
Simulation-based Comparisons of Reno, Vegas and Westwood+ TCP

LUIGI ALFREDO GRIECO
Dipartimento di Ingegneria dell’ Innovazione

Universita’ di Lecce
Via Monteroni, 73100 Lecce

ITALY

SAVERIO MASCOLO, PIETRO CAMARDA
Dipartimento di Elettrotecnica ed Elettronica

Politecnico di Bari
Via Orabona 4, 70125 Bari

ITALY

Abstract: – During the last 20 years, several congestion control algorithms have been proposed to achieve
network stability, fair bandwidth allocation and high resource utilization. This paper aims at comparing three
well-known control schemes that are Reno, Vegas and Westwood+ TCP. To the purpose, an extensive set of ns-
2 simulation results has been collected. In particular, single and multi bottleneck scenarios with link capacities
ranging from 1Mbps to 100Mbps and in the presence of homogeneous and heterogeneous traffic sources have
been considered. The following main results have been found: (1) Westwood+ TCP fairly behaves when
interacting with Reno TCP; (2) Westwood+ TCP improves the fairness in bandwidth sharing with respect to
Reno TCP; (3) Vegas TCP is not able to grab its own bandwidth share when interacting with Reno TCP.

Keywords:- Internet Congestion Control, Computer Networks, Performance Evaluation, Computer Simulation,
Networking

1. Introduction
Internet stability is still largely based on the
congestion control algorithm proposed by Van
Jacobson in [1], which is known as Thaoe TCP, on
its first modification, which is known as Reno TCP
[2], and other variants described in [3],[4],[5]. The
Van Jacobson congestion control algorithm has been
designed by following the end-to-end principle and
has been quite successful from keeping the Internet
away from congestion collapse [18],[19],[20]. After
that the Van Jacobson’s algorithm has been
introduced at the end of the eighties, several end-to-
end congestion control algorithms have been
proposed to improve network stability, fair
bandwidth allocation and high resource utilization.
Such a control schemes are sliding window
algorithms since they use ACKs reception to trigger
the transmission of new data into the network (i.e.
self-clocking principle [1]). The variables
congestion window (cwnd) and slow start threshold
(ssthresh) are employed to adapt the flow input rate
to the network status. In particular, congestion
control algorithms in [1]-[5] exploit the Additive
Increase Multiplicative Decrease (AIMD) paradigm,
which additively increases the cwnd to grab the
available bandwidth and suddenly decrease the
cwnd when network congestion is detected.
Segment losses are used as implicit indication of
network congestion and when they happen, the
AIMD algorithms decrease the cwnd and the
ssthresh via a multiplicative factor [6]. The cwnd

variable is used as a sliding window to regulate the
data transmission, whereas, the ssthresh is employed
to vary the way the cwnd is increased: in particular,
on ACK reception, if cwnd is less than ssthresh,
then it is exponentially increased, else it is linearly
increased. AIMD algorithms ensure network
stability but they don’t guarantee fair sharing of
network resources [6], [7], [21].

Vegas TCP is the first algorithm that proposes a
new paradigm for the Internet congestion control. It
employs a mechanism to early detect network
congestion. In particular, it first computes the
difference between the input rate (cwnd/RTT) and
the expected rate (cwnd/RTTmin), where RTT is the
Round Trip Time and RTTmin is the minimum
measured round trip time. Such a difference is then
considered to infer network congestion. In
particular, if the difference is less than a threshold α
then the cwnd is additively increased, whereas if the
difference is greater than another threshold β then
the cwnd is Additively Decreased; finally, if the
difference is less than β and greater than α, then the
cwnd is kept constant [9]. Vegas TCP ensures
network stability [10] but it is not able to grab its
own bandwidth share when interacting with Reno
TCP sources [11].

Westwood TCP is a new congestion control
algorithm based on end-to-end bandwidth estimate
[12]. It mainly differs from Reno TCP since it
estimates the used bandwidth by filtering the flow of
the returning ACKs: when network congestion is

detected, the cwnd and the ssthresh are adaptively
set by taking into account the estimated bandwidth.
The bandwidth estimation algorithm proposed in
[12] critically behaves in the presence of ACK
compression. Thus a new version of the Westwood
algorithm, which we call Westwood+ TCP, has been
proposed in [14] to cope with ACK compression
effects. Furthermore, in [15] has been shown via a
mathematical analysis that Westwood+ is friendly to
Reno TCP.

This paper aims at comparing the performances
of Reno, Vegas and Westwood+ TCP via the ns-2
simulator [16]. To the purpose, an extensive set of
simulation results has been collected. In particular,
single and multi bottleneck scenarios with link
capacities ranging from 1Mbps to 100Mbps and in
the presence of homogeneous and heterogeneous
traffic sources have been considered. The following
main results have been found: (1) Westwood+ TCP
fairly behaves when interacting with Reno TCP; (2)
Westwood+ TCP improves the fairness in
bandwidth sharing with respect to Reno TCP; (3)
Vegas TCP is not able to grab its own bandwidth
share when interacting with Reno TCP.

The paper is organized as follows: Section 2
outlines the Westwood+ algorithm; in Section 3
Reno, Vegas and Westwood+ are compared; finally,
the last section draws the conclusions.

2. Westwood+ TCP
The Westwood+ TCP algorithm is based on end-to-
end bandwidth estimation. In particular, it filters the
average rate of the returning ACKs [12],[14]. The
obtained estimate is then used to set the control
windows cwnd and ssthresh when network
congestion is experienced. In particular, when three
DUPACKs are received, both the congestion
window (cwnd) and the slow start threshold
(ssthresh) are set equal to the estimated bandwidth
(BWE) times the minimum measured round trip time
(RTTmin); when a coarse timeout expires the ssthresh
is set as stated above while the cwnd is set equal to
1.

These settings drastically reduce the control
windows in the presence of heavy network
congestion whereas gently reduce these windows in
the presence of light congestion. On the other hand,
Reno implements a blind window reduction that
does not take into account the congestion status.

It is worth noting that the bandwidth estimate
employed by Westwood+ TCP measures the low
pass component of the used bandwidth. This is
much more different from measuring the low pass
component of the sending rate cwnd/RTT. In

particular, under dynamic condition, a sudden
reduction of network bandwidth due to a sudden
change in network load can be quickly discovered
by monitoring the flow of the returnig ACKs
whereas it cannot be discovered by monitoring the
rate cwnd/RTT.

The pseudo code of the Westwood+ algorithm is:

a) On ACK reception:
the end-to-end bandwidth estimate BWE is
computed and cwnd is increased
accordingly to the Reno algorithm;

b) When 3 DUPACKs are received:
ssthresh = (BWE* RTTmin) / seg_size;
cwnd = ssthresh;

c) When coarse timeout expires:
ssthresh = (BWE* RTTmin) / seg_size;
cwnd = 1;

2.1 End-to-end bandwidth estimate
The AIMD algorithm can be viewed as end-to-end
method to obtain a “rough” but robust measurement
of the best effort bandwidth that is available along a
TCP path. The packet pair (PP) mechanism tries a
more precise method to infer the bottleneck
available bandwidth at the starting of a connection
by measuring the interarrival time between the
ACKs of two packets that are consecutively sent
[23]. Hoe proposes a refined PP method for
estimating the available bandwidth in order to
properly initialize the ssthresh [24]: the bandwidth
is calculated by using the least-square estimation on
the reception time of three ACKs corresponding to
three closely-spaced packets. Allman and Paxson
evaluate the PP techniques and show that in practice
they perform less well than expected [25]. Lai and
Baker propose an evolution of the PP property for
measuring the link bandwidth in FIFO-queuing
networks [26]. The method consumes less network
bandwidth while maintaining approximately the
same accuracy of other methods, which is poor for
paths longer than few hops.

Estimating the available bandwidth at the
beginning of a TCP connection over a FIFO-
queuing network is a very different and much more
difficult task than measuring the actual rate a
connection is achieving during the data transfer as it
is done by Westwood TCP in [12]. In [12] the idea
is to estimate the available bandwidth by properly
filtering the flow of returning ACKs. A sample of
available bandwidth)/(1−−= kkkk ttdb is
computed every time tk the sender receives an ACK,

where the amount dk of data acknowledged by an
ACK is determined by a proper counting procedure
that considers delayed ACKs, duplicate ACKs and
selective ACKs. Bandwidth samples bk are low-pass
filtered by employing the following time-varying
low-pass filter to obtain the bandwidth estimate:

k
kk

kk
k

k
k

ff

f bb
bb

∆+
+

∆+
∆+

∆−
= −

− ττ
τ

2
ˆ

2
2ˆ 1

1 , (1)

where fτ/1 is the filter cut-off frequency (a typical
value is sf 5.0=τ), and)(1−−=∆ kkk tt . Low-pass
filtering is necessary since congestion is due to low
frequency components [25], and because of delayed
ACK option [13].

The bandwidth estimate obtained using the filter
(1) is negatively affected by ACK compression,
which happens in the presence of reverse traffic
[14,15]. In particular, ACK compression causes a
systematic bandwidth overestimate. This
overestimate may disrupt the fairness between TCP
connections and even may lead to starvation of
some connections.

In order to avoid the effects of ACK
compression, in [14] we have proposed to compute
a sample of bandwidth bk every RTT instead of
every time an ACK is received by the sender. More
precisely, we propose to count the amount of data

∑= jk dD acknowledged during the last RTT to
compute the bandwidth sample kkk Db ∆= / , where

k∆ is now the last RTT.
To conclude, we say a few words on the

sampling interval k∆=RTT . In order to get a
properly working filter, it is necessary to satisfy the
Nyquist sampling theorem, that is, it must be

2/fk τ≤∆ . To be conservative, we assume
4/fk τ≤∆ . Thus, if it happens that 4/fk τ>∆ ,

then we interpolate and re-sample by creating
)/4(int fRTTN τ⋅= 1 virtual samples kkk Db ∆= /

that arrives with the interarrival time 4/fk τ=∆ .
To give an insight into the bandwidth estimation

algorithms employed by Westwood and
Westwood+, Fig. 1 shows the bandwidth estimate
obtained by one Westwood or one Westwood+ flow
over a 1Mbps bottleneck in the presence of reverse
traffic made by several Reno connections. It is
straightforward noting that the new filtering scheme
avoids ACK compression effects. Whereas, the
Westwood algorithm overestimates the bandwidth

1 int(·) stands for the integer part of (·)

up to ten times with respect to the bottleneck
bandwidth that is equal to 1Mbps.

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0 200 400 600 800 1000
s

bp
s

Westwood+
Westwood

Figure 1. Bandwidth estimates over a 1Mbps bottleneck.

3. Performance Evaluation

3.1 Single bottleneck scenario
This section aims at evaluation the fairness in
bandwidth sharing achieved by Reno, Vegas and
Westwood+ TCP when several connections share a
FIFO bottleneck. To the purpose, the scenario in
Fig. 2 has been considered. It consists of a single
FIFO bottleneck shared by a set of M TCP flows of
the same flavor with different RTTs. In particular,
we consider M=10,40,70,100,120,140,170,200
infinite greedy connections with RTTs ranging
uniformly from (252/M)ms to 252ms. Simulations
last 100s during which all the TCP sources send
data.

The bottleneck bandwidth is set equal to 1Mbps
or 10Mbps or 100Mbps and the bottleneck queue
capacity is set equal to the link capacity times the
maximum RTT, hence, it is equal to 21, 210 and
2100 segments, respectively. The segment size is
1500 bytes long. All the considered sinks
implements the delayed ACK option [13],[22].

Fig. 2. Single bottleneck scenario.

To measure the fairness in bandwidth sharing
achieved by each TCP flavor, we compute the Jain’s
fairness index defined as follows:

TCP1

R1

TCPM

R2

Sink
TCP1

Sink
TCPM

TCP2 Sink
TCP2

2
1

2
1)(

i
M
i

i
M
i

bM

b
 F.I.

=

=

∑

∑
=

where bi is the goodput of the ith connection and
M is the number of connections sharing the
bottleneck [17]. Figs. 3, 4 and 5 show the fairness
indexes of Reno, Vegas and Westwood over a single
bottleneck of capacity 1Mbps or 10Mbps or
100Mbps, respectively.

Fig. 3 shows that Vegas exhibits a very poor
fairness index with respect to Reno and Westwood+
over the 1Mbps bottleneck. The main reason of this
behavior is that the early congestion detection
employed by Vegas fails because of the small queue
size of 21 packets. On the other hand the Jain
fairness indexes of Reno and Westwood+ TCP
decrease when the number of connections M
increases from 40 to 200. Such a behavior is due to
the many flow effect, which happens when the
number of connections sharing a bottleneck is larger
than the size of the bottleneck queue measured in
segments [8].

Fig. 4 shows that when the number of
connections M is larger than 40, Westwood+
exhibits the best fairness index whereas Vegas has
the worst fairness index since its congestion
detection mechanism does not work properly
because the buffer size is not large enough.

Fig. 5 show that Vegas achieves the best fairness
index since its congestion detection algorithm is
able to avoid buffer overflow. Fig. 5 shows that
Westwood+ algorithm improves the fairness index
of Reno TCP over the 100Mbps link.

Figs. 6, 7 and 8 show the average goodput
computed as the total goodput over the number of
connections sharing the bottleneck when the
bottleneck capacity is 1Mbps or 10Mbps or
100Mbps, respectively. From Figs. 6, 7, and 8, it
turns out that in all the considered scenarios, Reno,
Vegas and Westwood+ achieve high link utilization.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200
M

Fa
irn

es
s I

nd
ex

es

Reno
Vegas
Westwood+

Fig. 3. Fairness Indexes over a 1Mbps bottleneck.

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200
M

Fa
irn

es
s I

nd
ex

es

Reno
Vegas
Westwood+

Fig. 4. Fairness Indexes over a 10Mbps bottleneck.

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0 50 100 150 200
M

Fa
irn

es
s I

nd
ex

es

Reno
Vegas
Westwood+

Fig. 5. Fairness Indexes over a 100Mbps bottleneck.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 50 100 150 200
M

G
oo

dp
ut

 (M
bp

s)

Reno
Vegas
Westwood+

Fig. 6. Average Goodput over a 1Mbps bottleneck.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200
M

G
oo

dp
ut

 (M
bp

s)

Reno
Vegas
Westwood+

Fig. 7. Average Goodput over a 10Mbps bottleneck.

0
1
2
3
4
5
6
7
8
9

10

0 50 100 150 200
M

G
oo

dp
ut

 (M
bp

s)

Reno
Vegas
Westwood+

Fig. 8. Average Goodput over a 100Mbps bottleneck.

Finally, this section investigates the
performances of the three TCP flavor when the
bottleneck buffer size is varied. In particular, the
goodput versus the (buffer_size/bandwdith*delay)
ratio in the case of a 10Mbps link shared by 40 TCP
flows is shown in Fig. 9. It is worth noting that
Vegas achieves the best goodput since it is able to
avoid segment losses via the early congestion
detection mechanism that it employs, whereas
Westwood+ and Reno TCP exhibit about the same
goodput.

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

1.00E+07

0 0.2 0.4 0.6 0.8 1

Buffer_Size/Bandwidth*Delay

G
oo

dp
ut

 (b
ps

)

Reno
Vegas
Westwood+

Fig. 9. Goodput over a 10Mbps bottleneck with variable

buffer size.

3.2 Multi bottleneck scenario
The previous section has shown that the early
congestion detection mechanism employed by
Vegas TCP guarantees high fairness in bandwidth
sharing when the queue size of the bottleneck is
large enough. However, the congestion detection
mechanism employed by Vegas causes throughput
degradation when a Vegas flow shares the same
bottlenecks with Reno flows. This section aims at
evaluating the performances of Reno, Vegas and
Westwood+ TCP over a multi bottleneck scenario in
the presence of Reno traffic sources. To the purpose,
the topology depicted in Fig. 10 has been
considered.

The topology in Fig. 10 is characterized by: (1) N
hops; (2) one greedy TCP connection C1 going

through all the N hops; (3) 2N cross traffic greedy
TCP sources C2-C2N+1 transmitting data over each
single hop. The simulation lasts 110s during which
the cross traffic sources always send data. The
connection C1 starts data transmission at the time
t=10s when all the network bandwidth has been
grabbed by the cross traffic. The segments are 1500
bytes long. The round trip times of all the
connections are set equal to 50ms. The link
bandwidth between the routers is equal to 10Mbps
and the router queues are set equal to the link
capacity times the round trip time.

Fig. 11 compares the friendliness of Reno with

respect to Westwood+ and Vegas. It shows the
goodputs of the connection C1 as a function of the
number of traversed hops; the C1 source is
controlled by Reno or Vegas or Westwood and the
cross traffic is contributed by Reno sources. Fig. 11
clearly highlights that Westwood+ and Reno
achieve about the same goodput, whereas Vegas is
not able to grab its own share of bandwidth. Similar
results have been obtained when the Westwood+
algorithm controls the cross sources C2-C2N+1.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 3 4 5 6 7 8 9 10

N

G
oo

dp
ut

 (M
bp

s)

Reno
Vegas
Westwood+

Fig. 11. Goodput vs. number of traversed hops.

4. Conclusions
We have investigated a simulation-based
comparison of Reno, Vegas and Westwood+ TCP.
Simulation results have shown that Westwood+
TCP fairly behaves when interacting with Reno

C1 Sink1

C2

R

Sink2

C3 Sink3

R R

C5 Sink5

R

C4 Sink4

1th hop 2th hop

Fig. 10. Multi bottleneck topology.

TCP whereas, on the other hand, Vegas is not able
to get its bandwidth share when coexisting with
Reno. Moreover, simulations have shown that
Westwood+ TCP improves the fairness in
bandwidth sharing with respect to Reno TCP.

References
[1] V. Jacobson, Congestion Avoidance and

Control, ACM Computer Communications
Review, Vol.18, No.4, 1988, pp. 314 – 329.

[2] V. Jacobson, Berkeley TCP evolution from 4.3-
Tahoe to 4.3 Reno, in Proceedings of the 18th
Internet Engineering Task Force, University of
British Colombia, Vancouver, BC, Sept. 1990.

[3] S. Floyd, T. Henderson, NewReno
Modification to TCP's Fast Recovery, RFC
2582, April 1999.

[4] M. Mathis, J. Mahdavi, S. Floyd, and A.
Romanow, TCP Selective Acknowledgement
Options, RFC 2018, April 1996.

[5] M. Allman, V. Paxson, W. R. Stevens, TCP
congestion control, RFC 2581, April 1999.

[6] Dah-Ming Chiu, R. Jain, Analysis of the
increase and decrease algorithms for congestion
avoidance in computer networks, Computer
Networks and ISDN Systems, Vol.17, No.1,
1989, pp. 1-14.

[7] J. Padhye, V. Firoiu, D. Towsley, J. Kurose,
Modeling TCP Throughput: A Simple Model
and its Empirical Validation, in Proceedings of
ACM Sigcomm 1998, Vancouver, BC, Canada,
September 1998.

[8] R. Morris, TCP behavior with Many Flows,
IEEE International Conference on Network
Protocols, October 1997, Atlanta, Georgia, pp.
205-211.

[9] L.S. Brakmo, S.W. O’Malley, and L. Peterson,
TCP Vegas: End-to-end congestion avoidance
on a global Internet, IEEE Journal on Selected
Areas in Communications (JSAC), Vol.13,
No.8, 1995, pp. 1465-1480.

[10] S. H. Low, L. Peterson and L. Wang,
Understanding Vegas: A Duality Model, in
Proceedings of ACM Sigmetrics, Boston, MA,
June 2001.

[11] J. Mo, R. J. La, V. Anantharam, J. Walrand,
Analysis and comparison of TCP Reno and
Vegas, in Proceedings of IEEE Infocom 1999.

[12] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi,
R. Wang, TCP Westwood: End-to-End
Bandwidth Estimation for Efficient Transport
over Wired and Wireless Networks, ACM
Mobicom 2001, July, Rome, Italy. To appear in
ACM Wireless Networks (WINET), Special

Issue on Wireless Networks with selected
papers from MOBICOM 2001.

[13] L. Peterson & B. Davie, Computer Networks a
Systems Approach, Morgan Kaufmann, 1996.

[14] L.A. Grieco, S. Mascolo, Westwood TCP and
easy RED to improve Fairness in High Speed
Networks, in Proceedings of IFIP/IEEE
Seventh International Workshop on Protocols
For High-Speed Networks, PfHSN02, April 22-
24, 2002 Berlin, Germany.

[15] L.A. Grieco, S. Mascolo, R. Ferorelli, Additive
Increase Adaptive Decrease Congestion
control: a mathematical model and its
experimental validation, to appear on
Proceedings of IEEE Symposium on Computers
and Communications, Taormina, Italy, July 1-
4, 2002.

[16] Ns-2 network simulator (ver 2). LBL, URL:
http://www-mash.cs.berkeley.edu/ns.

[17] R. Jain, The art of computer systems
performance analysis, John Wiley and Sons,
1991.

[18] D. Clark, The design philosophy of the
DARPA Internet protocols, in Proceedings of
ACM Sigcomm’88 in ACM Computer
Communication Review, Vol.18, No.4, 1988,
pp. 106 - 114.

[19] S. Floyd, K. Fall, Promoting the use of end-to-
end congestion control in the Internet,
IEEE/ACM Transactions on Networking, Vol.7,
No.4, 1999, pp. 458-72.

[20] S. Mascolo, Congestion control in high-speed
communication networks, Automatica, Special
Issue on Control Methods for Communication
Networks, Dec. 1999.

[21] T.V. Lakshman and U. Madhow, The
Performance of TCP/IP for Networks with
High Bandwidth-Delay Products and Random
Loss, IEEE/ACM Transactions on Networking,
Vol.5, No.3, 1997.

[22] W. Stevens, TCP/IP illustrated, Addison
Wesley, Reading, MA, 1994.

[23] S. Keshav, A Control-theoretic Approach to
Flow Control, in Proceedings of ACM Sigcomm
1991.

[24] J. C. Hoe, Improving the Start-up Behavior of a
Congestion Control Scheme for TCP, in
Proceedings of ACM Sigcomm'96.

[25] M. Allman and V. Paxson, On Estimating End-
to-End Network Path Properties, in
Proceedings of ACM Sigcomm 1999.

[26] K. Lai and M. Baker, Measuring Link
Bandwidths Using a Deterministic Model of
Packet Delay, in Proceedings of ACM Sigcomm
2000.

