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Abstract: In this paper we present a Genetic Algorithm (GA) with problem-specific operators for the layered
digraph drawing problem and compare it with two very different meta-heuristics: Tabu search and Multi-start
descents. Tabu search has previously proved to be better than the classical deterministic local heuristic often
employed in graph drawing. Here, we show on a set of 282 medium-sized graphs that GAs lead to similar results
to Tabu for graphs of relatively high density and better results for graphs with medium density. Comparisons with
multi-start descents tend to confirm the good quality of the solutions found by using GAs.
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1 Introduction The importance of the problem in numerous ap-
Today graph drawing problems know a renewed inter@ycations has stimulated the development of various
in particular in the field of “information visualization”heuristics from local transformations to meta-heuristics.
(Web browsing, cartography, ...) [5]. Graphs can e easiest deterministic local transformations are
used at the same time as theoretical models and agésed on simple permutations on each layer [3, 6]. The
ficient visualization supports which often allow acce$80st popular ones are the greedy-switching and the so-
to complex structures without getting bogged down fi@lled “averaging heuristics”. The greedy-switching
mathematical detail [1]. permutation iteratively switches consecutive pairs of
The problem of drawing a grap is generally set vertices if it decreases the crossing number. The av-
as a combinatorial optimization problem [2]: producin@raging heuristic which includes the barycenter heuris-
a layout ofG on a given support (plane, ...) accordinéC [14] and the median heuristic [4] is based on a
to a drawing convention that optimizes some meas8ftréwd remark: arc-crossings tend to be minimized
able aesthetics of which one of the most important f¢€n connected vertices are placed facing with each
readability is arc crossing minimization [13]. In this paRther. Roughly speaking, these algorithms compute the
per, we focus on an approach often used for hierarchid4frage position -e.g. the barycenter or median of their
relationship representations: tlagered drawings of di- neighbors- for each vertex and sort them on each layer
rected grapi. In this case, vertices @ are arranged according to the obtained values.
on vertical layers and the arcs linking vertices are rep- To overcome the difficulties inherent to these lo-
resented by oriented line segments which flow in tisal approaches (see [2] for details), different meta-
same direction. Minimizing arc crossing for this layouteuristics have been proposed in the past years: Tabu
problem could seem intuitively easier than the genesslarch [10], GRASP [11], Genetic algorithms and Evo-
problem of minimizing arc crossing on a plane since th&ionary algorithms [15]. In particular, GAs have been
choice of geometric coordinates is here replaced bylaown to be particularly promising for a generalization
choice of vertex ordering on each layer. Unfortunatelyf the problem presented here which takes dynamic up-
it remainsNP-complete [4]. dates of the graph into account [9]. However, as far



as we know, there have been few comparisons betweenThe above figure is an example of a layered digraph
GAs and other meta-heuristics. with 5 arc crossings (D) = 5 ). In this example
In order to better understand the GA behavior féfi = {o,¢,p,m,n}, o1(0) = 1, o1(¢) = 2, etc. and
the layered drawing problem, we here propose to cob-= {r,t, s, u}, o2(r) =1, o2(s) = 3, etc.
pare it with two approaches based on very different
principles: the Multi-start descents and the Tabu seargr}a\ tic b d h
which allows an exploration of the search space from™a genetic as_e app_roac
restricted set of potential solutions which does not nedB!S Well-known that in the basic framework, GAs work
sarily improve the objective function. with a populatlon of pqtentlal solutions coded by geno-
The first section presents a Genetic Algorithm wiﬁ( pes which stochastlc_ally evolves_ by_ means of th_ree
problem-specific mutation and crossover operators. asic operators: selection, recombination and mu'Fatlon.
particular, this version introduces a hybridization with AS fOr Us, a genotype codes the vertex ranks in the
an adaptation of the averaging heuristics presen?éffcess've order_mgg,ag,...,qk associated V_V'th each
above in the mutation phase. In the second sectibar}',er' The selection is d_etermlned byacla_ssmal roulette
GAs are compared with Tabu search and Multi-start d/gbeel based on the objective functign Differences

scents on a large set of random layered medium-sii’&'g? the basic scheme occur at mutation and recombi-
digraphs nation stages.

3.1 Mutation operators and hybridiza-

tion

Besides the classical bitflip operator, which here ex-

changes two vertices in a layer randomly chosen, we

tices on each layer is here considered to be givén: app'Y 'Fhr_ee prot_)Ie_m-spetlzific.operator_s close to the de-
rministic heuristics (switching, median and barycen-

i = 1,..., K, is the subset of vertices which must bt heuristi ted | tion 1. Variants of th
placed onL;, i = 1,..., K. In a layered drawing (seeer euristics) presented in section 1. Variants of these

figure below), every aru, v) flows in the same direc-operators have already been successfully tested in the
tion: if u V thenwv ¢ {/ wherei < j. Moreover other meta-heuristics previously quoted. Note that in
. 7 7 . ’

as usual for this problem, we suppose that the grapmg case a local improvement is introduced in the “mu-

proper i.e. each ar@u, v) € A is connected to verticestat'on phase -in the sense of a hybridization strategy

on consecutive layers: if € V; thenv € Vi, ;. In prac- with a local search. Each local operator is here defined
: 3 i1

tice, it is easy to come down to this hypothesis whé?\r any layer;, of a layoutD;.

replacing an arc whose lenghtis greater than one by a

path of A — 1 dummy vertices on consecutive layers. SWitching (S). A drawing D; is deduced from a draw-

The layered drawing problem consists in definiHBg D; by swapping two adjacent vertices in the same

a vertex ordering on each layer so that the associaf®¥fr ik if f(Dj) < f(Di).

drawing minimizes the arc crossing number. In the fol- ) -
lowing, the vertex ordering off, € L is denoted by Barycenter (B). A vertexv only, is repositioned at the

ow: or(u) = p means that the vertex € V; is on the 2verage positiorwvg(v) of the connected vertices in
p'" position onl;,. And, the arc crossing number for pothly_, andlyq:

drawing D; is denoted byf (D).
Z op-1(u) Z Ok (u)

uEN,_1(v) i uEN11(v)
[Vie—1] [Vi+1]

|Nk—1(0)[ + [ Ng41(v)]

2 Problem formulation

LetG = (V, A) be an acyclic digraph with a st of n
vertices and a set of m arcs, andL = {l1, 12, ..., Ik}
be a set of K layers. The distribution of the ver-

avg(v) =

where Nj_1(v) (resp. Ni11(v)) is the set of the
neighbors ofv on i (resp. lx+1). Ratiosl/|Vj_4]
and1/|Vj41| are introduced in the sum to normalize
! the vertex position on each layer according to their car-
T PO dinality. The average position is computed for each ver-




tex of [, and we retain the new vertex orderia{ ob- different from those of the two parents.

tained after sorting the average valueg(u) > o} (v)

if avg(u) > avg(v). . .
9lu) > avg(v) 4 Experimental comparisons

\We compare GAs with multi-start descents and the Tabu

Median (M). This operator is very close to the previ- ~ ) : :
ous one. Let us recall that the median of a sorted seﬂﬁomhm developed in [10] which has been experimen-
) |

numbers is the numbeted so that half of the numbersta y prqv_eo! to be more efficient than the classical local
are smaller thamed and the other half are greater thaﬂe'[ermInIStIC heur|§t|cs. _ _

med. If Ny_1(v) = {u,uz, ., u,} and Ny 1(v) = To make experlmental_computatlons easier we have
{w1, w3, ..., w,} then the median positiomed(v) of developed a layered acyclic digraph generator. Compar-

the vertexv is the median of the following sorted se'ls_OnS have been made on a set of 282 connected graphs
{UT‘;l(u‘l) U,V(ur) UT‘J;l(w|1) o,lc;l(wr)}_ Like with 4 < K <40 and3 < |V4] < 15.
for the barycenter, we retain the new vertex ordering

o), obtained after sorting the median valueg:(u) > 4.1 Results for Multi-start descents and

o (v) if med(u) > med(v). Tabu search
~ Each operator is iteratively applied on each laygfulti-start descents (MsD). A set of 1000 layouts of a
with a given probability. graphG is randomly generated, and each layout is im-

proved by an iterative application on each layer of the

3.2 Crossover operators _three .mutatlon operator§, M andB. The best layout
is retained at each step.

Contrary to GA applications for graph drawing on a

plane where only real coordinates are taken into acco*gbu search(TS). We have chosen the TABU2 version

e.g. [12], [8] ), the main difficulty for ordinal codin : o
i(s tgcj) d[efir]le[a]c)rossover which gu)allrantees a feasiblfzj %roe__sented in [10] as it gives better results than most ba-

) . sIC implementations. Let us very briefly define the main
lution. In a previous paper [9], we compared two spe-

o . , s}eps. The search starts with an "intensification phase":
cialized crossover operators which had been previous ¥ . . . .
ingle layer is selected and the algorithm tries to find

applied to problems encoded as permutation such as3he 9. . . .
PP P P an, optimal or near-optimal ordering of this layer, con-

Traveling Salesman Problem: Order Crossover 1 ang . : :
. . Idering that the orderings of adjacent layers are fixed.
Partially Mapped Crossover (see [7] for details). . : : . .
is layer is then considered tabu as long as its adja-

have showed that the second one was significatively to0

time consuming and that the results where not any be 8}” layers are not modified. When all layers are tabu,

.__a diversification phase" is applied on randomly chosen
for our problem. Hence, we have here used a variant ofd. P PP y

Order Crossover 1 for an "intra-layer" operat6, ) vertices by the application of a switching procedure.

and a usual one point crossover for an "inter-layer" op-

erator Cinter). For GAs we have chosen the following probabilities

for the different operatorsPr(S) = 0.05, Pr(M) =
Let t t I ts. Th
et g1 andg, be two genotypes called parents ér(B) 0.2, Pr(Cinger) = Pr(Cinpra) = 0.2, We

"inter-layer" operator works as follows: a crossov e
. . ave tested other distributions but the results are very
point cp is randomly chosen between two layers to cre-

. Close for small variations#0.1 around these values).
ate two new genotypeg andgy. The genotypeys is S : . .
composed of the;, orderings in the layers IDrecedin%'rhaep|hn|t|al population contains 30 drawings of a same
cp and theg, orderings in the layers aftefp. Simi- ' _ _
larly, g4 is defined by the orderings in the remaining In order to better understand the behavior differ-

layers: the first layers af, and the last layers af;. For ences between the different approaches we use two cri-

the "intra-layer" operator a crossover point is random{lﬁria: the relative height to the best found solution and

chosen inside a layer, and then, the layers of the sa = graph density. The relative heighf; (D;) of a

index in the parents are mixed together to make up t\g/@WingDi produced by a meta—he_uristE o the best
y a meta-heuristi€ is defined by

new valid genotypes. The first crossover operator aé@utlon produced by a R

like a "vertical cut" in the drawing; It allows to inter-hff (D) = 1 — J;c(ft)—__f];f, where fp/ is the best value
lace layers without changing the vertex ordering. Anfbund by A’ and f;,;; the arc crossing number of the
the second operator acts as an "horizontal cut" in tth&wing given by the generator. }bfg/(Di) is close to

drawing which can be used to construct new orderingsthen the quality ofD; is similar to the quality of the
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Best Methods| % of graphs| Avg Density haa hrs
(std dev) (std dev) (std dev)

MsD=TS=GA 30.5 0.8

(0.19)
MsD 15.25 0.5 hM:P = 0.96 hsP = 0.9
(0.18) (0.08) (0.04)
MsD=GA 54.25 0.61 RSP = hG4 = 0.85

(0.22) (0.12)

Table 1: Numerical comparisons of Genetic Algorithm (GA), Multi-Starts descents (MsD) and Tabu Search (TS).
(MsD, TS and GA give equivalent results for 30.5% of graphs,...)

best solution found by?’. The graph densityi(G) of half-degree, etc.. This tends to initialize the exploration
a graphG is often introduced for graph class discrimiprocess with potentially suitable solutions. Moreover,
nation. The usual definition is the ratio of the arc nunthe introduction of hybridization in mutation operators
ber m on the arc number of a complete graph with fignificantly improves the drawing quality at each gen-
maximal arc number. In a layered digraph, the maximedation.
graph hasn.: = Yr, |Vi_1| x |Vi| arcs. Hence,  Note that the optimization of the computation time
the density is here defined byG) = m/mnaq- was not our priority in this paper. Consequently, for this
Comparative results are given in table 1. In dirst stage, the three meta-heuristics have been devel-
cases, TS has never produced better drawings than ®ped in Perl which allows to notably reduce the devel-
or MsDs. The cases of congruence between the thogenent time by using complex data structures. This is
approaches seem to correspond to graphs with a réfereason why computation times are high here: around
tively high density. Vertices of these graphs have nli5 minutes for Tabu, 35 seconds for GAs and 70 min-
merous neighbors and consequently there are less effés for MsDs on an SGI Origin 2000. In C++ language,
cient local permutations than for graphs with a mediubaguna et al. [10] have measured a mean computation
density. For 15.25% of cases -which correspondstime of around one minute. Moreover, the Tabu version
graphs with a median density-, MsDs lead to better i@osen here for the quality of its results was known to
sults than TS and GAs. However, the results of GAsnverge more slowly than other versions. Besides, the
are closer to the best obtained drawingd’{” = 0.96) first experiments with a new version of GAs coded in C
than those obtained by TS. Note that MsDs have bedrow a convergence within a very few seconds.
here introduced only to compare the quality of the re-
sults. In practice, it is obviously unthinkable to geney- .
ate a set of 1000 drawings and to apply a descent%rpondus'on
each of them. Yet, it is interesting to observe that GA, this paper we have presented a GA with problem-
which are distinctly quicker, lead to equivalent resulfPecific operators for the layered digraph drawing

than MsDs for 54.25% of the graphs. problem and compared it with two “opposite” meta-
heuristics: Tabu search and Multi-start descents. Tabu

search has been previously proved to be better than the
4.2 Convergence classical deterministic local heuristic often employed in
Figure 1 describes the average convergence of Ggkaph drawing. Here, we show on a set of 282 medium
The number of generations necessary to reach a gstgd graphs that GAs lead to similar results to Tabu for
quality solution is relatively small compared to basi@raphs of relatively high density and better results for
GAs for other combinatorial optimization problemgraphs with medium density. Comparisons with 1000
Two factors contribute to explain this behavior. Idescents tend to confirm the good quality of the solu-
our implementation, the initial population of drawingtons found by GAs.
produced by the generator has been slightly improved. At present, our research is going on in three direc-
The vertex ordering of the first genotypes fits differetibns. We extend our comparisons to a class of larger
depth first searchs of the graph: a directed one staptaphs in order to better understand the influence of the
ing with vertices having a null inferior half-degree, density criterium on the different meta-heuristic behav-
backward one starting with vertices with a null superigors. Moreover, GRASP has been recently adapted for
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Fig. 1: Average convergence of GAs

the same drawing problem [11] and from the first pubf8] C. Kosak, J. Marks, and S. Shieber. A parallel
lished results, this approach seems more efficient than genetic algorithm for network-diagram layout. In
Tabu search; therefore, it will be interesting to compare
it with our GA implementation. Lastly, as noticed in the

previous section, we now focus on the improvement of
the computation time. [
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