by making the value of a statement a 
function taking one more parameter, called continuation. 
This new parameter, say c, is the dynamic effect of the 
remainder of the program, which may be ignored, as in 
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the case of goto, or never reached, as in the case of a 
"loop forever" situation. A continuation represents a 
program's complete computation upon a store, so the 
continuation may contain some final "cleaning up" 
instructions that produce a final output. The output can be 
the domain of stores, buffers, messages, or whatever. In 
our case the output is the domain PathCond. We shall 
use c, c', c1, c2 etc. to range over Cont. 
Domain: Cont = Store →  PathCond 
Operations: The fork operation will be used to realise the 
parallel noninterfering processing of statements. Hereto 
we will use the operation: 
kai: PathCond x PathCond →  PathCond.  

fork: Cont →  Cont →  Cont 
fork = λc1.λc2.λs.(c1 s) kai (c2 s) 

Computing is divided between c1 and c2 and the 
partial results are joined using kai. This is a nontraditional 
use of parallelism on stores; the traditional form of 
parallelism allows interference and uses a single-store. 
The fork operation suggests that noncommunicating 
continuations can work together to build answers rather 
than deleting each other's updates. 

2.2.1.9 Expression continuations 
In continuation form, expression evaluation breaks into 
explicit steps. In each step intermediate values may be 
produced that must be preserved along the way. In our 
example programming language, the expressions may 
update the store, so the domain is:  
Econt = Evalue →  Cont  
We shall use k, k', k1, k2 etc. to range over Econt. 

2.2.1.10 Declaration continuations 
Since declarations pass an environment, together with a 
possibly changed store, to the rest of the program we 
define the domain of declaration continuations by: 
Dcont = Environment →  Cont  
We shall use u, u', u1, u2 etc. to range over Dcont. 

2.2.2 Valuation Functions 
The valuation functions, generally, map terms of the G-
algebra TG to algebraic expressions of the domain 
SymbExp as far as the evaluation of expressions is 
concerned, and members of the domain PathCond as far 
as the execution of statements is concerned. 

An identifier declaration causes an environment 
update. A new location is reserved, which together with 
the current environment create a new environment in 
which the variable binds to the location. The new 
environment is passed to the rest of the program. 

The valuation function for statements has the 

environment as argument in order to be used in the 
evaluation of expressions. It carries over a declaration 
continuation and an expression continuation to be used 
where needed. The statement continuation contains the 
point where the execution will be transferred. The 
statement execution produces a statement continuation 
given a store. 

For the evaluation of expressions, the environment 
is needed mainly to look up the denotable values of 
identifiers (for detailed description see the section for 
semantic domains), the declaration continuation and 
statement continuation is carried over to be used where is 
needed, and the expression continuation which contains 
the point where the evaluation will be transferred. The 
expression evaluation produces a statement continuation 
given a store.  

To distinguish the different values extracted from 
expressions we talk about lvalues and rvalues. The rvalue 
is obtained by dereferencing the value obtained with the 
valuation function E, and this is realised by another 
valuation function, called R. In the example 
programming language, the result of the evaluation of 
expressions may be an lvalue or not an lvalue (thus, an 
rvalue). When the evaluation produces not an lvalue the 
R semantic equations are the same with the E semantic 
equations. 

In the light of the above explanations let us see the 
functionality of the valuation functions P, D, S, E, and R: 

 
P: progr →  Environment →  Dcont →  Econt →  
Cont →  Store →  PathCond 
D: decl →  Environment →  Econt →  Cont →  Dcont 
→  Store →  PathCond 
S: stmt →  Environment →  Dcont →  Econt →  Cont 
→  Store →  PathCond 
E: exp →  Environment →  Dcont →  Cont →  Econt 
→  Store →  PathCond 
R: exp →  Environment →  Dcont →  Cont →  Econt 
→  Store →  PathCond 

2.2.3 Semantic Equations 
Each semantic function passes the appropriate 
intermediate result to its continuation. The result of 
running a program is the output together with an 
indication of whether the program halted normally or via 
an error. We will present only the semantic equations that 
define the statements, in order not to extend the paper 
further. 
The execution of the null statement goes on with the 
continuation. 
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S(astNullStmt) e  u  k  c  s = c  s 
The expression is evaluated and the execution goes on 
with the continuation. The evaluated result is not further 
needed. The evaluation of the expression has been done 
for the case it would cause side effects (update of the 
store). 

S(astExpStmt(exp)) e  u  k  c  s = E(exp) e  u  c   {λ n. λ s.c(s)}  s 
The expression is evaluated and the result is used to 
update the path condition for the "true" and "false" 
branches. This clause suggests parallel but noninterfering 
execution of statements. Computing is divided between 
(st1) and (st2), which goes on with own continuations. 
This way "all" execution paths can be followed. 

S(astIfElse(exp,st1,st2)) e  u  k  c  s = R(exp) e  u  c  {λ n.fork(S(st1) 
e  u  k  {λ s.<c(s),n>}) (S(st2) e  u  k  {λ s.<c(s), neg(n)>})}  s 
The expression is evaluated and the result is used to 
update the path condition for the "true" and implied 
"false" branches. We have again parallel but 
noninterfering execution. The first executes the statement 
and goes on with the continuation. The second just goes 
on with the continuation. 

S(astIf(exp,st)) e  u  k  c  s = R(exp) e  u  c  {λ n.fork(S(st) e  u  k  
{λ s.<c(s),n>}) (λ s.<c(s),neg(n)>)}  s 
The expression is evaluated and the result is used to 
update the path condition for the one loop and no loop 
branches. We have again parallel but noninterfering 
execution.  

S(astWhile(exp,st)) e  u  k  c  s = R(exp)  e  u  c   {λ n.fork(S(st) e   u  
k   {λ s.<c(s),n>}) (λ s.<c(s), neg(n)>)}  s 

3. Conclusion 
The first of our objectives have been accomplished. We 
have given a formal description of the abstract syntax of 
the example programming language and a semantics-
directed description of symbolic execution. We also have 
transformed the formal description of symbolic execution 
to an ML program. The ML program symbolically 
executes a program in the example language and 
produces, for each program path, the path condition and 
for each variable the respective algebraic expression. The 
results are very encouraging and it seems that the 
implementation is very efficient in contrast to other 
implementations found in the literature. 

 As future work we will transform the semantics-
directed description of a "real" programming language to 
an ML program. This description will include all data 
structures and control structures encountered in the 
language. Next we will implement the constraints 
simplifier possibly using interval algebra. 
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