
Comparisons of meta-heuristics
for the layered digragh drawing problem

BRUNO PINAUD PASCALE KUNTZ REMI LEHN
Ecole Polytechnique de l’Université de Nantes

Université de Nantes
La Chantrerie BP50609 44306 Nantes

FRANCE

Abstract: In this paper we present a Genetic Algorithm (GA) with problem-specific operators for the layered
digraph drawing problem and compare it with two very different meta-heuristics: Tabu search and Multi-start
descents. Tabu search has previously proved to be better than the classical deterministic local heuristic often
employed in graph drawing. Here, we show on a set of 282 medium-sized graphs that GAs lead to similar results
to Tabu for graphs of relatively high density and better results for graphs with medium density. Comparisons with
multi-start descents tend to confirm the good quality of the solutions found by using GAs.
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1 Introduction
Today graph drawing problems know a renewed interest
in particular in the field of “information visualization”
(Web browsing, cartography, ...) [5]. Graphs can be
used at the same time as theoretical models and as ef-
ficient visualization supports which often allow access
to complex structures without getting bogged down in
mathematical detail [1].

The problem of drawing a graphG is generally set
as a combinatorial optimization problem [2]: producing
a layout ofG on a given support (plane, ...) according
to a drawing convention that optimizes some measur-
able aesthetics of which one of the most important for
readability is arc crossing minimization [13]. In this pa-
per, we focus on an approach often used for hierarchical
relationship representations: thelayered drawings of di-
rected graphs. In this case, vertices ofG are arranged
on vertical layers and the arcs linking vertices are rep-
resented by oriented line segments which flow in the
same direction. Minimizing arc crossing for this layout
problem could seem intuitively easier than the general
problem of minimizing arc crossing on a plane since the
choice of geometric coordinates is here replaced by a
choice of vertex ordering on each layer. Unfortunately,
it remainsNP-complete [4].

The importance of the problem in numerous ap-
plications has stimulated the development of various
heuristics from local transformations to meta-heuristics.
The easiest deterministic local transformations are
based on simple permutations on each layer [3, 6]. The
most popular ones are the greedy-switching and the so-
called “averaging heuristics”. The greedy-switching
permutation iteratively switches consecutive pairs of
vertices if it decreases the crossing number. The av-
eraging heuristic which includes the barycenter heuris-
tic [14] and the median heuristic [4] is based on a
shrewd remark: arc-crossings tend to be minimized
when connected vertices are placed facing with each
other. Roughly speaking, these algorithms compute the
average position -e.g. the barycenter or median of their
neighbors- for each vertex and sort them on each layer
according to the obtained values.

To overcome the difficulties inherent to these lo-
cal approaches (see [2] for details), different meta-
heuristics have been proposed in the past years: Tabu
search [10], GRASP [11], Genetic algorithms and Evo-
lutionary algorithms [15]. In particular, GAs have been
shown to be particularly promising for a generalization
of the problem presented here which takes dynamic up-
dates of the graph into account [9]. However, as far
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as we know, there have been few comparisons between
GAs and other meta-heuristics.

In order to better understand the GA behavior for
the layered drawing problem, we here propose to com-
pare it with two approaches based on very different
principles: the Multi-start descents and the Tabu search
which allows an exploration of the search space from a
restricted set of potential solutions which does not nece-
sarily improve the objective function.

The first section presents a Genetic Algorithm with
problem-specific mutation and crossover operators. In
particular, this version introduces a hybridization with
an adaptation of the averaging heuristics presented
above in the mutation phase. In the second section,
GAs are compared with Tabu search and Multi-start de-
scents on a large set of random layered medium-sized
digraphs.

2 Problem formulation
LetG = (V,A) be an acyclic digraph with a setV of n
vertices and a setA of m arcs, andL = {l1, l2, ..., lK}
be a set ofK layers. The distribution of the ver-
tices on each layer is here considered to be given:Vi,
i = 1, ...,K, is the subset of vertices which must be
placed onLi, i = 1, ...,K. In a layered drawing (see
figure below), every arc(u, v) flows in the same direc-
tion: if u ∈ Vi thenv ∈ Vj wherei < j. Moreover,
as usual for this problem, we suppose that the graph is
proper i.e. each arc(u, v) ∈ A is connected to vertices
on consecutive layers: ifu ∈ Vi thenv ∈ Vi+1. In prac-
tice, it is easy to come down to this hypothesis when
replacing an arc whose lengthλ is greater than one by a
path ofλ− 1 dummy vertices on consecutive layers.

The layered drawing problem consists in defining
a vertex ordering on each layer so that the associated
drawing minimizes the arc crossing number. In the fol-
lowing, the vertex ordering onlk ∈ L is denoted by
σk: σk(u) = p means that the vertexu ∈ Vk is on the
pth position onlk. And, the arc crossing number for a
drawingDi is denoted byf(Di).

The above figure is an example of a layered digraph
with 5 arc crossings (f(D) = 5 ). In this example
V1 = {o, q, p,m, n}, σ1(o) = 1, σ1(q) = 2, etc. and
V2 = {r, t, s, u}, σ2(r) = 1, σ2(s) = 3, etc.

3 A genetic based approach
It is well-known that in the basic framework, GAs work
with a population of potential solutions coded by geno-
types which stochastically evolves by means of three
basic operators: selection, recombination and mutation.

As for us, a genotype codes the vertex ranks in the
successive orderingsσ1, σ2, ..., σk associated with each
layer. The selection is determined by a classical roulette
wheel based on the objective functionf . Differences
with the basic scheme occur at mutation and recombi-
nation stages.

3.1 Mutation operators and hybridiza-
tion
Besides the classical bitflip operator, which here ex-
changes two vertices in a layer randomly chosen, we
apply three problem-specific operators close to the de-
terministic heuristics (switching, median and barycen-
ter heuristics) presented in section 1. Variants of these
operators have already been successfully tested in the
other meta-heuristics previously quoted. Note that in
this case a local improvement is introduced in the “mu-
tation” phase -in the sense of a hybridization strategy
with a local search. Each local operator is here defined
for any layerlk of a layoutDi.

Switching (S). A drawingDj is deduced from a draw-
ing Di by swapping two adjacent vertices in the same
layerlk if f(Dj) < f(Di).

Barycenter (B). A vertexv on lk is repositioned at the
average positionavg(v) of the connected vertices in
bothlk−1 andlk+1:

avg(v) =

∑
u∈Nk−1(v)

σk−1(u)

|Vk−1| +

∑
u∈Nk+1(v)

σk+1(u)

|Vk+1|

|Nk−1(v)|+ |Nk+1(v)|

whereNk−1(v) (resp. Nk+1(v)) is the set of the
neighbors ofv on lk−1 (resp. lk+1). Ratios1/ |Vk−1|
and 1/ |Vk+1| are introduced in the sum to normalize
the vertex position on each layer according to their car-
dinality. The average position is computed for each ver-
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tex of lk and we retain the new vertex orderingσ′k ob-
tained after sorting the average values:σ′k(u) > σ′k(v)
if avg(u) > avg(v).

Median (M ). This operator is very close to the previ-
ous one. Let us recall that the median of a sorted set of
numbers is the numbermed so that half of the numbers
are smaller thanmed and the other half are greater than
med. If Nk−1(v) = {u1, u2, ..., up} andNk+1(v) =
{w1, w2, ..., wq} then the median positionmed(v) of
the vertexv is the median of the following sorted set
{σk−1(u1)
|Vk−1| , ....,

σk−1(up)
|Vk−1| ,

σk+1(w1)
|Vk+1| , ...,

σk+1(wq)

|Vk+1| }. Like
for the barycenter, we retain the new vertex ordering
σ′′k obtained after sorting the median values:σ′′k(u) >
σ′′k(v) if med(u) > med(v).

Each operator is iteratively applied on each layer
with a given probability.

3.2 Crossover operators
Contrary to GA applications for graph drawing on a
plane where only real coordinates are taken into account
(e.g. [12], [8] ), the main difficulty for ordinal coding
is to define a crossover which guarantees a feasible so-
lution. In a previous paper [9], we compared two spe-
cialized crossover operators which had been previously
applied to problems encoded as permutation such as the
Traveling Salesman Problem: Order Crossover 1 and
Partially Mapped Crossover (see [7] for details). We
have showed that the second one was significatively too
time consuming and that the results where not any better
for our problem. Hence, we have here used a variant of
Order Crossover 1 for an "intra-layer" operator (Cintra)
and a usual one point crossover for an "inter-layer" op-
erator (Cinter).

Let g1 andg2 be two genotypes called parents. The
"inter-layer" operator works as follows: a crossover
point cp is randomly chosen between two layers to cre-
ate two new genotypesg3 andg4. The genotypeg3 is
composed of theg1 orderings in the layers preceding
cp and theg2 orderings in the layers aftercp. Simi-
larly, g4 is defined by the orderings in the remaining
layers: the first layers ofg2 and the last layers ofg1. For
the "intra-layer" operator a crossover point is randomly
chosen inside a layer, and then, the layers of the same
index in the parents are mixed together to make up two
new valid genotypes. The first crossover operator acts
like a "vertical cut" in the drawing; It allows to inter-
lace layers without changing the vertex ordering. And,
the second operator acts as an "horizontal cut" in the
drawing which can be used to construct new orderings

different from those of the two parents.

4 Experimental comparisons
We compare GAs with multi-start descents and the Tabu
algorithm developed in [10] which has been experimen-
tally proved to be more efficient than the classical local
deterministic heuristics.

To make experimental computations easier we have
developed a layered acyclic digraph generator. Compar-
isons have been made on a set of 282 connected graphs
with 4 ≤ K ≤ 40 and3 ≤ |Vk| ≤ 15.

4.1 Results for Multi-start descents and
Tabu search
Multi-start descents (MsD). A set of 1000 layouts of a
graphG is randomly generated, and each layout is im-
proved by an iterative application on each layer of the
three “mutation” operatorsS, M andB. The best layout
is retained at each step.

Tabu search(TS). We have chosen the TABU2 version
presented in [10] as it gives better results than most ba-
sic implementations. Let us very briefly define the main
steps. The search starts with an "intensification phase":
a single layer is selected and the algorithm tries to find
an optimal or near-optimal ordering of this layer, con-
sidering that the orderings of adjacent layers are fixed.
This layer is then considered tabu as long as its adja-
cent layers are not modified. When all layers are tabu,
a "diversification phase" is applied on randomly chosen
vertices by the application of a switching procedure.

For GAs we have chosen the following probabilities
for the different operators:Pr(S) = 0.05, Pr(M) =
Pr(B) = 0.2, Pr(Cinter) = Pr(Cintra) = 0.2. We
have tested other distributions but the results are very
close for small variations (±0.1 around these values).
The initial population contains 30 drawings of a same
graph.

In order to better understand the behavior differ-
ences between the different approaches we use two cri-
teria: the relative height to the best found solution and
the graph density. The relative heighthH

′
H (Di) of a

drawingDi produced by a meta-heuristicH to the best
solution produced by a meta-heuristicH ′ is defined by

hH
′

H (Di) = 1 − f(Di)−f̂H′
finit−fH′

wheref̂H′ is the best value

found byH ′ andfinit the arc crossing number of the
drawing given by the generator. IfhH

′
H (Di) is close to

1, then the quality ofDi is similar to the quality of the
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Best Methods % of graphs Avg Density hGA hTS
(std dev) (std dev) (std dev)

MsD=TS=GA 30.5 0.8
(0.19)

MsD 15.25 0.5 hMsD
GA = 0.96 hMsD

TS = 0.9
(0.18) (0.08) (0.04)

MsD=GA 54.25 0.61 hMsD
TS = hGATS = 0.85

(0.22) (0.12)

Table 1: Numerical comparisons of Genetic Algorithm (GA), Multi-Starts descents (MsD) and Tabu Search (TS).
(MsD, TS and GA give equivalent results for 30.5% of graphs,...)

best solution found byH ′. The graph densityd(G) of
a graphG is often introduced for graph class discrimi-
nation. The usual definition is the ratio of the arc num-
berm on the arc number of a complete graph with a
maximal arc number. In a layered digraph, the maximal
graph hasmmax =

∑K
k=2 |Vk−1| × |Vk| arcs. Hence,

the density is here defined byd(G) = m/mmax.

Comparative results are given in table 1. In all
cases, TS has never produced better drawings than GAs
or MsDs. The cases of congruence between the three
approaches seem to correspond to graphs with a rela-
tively high density. Vertices of these graphs have nu-
merous neighbors and consequently there are less effi-
cient local permutations than for graphs with a medium
density. For 15.25% of cases -which corresponds to
graphs with a median density-, MsDs lead to better re-
sults than TS and GAs. However, the results of GAs
are closer to the best obtained drawings (hMsD

GA = 0.96)
than those obtained by TS. Note that MsDs have been
here introduced only to compare the quality of the re-
sults. In practice, it is obviously unthinkable to gener-
ate a set of 1000 drawings and to apply a descent on
each of them. Yet, it is interesting to observe that GAs,
which are distinctly quicker, lead to equivalent results
than MsDs for 54.25% of the graphs.

4.2 Convergence
Figure 1 describes the average convergence of GAs.
The number of generations necessary to reach a good
quality solution is relatively small compared to basic
GAs for other combinatorial optimization problems.
Two factors contribute to explain this behavior. In
our implementation, the initial population of drawings
produced by the generator has been slightly improved.
The vertex ordering of the first genotypes fits different
depth first searchs of the graph: a directed one start-
ing with vertices having a null inferior half-degree, a
backward one starting with vertices with a null superior

half-degree, etc.. This tends to initialize the exploration
process with potentially suitable solutions. Moreover,
the introduction of hybridization in mutation operators
significantly improves the drawing quality at each gen-
eration.

Note that the optimization of the computation time
was not our priority in this paper. Consequently, for this
first stage, the three meta-heuristics have been devel-
oped in Perl which allows to notably reduce the devel-
opment time by using complex data structures. This is
the reason why computation times are high here: around
15 minutes for Tabu, 35 seconds for GAs and 70 min-
utes for MsDs on an SGI Origin 2000. In C++ language,
Laguna et al. [10] have measured a mean computation
time of around one minute. Moreover, the Tabu version
chosen here for the quality of its results was known to
converge more slowly than other versions. Besides, the
first experiments with a new version of GAs coded in C
show a convergence within a very few seconds.

5 Conclusion
In this paper we have presented a GA with problem-
specific operators for the layered digraph drawing
problem and compared it with two “opposite” meta-
heuristics: Tabu search and Multi-start descents. Tabu
search has been previously proved to be better than the
classical deterministic local heuristic often employed in
graph drawing. Here, we show on a set of 282 medium
sized graphs that GAs lead to similar results to Tabu for
graphs of relatively high density and better results for
graphs with medium density. Comparisons with 1000
descents tend to confirm the good quality of the solu-
tions found by GAs.

At present, our research is going on in three direc-
tions. We extend our comparisons to a class of larger
graphs in order to better understand the influence of the
density criterium on the different meta-heuristic behav-
iors. Moreover, GRASP has been recently adapted for
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Fig. 1: Average convergence of GAs

the same drawing problem [11] and from the first pub-
lished results, this approach seems more efficient than
Tabu search; therefore, it will be interesting to compare
it with our GA implementation. Lastly, as noticed in the
previous section, we now focus on the improvement of
the computation time.
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