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Abstract: – During the last 20 years, several congestion control algorithms have been proposed to achieve 
network stability, fair bandwidth allocation and high resource utilization. This paper aims at comparing three 
well-known control schemes that are Reno, Vegas and Westwood+ TCP. To the purpose, an extensive set of ns-
2 simulation results has been collected. In particular, single and multi bottleneck scenarios with link capacities 
ranging from 1Mbps to 100Mbps and in the presence of homogeneous and heterogeneous traffic sources have 
been considered. The following main results have been found: (1) Westwood+ TCP fairly behaves when 
interacting with Reno TCP; (2) Westwood+ TCP improves the fairness in bandwidth sharing with respect to 
Reno TCP; (3) Vegas TCP is not able to grab its own bandwidth share when interacting with Reno TCP.  
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1. Introduction 
Internet stability is still largely based on the 
congestion control algorithm proposed by Van 
Jacobson in [1], which is known as Thaoe TCP, on 
its first modification, which is known as Reno TCP 
[2], and other variants described in [3],[4],[5]. The 
Van Jacobson congestion control algorithm has been 
designed by following the end-to-end principle and 
has been quite successful from keeping the Internet 
away from congestion collapse [18],[19],[20]. After 
that the Van Jacobson’s algorithm has been 
introduced at the end of the eighties, several end-to-
end congestion control algorithms have been 
proposed to improve network stability, fair 
bandwidth allocation and high resource utilization. 
Such a control schemes are sliding window 
algorithms since they use ACKs reception to trigger 
the transmission of new data into the network (i.e. 
self-clocking principle [1]). The variables 
congestion window (cwnd) and slow start threshold 
(ssthresh) are employed to adapt the flow input rate 
to the network status. In particular, congestion 
control algorithms in [1]-[5] exploit the Additive 
Increase Multiplicative Decrease (AIMD) paradigm, 
which additively increases the cwnd to grab the 
available bandwidth and suddenly decrease the 
cwnd when network congestion is detected. 
Segment losses are used as implicit indication of 
network congestion and when they happen, the 
AIMD algorithms decrease the cwnd and the 
ssthresh via a multiplicative factor [6]. The cwnd 

variable is used as a sliding window to regulate the 
data transmission, whereas, the ssthresh is employed 
to vary the way the cwnd is increased: in particular, 
on ACK reception, if cwnd is less than ssthresh, 
then it is exponentially increased, else it is linearly 
increased. AIMD algorithms ensure network 
stability but they don’t guarantee fair sharing of 
network resources [6], [7], [21]. 

Vegas TCP is the first algorithm that proposes a 
new paradigm for the Internet congestion control. It 
employs a mechanism to early detect network 
congestion. In particular, it first computes the 
difference between the input rate (cwnd/RTT) and 
the expected rate (cwnd/RTTmin), where RTT is the 
Round Trip Time and RTTmin is the minimum 
measured round trip time. Such a difference is then 
considered to infer network congestion. In 
particular, if the difference is less than a threshold α 
then the cwnd is additively increased, whereas if the 
difference is greater than another threshold β then 
the cwnd is Additively Decreased; finally, if the 
difference is less than β and greater than α, then the 
cwnd is kept constant [9]. Vegas TCP ensures 
network stability [10] but it is not able to grab its 
own bandwidth share when interacting with Reno 
TCP sources [11]. 

Westwood TCP is a new congestion control 
algorithm based on end-to-end bandwidth estimate 
[12]. It mainly differs from Reno TCP since it 
estimates the used bandwidth by filtering the flow of 
the returning ACKs: when network congestion is 



detected, the cwnd and the ssthresh are adaptively 
set by taking into account the estimated bandwidth. 
The bandwidth estimation algorithm proposed in 
[12] critically behaves in the presence of ACK 
compression. Thus a new version of the Westwood 
algorithm, which we call Westwood+ TCP, has been 
proposed in [14] to cope with ACK compression 
effects. Furthermore, in [15] has been shown via a 
mathematical analysis that Westwood+ is friendly to 
Reno TCP.  

This paper aims at comparing the performances 
of Reno, Vegas and Westwood+ TCP via the ns-2 
simulator [16]. To the purpose, an extensive set of 
simulation results has been collected. In particular, 
single and multi bottleneck scenarios with link 
capacities ranging from 1Mbps to 100Mbps and in 
the presence of homogeneous and heterogeneous 
traffic sources have been considered. The following 
main results have been found: (1) Westwood+ TCP 
fairly behaves when interacting with Reno TCP; (2) 
Westwood+ TCP improves the fairness in 
bandwidth sharing with respect to Reno TCP; (3) 
Vegas TCP is not able to grab its own bandwidth 
share when interacting with Reno TCP. 

The paper is organized as follows: Section 2 
outlines the Westwood+ algorithm; in Section 3 
Reno, Vegas and Westwood+ are compared; finally, 
the last section draws the conclusions. 

 
 

2. Westwood+ TCP 
The Westwood+ TCP algorithm is based on end-to-
end bandwidth estimation. In particular, it filters the 
average rate of the returning ACKs [12],[14]. The 
obtained estimate is then used to set the control 
windows cwnd and ssthresh when network 
congestion is experienced. In particular, when three 
DUPACKs are received, both the congestion 
window (cwnd) and the slow start threshold 
(ssthresh) are set equal to the estimated bandwidth 
(BWE) times the minimum measured round trip time 
(RTTmin); when a coarse timeout expires the ssthresh 
is set as stated above while the cwnd is set equal to 
1. 

These settings drastically reduce the control 
windows in the presence of heavy network 
congestion whereas gently reduce these windows in 
the presence of light congestion. On the other hand, 
Reno implements a blind window reduction that 
does not take into account the congestion status. 

It is worth noting that the bandwidth estimate 
employed by Westwood+ TCP measures the low 
pass component of the used bandwidth. This is 
much more different from measuring the low pass 
component of the sending rate cwnd/RTT. In 

particular, under dynamic condition, a sudden 
reduction of network bandwidth due to a sudden 
change in network load can be quickly discovered 
by monitoring the flow of the returnig ACKs 
whereas it cannot be discovered by monitoring the 
rate cwnd/RTT. 

 
The pseudo code of the Westwood+ algorithm is: 

a) On ACK reception: 
the end-to-end bandwidth estimate BWE is 
computed and cwnd is increased 
accordingly to the Reno algorithm;  

b) When 3 DUPACKs are received: 
ssthresh = (BWE* RTTmin) / seg_size;  
cwnd = ssthresh; 

c) When coarse timeout expires: 
ssthresh = (BWE* RTTmin) / seg_size;  
cwnd = 1; 

 
 

2.1 End-to-end bandwidth estimate 
The AIMD algorithm can be viewed as end-to-end 
method to obtain a “rough” but robust measurement 
of the best effort bandwidth that is available along a 
TCP path. The packet pair (PP) mechanism tries a 
more precise method to infer the bottleneck 
available bandwidth at the starting of a connection 
by measuring the interarrival time between the 
ACKs of two packets that are consecutively sent 
[23]. Hoe proposes a refined PP method for 
estimating the available bandwidth in order to 
properly initialize the ssthresh [24]: the bandwidth 
is calculated by using the least-square estimation on 
the reception time of three ACKs corresponding to 
three closely-spaced packets. Allman and Paxson 
evaluate the PP techniques and show that in practice 
they perform less well than expected [25]. Lai and 
Baker propose an evolution of the PP property for 
measuring the link bandwidth in FIFO-queuing 
networks [26]. The method consumes less network 
bandwidth while maintaining approximately the 
same accuracy of other methods, which is poor for 
paths longer than few hops.  

Estimating the available bandwidth at the 
beginning of a TCP connection over a FIFO-
queuing network is a very different and much more 
difficult task than measuring the actual rate a 
connection is achieving during the data transfer as it 
is done by Westwood TCP in [12]. In [12] the idea 
is to estimate the available bandwidth by properly 
filtering the flow of returning ACKs. A sample of 
available bandwidth )/( 1−−= kkkk ttdb  is 
computed every time tk the sender receives an ACK, 



where the amount dk of data acknowledged by an 
ACK is determined by a proper counting procedure 
that considers delayed ACKs, duplicate ACKs and 
selective ACKs. Bandwidth samples bk are low-pass 
filtered by employing the following time-varying 
low-pass filter to obtain the bandwidth estimate: 
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where fτ/1  is the filter cut-off frequency (a typical 
value is sf 5.0=τ ), and )( 1−−=∆ kkk tt . Low-pass 
filtering is necessary since congestion is due to low 
frequency components [25], and because of delayed 
ACK option [13].  

The bandwidth estimate obtained using the filter 
(1) is negatively affected by ACK compression, 
which happens in the presence of reverse traffic 
[14,15]. In particular, ACK compression causes a 
systematic bandwidth overestimate. This 
overestimate may disrupt the fairness between TCP 
connections and even may lead to starvation of 
some connections.  

In order to avoid the effects of ACK 
compression, in [14] we have proposed to compute 
a sample of bandwidth bk every RTT instead of 
every time an ACK is received by the sender. More 
precisely, we propose to count the amount of data 

∑= jk dD  acknowledged during the last RTT to 
compute the bandwidth sample kkk Db ∆= / , where 

k∆  is now the last RTT.  
To conclude, we say a few words on the 

sampling interval k∆=RTT . In order to get a 
properly working filter, it is necessary to satisfy the 
Nyquist sampling theorem, that is, it must be 

2/fk τ≤∆ . To be conservative, we assume 
4/fk τ≤∆ . Thus, if it happens that 4/fk τ>∆ , 

then we interpolate and re-sample by creating 
)/4(int fRTTN τ⋅= 1 virtual samples kkk Db ∆= /  

that arrives with the interarrival time 4/fk τ=∆ .  
To give an insight into the bandwidth estimation 

algorithms employed by Westwood and 
Westwood+, Fig. 1 shows the bandwidth estimate 
obtained by one Westwood or one Westwood+ flow 
over a 1Mbps bottleneck in the presence of reverse 
traffic made by several Reno connections. It is 
straightforward noting that the new filtering scheme 
avoids ACK compression effects. Whereas, the 
Westwood algorithm overestimates the bandwidth 

                                                           
1 int(·) stands for the integer part of (·) 

up to ten times with respect to the bottleneck 
bandwidth that is equal to 1Mbps. 
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Figure 1. Bandwidth estimates over a 1Mbps bottleneck. 
 
 
3. Performance Evaluation  
 
 
3.1 Single bottleneck scenario 
This section aims at evaluation the fairness in 
bandwidth sharing achieved by Reno, Vegas and 
Westwood+ TCP when several connections share a 
FIFO bottleneck. To the purpose, the scenario in 
Fig. 2 has been considered. It consists of a single 
FIFO bottleneck shared by a set of M TCP flows of 
the same flavor with different RTTs. In particular, 
we consider M=10,40,70,100,120,140,170,200 
infinite greedy connections with RTTs ranging 
uniformly from (252/M)ms to 252ms. Simulations 
last 100s during which all the TCP sources send 
data. 

The bottleneck bandwidth is set equal to 1Mbps 
or 10Mbps or 100Mbps and the bottleneck queue 
capacity is set equal to the link capacity times the 
maximum RTT, hence, it is equal to 21, 210 and 
2100 segments, respectively. The segment size is 
1500 bytes long. All the considered sinks 
implements the delayed ACK option [13],[22]. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Single bottleneck scenario. 

To measure the fairness in bandwidth sharing 
achieved by each TCP flavor, we compute the Jain’s 
fairness index defined as follows:  
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where bi is the goodput of the ith connection and 
M is the number of connections sharing the 
bottleneck [17]. Figs. 3, 4 and 5 show the fairness 
indexes of Reno, Vegas and Westwood over a single 
bottleneck of capacity 1Mbps or 10Mbps or 
100Mbps, respectively.  

Fig. 3 shows that Vegas exhibits a very poor 
fairness index with respect to Reno and Westwood+ 
over the 1Mbps bottleneck. The main reason of this 
behavior is that the early congestion detection 
employed by Vegas fails because of the small queue 
size of 21 packets. On the other hand the Jain 
fairness indexes of Reno and Westwood+ TCP 
decrease when the number of connections M 
increases from 40 to 200. Such a behavior is due to 
the many flow effect, which happens when the 
number of connections sharing a bottleneck is larger 
than the size of the bottleneck queue measured in 
segments [8].  

Fig. 4 shows that when the number of 
connections M is larger than 40, Westwood+ 
exhibits the best fairness index whereas Vegas has 
the worst fairness index since its congestion 
detection mechanism does not work properly 
because the buffer size is not large enough.  

Fig. 5 show that Vegas achieves the best fairness 
index since its congestion detection algorithm is 
able to avoid buffer overflow. Fig. 5 shows that 
Westwood+ algorithm improves the fairness index 
of Reno TCP over the 100Mbps link. 

Figs. 6, 7 and 8 show the average goodput 
computed as the total goodput over the number of 
connections sharing the bottleneck when the 
bottleneck capacity is 1Mbps or 10Mbps or 
100Mbps, respectively. From Figs. 6, 7, and 8, it 
turns out that in all the considered scenarios, Reno, 
Vegas and Westwood+ achieve high link utilization. 
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Fig. 3. Fairness Indexes over a 1Mbps bottleneck. 
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Fig. 4. Fairness Indexes over a 10Mbps bottleneck. 
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Fig. 5. Fairness Indexes over a 100Mbps bottleneck. 
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Fig. 6. Average Goodput over a 1Mbps bottleneck. 
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Fig. 7. Average Goodput over a 10Mbps bottleneck. 
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Fig. 8. Average Goodput over a 100Mbps bottleneck. 

Finally, this section investigates the 
performances of the three TCP flavor when the 
bottleneck buffer size is varied. In particular, the 
goodput versus the (buffer_size/bandwdith*delay) 
ratio in the case of a 10Mbps link shared by 40 TCP 
flows is shown in Fig. 9. It is worth noting that 
Vegas achieves the best goodput since it is able to 
avoid segment losses via the early congestion 
detection mechanism that it employs, whereas 
Westwood+ and Reno TCP exhibit about the same 
goodput. 
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Fig. 9. Goodput over a 10Mbps bottleneck with variable 

buffer size. 
 

 
3.2 Multi bottleneck scenario 
The previous section has shown that the early 
congestion detection mechanism employed by 
Vegas TCP guarantees high fairness in bandwidth 
sharing when the queue size of the bottleneck is 
large enough. However, the congestion detection 
mechanism employed by Vegas causes throughput 
degradation when a Vegas flow shares the same 
bottlenecks with Reno flows. This section aims at 
evaluating the performances of Reno, Vegas and 
Westwood+ TCP over a multi bottleneck scenario in 
the presence of Reno traffic sources. To the purpose, 
the topology depicted in Fig. 10 has been 
considered. 

The topology in Fig. 10 is characterized by: (1) N 
hops; (2) one greedy TCP connection C1 going 

through all the N hops; (3) 2N cross traffic greedy 
TCP sources C2-C2N+1 transmitting data over each 
single hop. The simulation lasts 110s during which 
the cross traffic sources always send data. The 
connection C1 starts data transmission at the time 
t=10s when all the network bandwidth has been 
grabbed by the cross traffic. The segments are 1500 
bytes long. The round trip times of all the 
connections are set equal to 50ms. The link 
bandwidth between the routers is equal to 10Mbps 
and the router queues are set equal to the link 
capacity times the round trip time. 

 
Fig. 11 compares the friendliness of Reno with 

respect to Westwood+ and Vegas. It shows the 
goodputs of the connection C1 as a function of the 
number of traversed hops; the C1 source is 
controlled by Reno or Vegas or Westwood and the 
cross traffic is contributed by Reno sources. Fig. 11 
clearly highlights that Westwood+ and Reno 
achieve about the same goodput, whereas Vegas is 
not able to grab its own share of bandwidth. Similar 
results have been obtained when the Westwood+ 
algorithm controls the cross sources C2-C2N+1. 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 3 4 5 6 7 8 9 10

N

G
oo

dp
ut

 (M
bp

s)

Reno
Vegas
Westwood+

 
Fig. 11. Goodput vs. number of traversed hops.  

 
 
4. Conclusions 
We have investigated a simulation-based 
comparison of Reno, Vegas and Westwood+ TCP. 
Simulation results have shown that Westwood+ 
TCP fairly behaves when interacting with Reno 
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Fig. 10. Multi bottleneck topology. 



TCP whereas, on the other hand, Vegas is not able 
to get its bandwidth share when coexisting with 
Reno. Moreover, simulations have shown that 
Westwood+ TCP improves the fairness in 
bandwidth sharing with respect to Reno TCP. 
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