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Abstract: Regularized iterative image restoration is proven to be a successful technique in restoring degraded images.  
However, its application is limited to still images or off-line video enhancement due to its slow convergence.  In order to 
enable this iterative restoration algorithm enhance the quality of video in real-time, each frame of video is considered as 
the constant input and the processed previous frame is considered as the previous iterative solution.  Each frame of a video 
is segmented into two regions: still background and moving objects.  These two regions are processed differently by using 
a segmentation-based spatially adaptive restoration and a background generation algorithms.  The proposed framework 
enables real-time video enhancement at the cost of image quality only in the moving object area of dynamic shots, which 
is relatively insensitive to the human visual system. 
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1. INTRODUCTION 

Among various types of degradation, compression and 
subsampling are the major factors that degrade the quality 
of video.  Compression is almost always necessary for 
video communication due to the limited bandwidth of the 
communication channel.  Subsampling is another way to 
reduce the amount of video data and computational 
overhead at the cost of resolution.  Both compression and 
subsampling can be mathematically modeled, and 
therefore their degradation effects can be removed by the 
regularized iterative restoration algorithm.  Mathematical 
model of degradation due to video compression and the 
corresponding restoration algorithms have also been 
proposed in the literature [1][2].  In this section we 
present the image degradation model due to combined 
compression and subsampling and the corresponding 
restoration results using the proposed real-time framework 
with particular emphasis on the video enhancement aspect. 

High-resolution (HR) image restoration refers to 
restoration of a low-resolution (LR) image by removing 
degradation due to subsampling.  Application areas of HR 
image restoration include, but are not limited to: digital 
high-definition television (HDTV), aerial photography, 
medical imaging, video surveillance, and remote sensing 
[3]. 

Many algorithms have been proposed to obtain an HR 
image from LR images.  Conventional interpolation 
algorithms, such as zero-order or nearest neighbor, 

bilinear, cubic B-spline, and the DFT-based interpolation, 
can be classified by basis functions [4][5][6].  Since these 
algorithms focus on just enlargement of an image without 
consideration of the degradation factor, they cannot 
restore the original HR image.  In order to improve the 
performance of the previously mentioned algorithms, a 
spatially adaptive cubic interpolation method has been 
proposed in [7].  It is well-known that image interpolation 
is an ill-posed problem.  More specifically, sub-sampling 
process can be regarded as a general image degradation 
process.  Therefore, the regularized image restoration 
algorithm can successfully find the inverse solution 
defined by the subsampling process with a priori 
constraint [8][9].  Many regularization-based or similar 
interpolation methods have been proposed in the literature 
[10][11][12][13][14]. 

2. IMAGE DEGRADATION MODEL FOR 
COMBINED SUBSAMPLING AND COMPRESSION 

Enlargement of compressed video has wide application 
areas.  For example, when we look at a JPEG coded 
picture by using an image viewer, we can selectively 
enlarge or reduce the size of the picture by interpolation 
and subsampling, respectively.  Consider an LR image of 
size NM × , which can be obtained by subsampling the 
original pNpM ×  image x .  This LR image is then 
compressed by block discrete cosine transform (BDCT).  
The original pNpM ×  image can be reconstructed from 
the subsampled-compressed image by regularized image 
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restoration.  For the reconstruction or enhancement we 
need to define the image degradation model for both 
subsampling and compression. 

Figure 1 shows the combined subsampling-
compression degradation process, where SH  represents 

subsampling, C  and 1−C  respectively represents forward 
and the inverse DCT, and Q  and 1−D  respectively 
represents the quantization and inverse quantization 
matrices [1]. 
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Figure 1: Image degradation process for combined subsampling-
compression 

Based on the degradation process shown in Figure 1, 
the corresponding mathematical model is given as 

SC HHH = ,                            (1) 

where QCDCHC
11 −−=  represents the degradation 

matrix due to compression.  x , SH  and CH  respectively 

represent the lexicographically ordered, 12 ×MNp , 

MNpMN 2× , and MNMN ×  vectors.  The image 
degradation model for combined subsampling and 
compression is given as 

Hxy = ,                            (2) 

where y  represents the degraded image. 

3. REAL-TIME RESTORATION OF 
SUBSAMPLED-COMPRESSED VIDEO 

Given an image degradation model such as (2), the 
general image restoration process based on the regularized 
constrained optimization approach is to find the minimum 
solution of an objective function given as, 

22)( CxHxyxf λ+−= ,               (3) 

where C  and λ  respectively represent a high pass filter 
for incorporating a priori smoothness constraint and the 
regularization parameter that controls the fidelity to the 
observed data and smoothness of the restored image.  To 
find the solution for minimizing the objective function 
given in (3), we apply the following iterative method, 

( )[ ])()()1( kTTTkk xCCHHyHxx λβ +−+=+ ,    (4) 

where )1( +kx  and β  respectively represent the restored 
image after 1+k st iterative solution and the step length 
which controls the convergence rate. 

Equation (4) can be rewritten as 

( )[ ] )()1( kTTTk xCCHHIyHx λβ +−+=+ .  (5) 

Since H  and C  respectively represents the degradation 
and a priori smoothness constraint matrices, both of them 
are given before the iteration starts.  Hence the k th 
iteration in (5) can be considered as a single filtering 
operation.  Most hardware-based image filtering 
operations are performed by visiting every pixel in the 
raster scanning order, which enable real-time video 
processing. 

If we use the original regularized restoration algorithm, 
which converges after M  iterations, for enhancing a 
video, each frame delays by M  frames.  If the video 
consists of N  frames, total delay becomes MN  frames, 
which disables real-time processing. 

The restored i th frame, denoted by ix̂ , for 
Ni ,,1K= , is obtained as 
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for 1,,1,0 −= Mk K , and )(ˆ M
ii xx = .            (6) 

However, if a shot of the input video sequence has 
little motion, we can assume that N  input frames in the 
motionless shot are approximately the same, such as 

Nyyy ≈≈≈ L21 .                         (7) 

Based on (7), the first frame is used as the initial guess of 
the regularized iteration as 
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and the i th frame, for Ni ,,2 K= , is updated as, 
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The proposed iteration scheme for a motionless shot is illustrated 
in 

Figure 2. 
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Figure 2: The real-time iterative restoration scheme for a 
motionless shot 

In general, we can hardly find exactly the same frames 
in a video, which means the frame-level decomposition is 
almost impractical.  For the block and pixel-level 
decompositions, a necessary condition for the proposed 
real-time framework is that the video must be captured by 
a stationary camera.  This condition ensures that the 
stationary background of each frame is the same.  In the 
video captured by a fixed camera the background region 
can be enhanced by the proposed regularized iteration and 
the moving region is either enhanced by simple filtering 
or remains unprocessed.  The proposed region-adaptive 
real-time restoration consists of two steps.  First, we 
extract the background using the method described in the 
previous section, and then the stationary background is 
enhanced by using the proposed restoration method.  
Second, the restored background and the moving regions 
are merged. 

Since the extracted background from a fixed camera is 
the same, we have 

Nbbb yyy === K
21

,                    (10) 

where 
Nby  represents the N th reconstructed background.  

Since (10) is equivalent to (7), (8) and (9) can be 
respectively rewritten as 
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The proposed algorithm is summarized as follows. 

Algorithm 1: Decomposition-based real-time regularized 
restoration 

(step 1) Generate the background image using the first T  
input frames, as described in Sec. 3.  After T  frames 
pass, go to the next step. 

(step 2) Extract moving regions at each frame by comparing 
with the previously generated background image. 

(step 3) Apply the real-time regularized restoration procedure 
given in (11) and (12) to the background and a simple 
filter to the moving region. 

(step 4) Combine the restored background and the filtered 
moving region.  � 

4. EXPERIMENTAL RESULTS 

In order to test the proposed real-time restoration 
algorithm, we used a video sequence of size 480640× , 
captured by a fixed-view surveillance camera.  One frame 
of the video sequence is shown in Figure 3.  This video 
sequence is appropriate for the experiment because the 
camera was fixed and the localized target object can easily 
be extracted from the stationary background.  The four 
times subsampled version of the original video was used 
as an input to the proposed real-time restoration algorithm. 

For objective comparison of two different degradation 
model, we computed peak-to-peak signal-to-noise ratio 
(PSNR) as 
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Based on Algorithm 1, the background image was 
generated first.  The background image consists of four 
evenly spaced vertical regions.  Both the first and the 
second regions were obtained from the third frame.  The 
third and the fourth regions were obtained from the 17th 
and the 35th frames, respectively.  The background 
generation process is illustrated in Figure 4.  In other 
words, the background image was completely generated 
after the 35th frame, and then the rest part of Algorithm 1 
can be performed. 

 

Figure 3: One frame of the original video sequence captured by 
a fixed-view surveillance camera.  Note that the 
stationary background is dominant throughout the 
image, and the moving person is localized. 

  
 

  
Figure 4: The background generation process.  Background 

images with: (a) the first region from the third frame, 
(b) the first and second regions both from the third 
frame, (c) the first, second, and third regions (the third 
region is obtained from the 17th frame,) and (d) all four 
regions (the fourth region from the 35th frame.) 

After the LR background image is generated, it must 
be enlarged to obtain the original HR background image.  
Two differently enlarged background images are shown in 
Figure 5 and Figure 6.  Figure 5 shows the four times 
enlarged image using simple zero-order interpolation 
algorithm.  Due to the nature of the interpolation 
algorithm, the enlarged image shows blocking artifacts 
and does not have enhanced resolution.  On the other hand 
Figure 6 shows the 50th background frame, which is 
enhanced by using the proposed real-time regularized 
restoration algorithm.  This background image is obtained 
after 15 iterations, and shows 0.49dB improvement over 
Figure 5.  If we keep iterating the background image 
shown in Figure 6, both the subjective quality and the 
PSNR value also keep increasing. 

 

Figure 5: The enlarged 50th background frame by using the zero-
order interpolation algorithm (PSNR=20.45dB) 

 

Figure 6: The enlarged 50th background frame by using the 
proposed real-time regularized restoration algorithm. 
(PSNR=20.94dB) 

After generating and restoring the background image, 
the moving region is to be extracted from the input frame.  
The extracted moving region from the 88th frame is shown 
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in Figure 8, and the combined restored background and 
filtered moving region is shown in Figure 9.  If we 
compare Figure 9 with the enlarged image without 
restoration shown in Figure 7, the restored image gives 
approximately 0.5dB improvement in PSNR.  The 
proposed real-time video enhancement algorithm is 
compared with simple enlargement method in the sense of 
PSNR versus the number of iterations, as shown in Figure 
10.  Until the 35th frame no restoration process occurs, and 
therefore two methods give the same result.  After the 
background image is generated at the 35th frame, the real-
time restoration result outperforms simple enlargement 
method. 

 

Figure 7: The enlarged 88th frame by using the zero-order 
interpolation algorithm.  (PSNR=20.57dB) 

 

Figure 8: The moving region extracted from the 88th frame 

 

 

Figure 9: The combined restored background and filtered 
moving region.  (PSNR=21.01dB) 

 

 

Figure 10: Comparison of two different enlarged sequences in 
the sense of PSNR.  The black curve represents the 
enhanced sequence by using the proposed real-time 
restoration, and the white curve represents just 
enlarged sequence without restoration.  Until the 35th 
frame two sequences are the same because no 
restoration process occurs. 

To ensure the real-time processing, we computed the 
processing time of the proposed algorithm.  The 100 
frame 240320×  video sequence was processed by using 
IDL (Interactive Data Language) in a Pentium III 
500MHz personal computer.  The proposed real-time 
restoration algorithm took 182 seconds to process 100 
frames, while the original form of iterative restoration 
algorithm took 3860 seconds. 

5. CONCLUSIONS 

We proposed a real-time framework for regularized 
iteration and its application to restoration of subsampled-
compressed degradation. In order to restore a subsampled-
compressed image, the combined image degradation 
model was proposed.  The proposed real-time framework 
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first generates the background image, extracts the moving 
region by subtracting the background image from the 
current frame, and finally combines the restored 
background and the filtered moving region.  The proposed 
restoration framework can efficiently enhance both 
quality and resolution of video in real-time at the cost of 
slight performance degradation especially in the moving 
region, which is relatively insensitive to the human visual 
system. 

Extensive experiment was conducted to demonstrate 
the feasibility of the proposed image degradation model 
and the real-time restoration framework.  Experimental 
results showed the combined degradation model for 
subsampling-compression outperformed the degradation 
model for only subsampling in restoring the compressed 
video.  Each step of the proposed real-time restoration 
algorithm was tested and the corresponding results were 
presented. 

Application of the proposed real-time framework is 
restricted to surveillance or the equivalent quality video 
systems because of the assumption that the input video 
must be captured by a fixed-view camera.  However, if 
the background image generation method is modified to 
deal with panned or tilted video input, the proposed 
algorithm can be used to extended application areas. 
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