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Abstract: — System of linear equations appear in a wide range of application fields. The
Partially Solving Method(PSM) which was proposed with us is one of the methods of solving a
linear equation. So far, PSM can be solved without require knowledge of the entire system at any
time. In this paper we introduce a decomposition approach that significantly enhances the efficiency
of the PSM. In this decomposition approach of system analysis, many PSSs ( Partially Solving
System) are generated at arbitrary place simultaneously, in random or as parallel processes without
knowledge of the total system, and are merged using an assembling approach. and a final solution
s achieved at last process of merging of PSSs. Next, we proposed a new concept of numerical
object created with each PSSs as same as decomposition process. Finally, the numerical objects
have unsolved variables as boundary conditions. The merging process means to extend the boundary
conditions on merged numerical objects.
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1 Introduction

System of linear equations appear in a wide
range of application filed. @ Thus, in the
past, a tremendous amount of effort has
been made to develop efficient solution meth-
ods[1],[2],[3]. In our previous paper, we intro-
duced a new method called Partially Solving
Method (PSM)[4]. This solution method for
linear systems does not require knowledge of
the entire system at any time. Therefore sig-
nificant reductions may be expected in both
memory space requirement and execution time,
compared with traditional Gaussian elimina-
tion method[5].

In this paper, we present an enhancement
of PSMJ[6]. There are various kinds of meth-
ods to decompose a large linear system into

smaller subsystems. In general, we used two
kinds of decomposition schemes for solving lin-
ear equations: Iteration methods and Direct
methods. Iteration methods, such as Conjugate
Gradient method, repeat many steps of numer-
ical calculations until the result converges to
the final solution. Direct methods solve an-
alytically without iteration process, examples
include Wave Front method, Bordered Block
Diagonal method and Diakoptics method[7][8].

In these decomposition approaches we can
deal with smaller sized systems of equations,
resulting in the reduction of required memory
size. Furthermore, they are very well suited
for parallel processing, leading to a significant
reduction in the execution time. Although
there are numerous papers on decomposition
approaches, most of them are based on the



traditional Gaussian elimination method or its
variations. On the other hand, our decompo-
sition approach is based on the PSM which is
also one kind of Direct method.

In addition, considering the decomposi-
tion from object oriented, we proposes Nu-
merical Object with each decomposed subsys-
tems PSS(Partially Solving System)’s. More
over, the solution is programmed without total
knowledge of the system. Each objects (PSS’s)
can have an undecided boundary condition on
it’s boundary domain. Then, each Numeri-
cal Object is able to extend it’s boundary do-
main by merging with other Numerical Objects.
PSS’s can obtain the solution only by exchang-
ing the boundary condition without repeatedly
process. As PSS’s can obtain the solution only
by sending few data as only one exchanging,
Therefore, PSM is suitable for a decentralized
processing on the network. This process facili-
tate a new analysis method.

In Section 2, PSM is briefly reviewed for the
help of understanding. In Section 3, we first
explain how our decomposition approach intro-
duced into PSM in general form. Then we show
how to solve the problem more efficiently based
on Merging method. In section 4, we present
the new concept of Numerical Object.

2 Partially Solving Method:
PSM

In this section, we review PSM in general form
for solving a system of linear equations. At
each step of PSM, we add a new equation to
the previous subset. We then transform this
new subset into a special form called a Partially
Solved System (PSS), The subset of equations
at [th step is

x5 = AY. z¥+ by, (1)

where 2} and 7} are the vectors of the
partially solved variables ( super-fixed with s
) and unsolved variables ( super-fixed with u)
respectively. m A} is the coefficient matrix of
the vector m 2} and m by is the vector of the
constants.

Next, the [+ 1st equation is formed by using
relation where relevant variables are grouped

separately,

and this equation is added to Ith PSS
Eq.(1). Then, the enlarged system of [+ st PSS
could be written as;

*S S - *U u ES
Apy - mp = APy - w0 (2)

Transforming Ay}, into unit matrix, we de-
rive a new PSS of the following form:

wj = Apy - oy + e (3)

This continues until the final step. When

the last PSS produced contains the desired so-
lution of the given system as follows

xs = by. (4)

n

We can get all solutions of the system of lin-
ear equations when the processing of PSS has
ended. Our new method of solving system of
linear equations systematically constructs a se-
ries of PSSs iteratively, as Eq.(1) to Eq. (4)
mentioned above.

3 Method of Merging Decom-
posed Subsystems

3.1 Representation of a subsystem

Now, we suppose that an system of linear equa-
tions is decomposed into m subsystems. In
other words, we can view the entire system as
if there are many starting points of processing
PSM. We apply PSM to each subsystem. But,
in this situation the last PSS obtained for the
kth subsystem will not give a complete solution
of the subset in general. It will be a partially
solved form:

zp = A}l x4+ b (5)

We name kth such subsystem of Eq. (5) as
k-PSS.

Now we introduce some new notations for
convenience of the present discussions.The vari-
ables that appear in the kth subsystem are
represented as s-variables zj in Eq. (5). In
general, zj will contain some variables which
also directly connect to variables in subsystems
other than kth subsystem.



The subset of variables which do not ap-
pear in other subsystem are denoted as gr:}C and
call internal-variables. The rest of the variables
which appear in different other subsystems are
denoted as zf and call external-variables with
respect to the kth subsystem. Thus, we can
represent xj as xf = [xL,2¢]7.

We rewrite Eq. (5) as follows,

s _ m%c _ A%c
”’f‘[xz]‘[Az

where AY = [AL, A¢)T and by = [b,,b%]T.
This equation can be separated into two equa-
tions as follows;

zy +

Z% ] (6)

z), = Ajy + by (7)

xy, = Afx) + b, (8)
As the variables z!, of the equation (7) are iso-
lated from other subsystems, we called them
internal k-PSS. The variable zf, of the equa-
tion (8) are related to other subsystems and we
call them ezternal k-PSS. The variables con-
tained in =z} are classified into external vari-
ables, because they appear in another subsys-
tems.

Now, we consider two possible cases of con-
nections among subsystems. In the first case,
all the subsystems are related to each other.
The u-variables z} are constructed with exter-

nal variables of all other subsystems as follows:

U __ [.6 € e e e 1T
rp = 2], 25, @y, Th T

then, the equation (8) could be rewritten
as:

m
xf = Z A%m? + bf, (9)
J=1,j#k
where
k=A% Afl - [AR; ] |AR, )

In the other case each subsystem is not re-
lated to all the other subsystems. We express
arbitrary element vector in the u-variable of
Eq. (8) as ri; € x where j in the subscript
denotes the jth serial order of element vector
Ty, as 15 # Tl

Then, the equation (8) is rewritten as fol-
lowing;

my
Ty = Z Af i + b (10)
=1

where my € m is the number of direct con-
nections between kth subsystem and other sub-
systems, and x%j is explained with external
variables vector z§ of connected subsystems.
We discuss mainly the latter case in the fol-
lowing.

3.2 The Merging Method for two
subsystems

We now explain the way to combine subsys-
tems. There are many ways to combine sub-
systems by using Eq. (10). For example, let
us consider the process for merging kth subsys-
tem with gth subsystem. For gth subsystem,
we have the following equations,

Mg

A=Y A, ()
=1
Mg

g=Y Ay (2)
=1

where mgy(€ m) is the number of connec-
tions of gth subsystem with other subsystems.

When two subsystems k and g are directly
connected, we have the following expressions:

my,
wh= Ay aky Y Afcek+b (13)
I=1,l#g

Mg
wh=Ag - xp + Y Ay a0 (14)
I=1,l1#k

Where’ m% — [ .. ’x%g’ .. ]T’xzb — [ .. ’mgk’ .. ,]T’
A = [...,Azg’...]’ Ag = [...,Agk,...] and
g (Agy) is the sub-matrix element of Aj (A7),
the coefficient matrix of the sub-vector xy(z}).
The variables zf, g xzk connecting directly the
kth, gth subsystems are included in the exter-
nal variable z{, zj of other subsystem, that is,

xig € zy, xzk € zy, the variable x}ég as viewed

from the g-subsystem is same as those exter-

nal variables of g that connects to k-subsystem

wzg. Then

two equations groups of variable ng and mgk

3 u _ e M M u —_
Le.  wp, = 2y, similarly, Ty =



are selected from ezternal k-PSS Eq. (13) and
external g-PSSEq. (14), and form as follows;

my,
ng = Azg : m;k + Z Azl ’ x;él + bi ) (15)
I=1,l#g

Mg
xl = Al wh,+ > AL al + b0 (16)
I=1,l#k

Then, the combination of these two Eq. (15)
and Eq. (16) is formed as the following equa-

tion;
I —A¢ z§ be
g kg — Are. pu + k,
l—AZk I ] [mgk] bR g ]
(17)

where zp, = (z N wgk) U (z%g N wig), and

the matrix A’,;‘; is a coefficient matrix of corre-
sponding xj.

This equation is formed as following PSS
with changing the left side matrix of Eq. (17)
to a unit matrix; matrix.

’ [Ife ’ ’
25y = [ ko ] = Afal, 05, (18)

We call this Eq. (18) to pre-external kg-
PSS.

Those solved variables z, g and mgk are sub-
stituted into corresponding parts of Eq. (8) and
Eq. (12), and the following form is obtained;

xz e u e
e = Akgxkg + bkg (19)

Ly

where bf = (b bg]T.

Now, we try to complete the merged subsys-
tem by including the internal variables. Then,
the solved variables wzg and zg are substi-
tuted into corresponding parts of Eq. (7) and
Eq. (11), we give completely kg merged subsys-
tem in following;

8 8

xkg - = A’llégng + bkga (20)

=

W
8
QI 00

where by, = [bf, bg, - g]T. We get the above

kg-PSS of assembling k and g subsystem.

We get the kg-PSS of the completely merged
subsystem by assembling kth and gth subsys-
tems,

Next, kg-PSS can be separated to external
r}, and internal variables x};g with the condi-
tion connected of other subsystems as follows;

Thy = AbgThy + big (21)
Thg = AlgThy + big (22)

§ [t e 1T
where zp, = [z}, 2}, ]".

We call those Eq. (21) and Eq. (22) to and
internal kg-PSS and external kg-PSS respec-
tively.

We repeat this merging process for each
merged subsystems and we get a final merged
subsystems as follows;

T193.. kg (m—1)m = 0123, kg...(m—1)ym  (23)

This result gives the solution of all variables of
each subsystem.

4  Concept of Numerical Ob-
ject

Till now we discussed about the new algorithm
for solving linear equations and elaborated that
with an example. In this section we will intro-
duce the basic idea behind the algorithm, the
new concept which we name as numerical ob-
ject.

Using the variables of K-PSS of Eq.6 used
in the previous section, we would like to illus-
trate graphically the relation among the differ-
ent subsystems.

For example, if unsolved variables z} are
constructed with the three extremal variables
xig,xiy,wzz of other subsystems, those exter-
nal variables correspond to the arcs incoming
to k subsystem. The variables in subsystem &
are defined as nodes of internal variable gr:}C and
external variable zf of K-PSS.

In the graph diagrams, incoming arcs on
each subsystem are constructed with from the
external variables of other subsystems. The



PSSs of other subsystems can also be con-
structed similarly.

Next, we consider the merging process for two
subsystems k,g. The relation among the ex-
ternal variables Eq.15 and Eq.16 of subsystems
kth and gth.

The aim of solving these equations is to
eliminate those arcs. This elimination process
is that the solving those equations is to get new
solved variables xig’ of Eq.18, then, the as-
sembled PSS is gotten as kg-PSS of Eq.20 The
relation among those variables of kg-PSS are
defined as graphically Diagram. It is clear that
the connected arcs (for example, among k and
g subsystems) are eliminated by merging sub-
systems kg and external variables xig and g,

inter into the internal variables xig of Eq.21.
The main contribution of our idea, to simplify
the process of solving a set of linear equation, is
that, our merging process will solve only those
equations connected by arcs as just explained.
Other equations are ignored and thus the whole
process is simplified. Important result is that
the connected arcs at each merging stage is not
changed and held as it is. For example, two
arcs from zf and 27 remained as two arcs
from other subsystems. These results are ori-
gin of the new concept of Numerical Objects
applicable to numerical analysis. The concept
of Numerical Object (NO) is explained as fol-

lows;

(1) Definition of NO: Each PSS of the sub-
system contribute a Numerical Object
(NO). Examples are subsystem as Eq. (6)
or merged PSS as Eq. (20).

(2) Construction of NO:

NO constitute of internal-PSS and
external-PSS. An external variable zf in
subsystem k in Fig.1 is an output from
subsystem k to other subsystems. We call
this kind of variable as Interface Node in
NO. Numerical object & is connected from
interface nodes of other NOs via arcs we
call interface arcs, shown as arrows.

These interface arcs are expressed with
Eq. (8) or Eq. (22) as external PSS. For
example, the interface arcs of subsystem

k is constructed with the connected arcs
incoming to variable ng from external
variables zg of other subsystem g. In-
terface arcs are constructed between in-

terface nodes.

(3) Operation on NO: Each numerical ob-
ject has its interface nodes and inter-
face arcs incoming from interface nodes of
other NOs. Smaller numerical object at
lower stages are assembled to form new
bigger numerical object. For example,
subsystem k£ and subsystem G are two
numerical objects which when assembled
form a bigger numerical object i.e. sub-
system kg. This assembling is nothing
but solving the relations corresponding to
interface arcs of the constituent subsys-
tems.

(4) Interface Nodes and Arcs during as-
sembling: As we assemble subsystems to
form bigger NOs, interface arcs intercon-
nected different constituent subsystems
are vanished. But interface nodes and
corresponding arcs incoming from other
numerical object remain unchanged. For
example, the incoming arc to numeri-
cal object k£ from interface node ng no
longer exist in numerical object kg. But
incoming interface arcs to numerical ob-
ject k , g from another interface node zj,_,

g, remains as an incoming interface arc

from vs of numerical object z and y to

numerical object kg.

xr

(5) Interface Nodes - When it is consid-
ered, When it comes to picture ?
Different NOs i.e. subsystem are related
through interface arcs from interface node
of other NOs. There interface arcs be-
come important only when we assemble
the numerical object. When two numeri-
cal object are not considered for merging,
interface arcs do not come in picture, For
example, the incoming arc to numerical
object z from interface node zf is yet
unknown, where merging with numerical
object x was not under consideration.

We summarize our proposed as follows. The
subsystems are considered as numerical object,



where different numerical objects are related by
interface arcs. Only when we need to merge
two or more numerical objects the interface re-
lation of the corresponding objects are consid-
ered. After assembling of constituent sub sys-
tems i.e. solving interface relations, these arcs
vanish. When we go to higher stage of assem-
bling, new interface arcs come into considera-
tion. This process continues until the whole
system represented by a single numerical ob-
ject.

5 Conclusion

In this paper, we presented yet another novel
PSM method as a new approach for decomposi-
tion. We also introduced the idea of Numerical
Object (NO) which is different from conven-
tional decomposition concepts and presented
algorithm for solving linear systems. The main
important contribution of this PSM is that it
does not require knowledge of entire system and
can be solved flexibly in parts.

Moreover, it can be started simultaneously
and independently with different subsystems
arbitrarily selected and solved. This idea could
also be extended for different practical situa-
tions, when the entire system is not know at
the offset. Calculation may start with partial
knowledge i.e. with available subsystems and
be progressed. Time to time, when new subsys-
tems are available they could be merged with
the partially solved system. (it will be very in-
teresting if we can find an example where the
partial solutions also have some meaning). As
this PSM can start from many arbitrary place
independently at the same time and generate
partially solving systems (PSSs), they could be
executed in parallel or in a distributed way and
could be much fasted.

When those processes are reached on
boundary of each PSS after those process of
generating PSSs, merging of PSSs have to be
done.

This NO method has many possible inter-
esting application fields of linear and nonlinear
systems in numerical analysis. As already men-
tioned, the progress of calculation with partial
knowledge would be very useful for dynamic

and real-time systems like robot movements to
surmount obstruction etc. We are presently en-
gaged in applying our algorithm in those areas.
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