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Abstract:— The need for better quality of service is growing as new quality sensitive services are becoming
more and more important in data networks. The key element in providing quality-of-service or grade-
of-service in packet networks is deciding when or in what order the incoming packets should depart the
system. In other words the departing packets have to be somehow scheduled. Implementing this scheduling
becomes harder and harder as line-speeds and number items to schedule increases. One way to implement
the scheduling function is to use a priority queue that can be realised by using simple and scalable heap
data structure. The problem is that traditional sequential heap cannot be made fast enough. In this paper a
massively parallel system based on set of heaps is presented. It will be shown that such system can be scaled
to support very large priority queues at STM-256 speeds and beyond.
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1 Introduction

Traditionally data networks have offered only best-
effort transport service which have been adequate
for applications like file-sharing and e-mail. While
lightly loaded local area networks have been suc-
cessful in supporting some real-time applications,
best-effort networks are not enough when these ser-
vices are to be delivered for large number of sub-
scribers in more complex networks. Thus it is im-
portant to guarantee certain level of service for real-
time applications to make them usable. This can be
done by guaranteeing certain parameters like trans-
fer delay and capacity for each connection or flow
(as in ATM and IntServ) or by differentiating the
given service based on priority classes (as in Diff-
Serv) [1]. In either case this means that switches
and routers cannot use simple first in first out (FIFO)
scheduling. On the contrary, more or less complex
methods have to be used to ensure that all connec-
tions, flows, or service classes get their intented share
of service [2].

There are multiple ways to realise traffic schedul-
ing mechanisms varying in complexity and scalabil-
ity. In simple cases such as a router with few ports
supporting only few service classes it is sufficient to
use some simple scheduling mechanism based on,
e.g. round-robin scheduling. However, even adding

just MPLS into this scheme can rise the number of
entities to schedule from few to hundreds. With
more complicated service systems it is necessary
schedule at least 1000s of entities. This implicates
that good scalability is required in all but simplest
schedulers. One very scalable solution is heap based
priority queue that providesO(lg n) time complex-
ity and linear space scalability[3]. The problem with
heap data structure is that each operation takes mul-
tiple steps to complete while single-step operations
would be preferred in high-speed systems.

In this paper I will propose a hybrid priority
queue system that allows for processing one inser-
tion and one extraction at each clock cycle without
any conflicts. The proposed system utilises large
scale parallelism and its complexity can be tailored
to match required operation speed and available sys-
tem clock speed. It will be shown that the proposed
system could support transmission speeds beyond
tomorrows technology.

2 Related Work

The way to enhance the operation speed of heap pro-
cessing is to apply concurrency either by pipelining
or parallel processing. There have been some ear-
lier work with parallel heaps, e.g. [4, 5], but the re-



sults are not applicable here: they were dealing with
concurrent access to a single heap, i.e. heap mech-
anisms for multiprocessors. In this paper the target
domain is fast access to concurrent heaps. Another
way to increase the performance of a heap based
priority queue system is to pipeline the heap oper-
ations. In the rest of this section is used to intro-
duce the principles and shortcomings two of such
proposal.

The P-heap (Pipelined-heap), proposed by Bhag-
wan and Lin [6], is based on modified (or relaxed)
heap structure and top-down, i.e. reverse direction,
insertion operation (ins-op). In practise, this means
that the lowest level (“hem”) of the heap can be dis-
joint, i.e. P-heap resembles more an ordinary binary
tree than a proper heap. To find an empty entry
for ins-op in the P-heap structure a set of so called
valid paths is maintained. These paths are used to
steer ins-op into “left-most” subtree with at least
one empty entry. In practise this steering is done
by examining the capacity value, i.e. number of free
entries, of the left subtree stored in each node1. By
examining the capacity valueins-opcan proceed to
an adequate subtree. The proposed implementation
contains a set of P-heap processors and an on-chip
memory system containing a separate memory bank
for each heap layer. As different memory banks
can be accessed concurrently by different P-heap
processors, the execution of heap operations can be
pipelined.

P-heap has some disadvantages: the pipeline can-
not accept new operations in each operation period
and maintaining the capacity information consumes
some memory. The reason for scheduling opera-
tions only for each other cycle is quite fundamen-
tal: the delete operation (del-op) manipulates two
adjacent levels of the heap and thus the consecu-
tive operations must have one empty cycle between
them. As each operation cycle contains three opera-
tions (read-compare-write), a new operation can be
started in each 6th clock cycle. The book-keeping
of the P-heap structure consumes more or less the
expensive on-chip memory depending on the actual
implementation. If the entries in each level are sim-
ilar, i.e. the width of the capacity value is constant,
the memory consumption can be quite high equalling
l-bits per entry forl-level P-heap. This means that,

1It seems like the authors have forgotten or misplaced suf-
ficient capacity value updates in theirlocal-enqueue algo-
rithm shown in the Figure 4 in their paper.

e.g. in216-entry P-heap with 32-bit priority values
1/3 of the memory is consumed by capacity values2.
Fortunately, considerable amounts of memory can
be saved if variable length values are allowed — it
turns out that only about two bits per entry is re-
quired on the average. There is still one minor odd-
ity in P-heap algorithms:ins-opproceeds always to
left subtree if possible. This means that if there is
≥ l-entries in2l-entry P-heap it is very probable
that ins-ophas to travel through all levels. While it
does not affect into the computational performance
of the P-heap, it will most certainly increase power
consumption and thus heat generation. However,
this can be easily cured by steering the insertions
towards the empties subtree.

Another pipelined heap, proposed by Ioannou
and Katevenis [7], is based on true binary heap with
modified insertion mechanism. Theins-opwas mod-
ified to operate from top to bottom (as with the P-
heap), i.e. in the same direction asdel-op, to al-
low for pipelining all operations. It is proposed that
there could be one (or even multiple) operation in
process at each level of the heap (there cannot be
two consecutivedel-ops). To enable pipelining their
proposal is using similar on-chip memory system as
above. However, the modified insert operation de-
scribed in [8] works correctly only if it is known
how many delete operations there will be until the
insert operation has completed. The insert operation
relies on steering the insertion into the correct posi-
tion. If the correct position is not know in advance,
the heap will corrupt, and in fact, become very sim-
ilar to P-heap. However, the operations developed
for this heap work only with proper heaps.

I think that in a system using variable length
packets such as an IP router it is quite impossible
to predict the number ofdel-ops. One can imagine
a situation where a entry is inserted into a heap that
has full left sub-heap and right sub-heap has only
one entry at the lowest level. Furthermore, the top
of the heap points to a packet that has length of 1500
octets which should mean that there will be only one
del-opbefore theins-op in-process completes. So
in this situation it is correct tosteer the ins-op to
the right sub-heap. However, if a subsequentins-

2Somehow the authors explain the capacity requirements in
a way that can be easily misunderstood: one can get an im-
pression that 256 KB memory can host up to217 32-bit entries.
However, such217-entry heap with 4-byte priority values uses
twice the memory excluding the expenses of book-keeping.



op replaces the top entry with, e.g. 40-octet packet,
and causestwo del-opsinstead of one, the steering
decision made earlier would be now incorrect. Sim-
ilar troubles will occur of course in a reverse case
if two del-opsare predicted and only one occurs.
To avoid corruption of the heap structure there are
two options; either to force the predicted amount
of del-opsto occur or interrupt theins-opheading
towards an incorrect position and re-issue it from
the beginning. Another option is to modify thedel-
op algorithm: instead of terminating youngest-in-
processins-op (and using its value to replace the
top of the heap) as proposed, the oldest-in-process
or mis-steered one should terminated. However, this
modification has some side-effects:del-opandins-
op cannot be any more interleaved as proposed but
there must be one empty cycle before eachdel-op3

In conclusion it can be said that this version of pipe-
lined heap would require quite complex manage-
ment procedures to maintain the heap uncorrupted
if the proposed performance level4 is wished to be
achieved and thus it is not so attractive alternative.

It seems that it is quite complicated to achieve
extremely high performance priority queue mecha-
nism by pipelining the heap operations. The speed
of each pipeline stage is limited by the timing of
read-compare-write cycle and asdel-opdepends on
two adjacent levels it is hard or maybe impossible
to start new operations at each operation cycle. It is
clear that if a higher performance and simpler alter-
native is sought, new approaches are required. One
way to find a new solution is to use multiple par-
allel heaps together with a system that can be used

3Actually in no phase there is any operation in-process at a
stage below advancingdel-op. Eachdel-opbegins with termi-
nating the youngest-in-processins-opand thus the stage before
del-opis alwaysinactive. This is not so surprising as this heap
implementation is bound by same limitations as P-heap.

4In their paper Ioannou and Katvenis claim that their sys-
tem can achieve 200 million operations per second (Mops) at
200 MHz and thus the system throughput would be 64 Gbit/s
with 40-octet packets. First of all, no information was provided
how the operations are scheduled if they are allowed to over-
lap (starting new operation at each clock cycle). Based on the
properties of the heap structure I doubt that such scheduling
can be created. Thus it is likely that the performance of their
system is limited to 66 Mops at 200 MHz. Furthermore, the
processing of each packet requirestwo operations (ins-opand
del-op) reducing the performance to 33 Mpackets/s. Finally,
if the del-ophave to be modified and thus requires idle opera-
tion to be issued beforedel-op, the performance goes down to
22 Mpackets/s. This means that the worst case performance of
their system could be only mere 7 Gbit/s at 200 MHz.

to maintain the top entries of the heaps sorted. In
this way each heap can be processed in ordinary se-
quential form without any needs to modify heap al-
gorithms or structure. Moreover, the performance is
not limited by the implementation of heap operation
stages but can be scaled up by increasing the num-
ber of concurrent heaps. The limiting subsystem in
this scheme will be sorting array but, as its size is
limited, it can be easily made to operate at speed of
one insertion and deletion per clock cycle.

3 Massively Parallel Priority Queue

First of all we should note few facts with the schedul-
ing of packets departures in high-speed networks
that can be used to lessen the requirements. The
most important fact is that absolutely exact order-
ing is not required, i.e. it is not a failure if a packet
gets served one or two packets later (one 1500 octet
packet “lasts” 1.2µs at STM-64 rates). This means
that we can have some latency in the processing.
However, it will be shown that the proposed Mas-
sively Parallel Priority Queue (MPPQ) system can
process insertions with sub-microsecond latencies.
Thus the priority queue will be in order almost al-
ways. Another feature that can be utilised is that
there is usually a class of traffic without any service
guarantees. This best-effort class can be very well
served when there is not other traffic and thus does
not need to be inserted into the priority queue. By
separating the best-effort traffic from higher class
one the capacity of the priority queue can be reduced
considerably.
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Sort unit

insert(e) push(e)
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insert/replace(e,i)delete(i)

Insertion
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Parallel
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status(i)

Figure 1: The architecture of massively parallel pri-
ority queue.



The MPPQ is composed of three major blocks
shown in Figure 1. The Insertion Manager (IM)
selects a suitable heap for new insert operation de-
pending on the status of all heaps and optionally de-
pending on ongoing extract operation. The Parallel
Heap Unit (PHU) contains the actual heap structure
and heap managers. The Sort Unit (SU) will get
the top most entries form all heaps and sorts them.
Whenget next() operation is issued to the system
SU will request the PHU to extract the maximum
value.

3.1 Parallel Heap Unit

PHU contains (Figure 2) a heap unit controller (HUC)
and a set of heaps. HUC is not much more than
an intelligent multiplexer that forwards the incom-
ing requests to internal busses and activates correct
heap. Furthermore, it forwards the status informa-
tion from heaps to IM.
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Figure 2: The parallel heap unit

Each heap contains a heap manager (HM) and
local SRAM block (Figure 3). HM implements the
required heap operations, i.e. insert and extract, while
the SRAM block is used to store the heap data struc-
ture. HM processes all heap operations in sequen-
tial manner using standard heap algorithms [3]. In
this way the implementation of HM can be kept as
simple as possible saving chip area and allowing for
higher system clock speeds. The down side of this
simplicity is that each operation takes3l clock cy-
cles withl-level heap at the worst case. So to allow
two simultaneous operations for the proposed sys-
tem,6l concurrent heaps are required. On the other

hand, the more heaps there are the lesserl is re-
quired for certain queue capacity, e.g. with 10-level
heaps at-least 60 heaps are required giving a capac-
ity of 61 Kentries. One way to optimise the perfor-
mance is to divide each heap into few independent
sub-heaps and to add small local sort array into each
HM. In this way heap operations will complete ear-
lier reducing the number of required heaps. How-
ever, it is not certain that this modification would
improve the overall system efficiency.

insert(e)

delete()

push(e)

status

Heap
manager

SRAM
block

Local
sort array

ins/repl(e)

Figure 3: A single heap consisting heap manager
and SRAM block. A local sort array is required if
there is multiple heaps.

The requirement of single cycle operations for
the whole system causes some additions to standard
heap algorithms. Asdel-opmay be issued to a heap
that is processingins-opor del-op, a delayeddel-op
has to be introduced. The delayeddel-opsimply al-
lows the extraction of the top most value during an
on-going operation (as long as that operation is not
accessing the top-most entry). When the on-going
operation finalises HM will continue with the pend-
ing del-op. Of course ifins-opproceeds to the top of
the heap, it has to be checked if the top-most value is
valid any more. A delayeddel-opcan be combined
with a new ins-op to a delayed insertion-deletion.
In such case IM issues new insertion to a heap with
pendingdel-op. In combined insertion-deletion the
new entry is used to replace the top-of-the-heap and
after thatdel-op proceeds as normal (this is quite
similar to enqueue-dequeue operation in [6]).

To allow for sorting of the top-most entries of
different heaps each heap manager issues either in-
sert or replace operation for SU. If the heap has
been empty before insertion of a new value, HM
should issue insert operation. If the heap was non-
empty, it already have an entry in SU. In that case



a replace request is issued. Both of these two re-
quests should be issued only afterins-ophas been
completed. With other operations,del-op and de-
layeddel-op-ins-op, the entry for this heap has been
deleted from SU by aget next() operation and thus
insert operation should be issued for SU. This can
be done as soon as the top of the stack is valid, i.e.
the operation has bypassed the top of the heap.

3.2 Sorter Unit

SU shown in Figure 4 has one sort-stage (SS) for
each heap. A SS holds one entry that is composed
of priority value and a heap index (HI) of the heap
that stores that value. It is capable of comparing
the stored entry with an entry flowing down from
SS above it. The upper-most SS (sort-stage 0) hold
the largest value and upon aget next() operation re-
quests PHU to extract that value. At the same time
all entries in SU are moved one SS upwards. An in-
sert operation causes SS compare the priority value
of the new entry with the value stored in the stage or
a value pushed up from the stage below. The lager
value is stored into the stage and the smaller one
pushed downwards. An empty stage accepts any
new entry. A replace operation is similar to the in-
sert but an additional discard information is flooded
downwards. If HI carried by discard information
matches, SS discards the old value. In this way it is
make sure that each heap has only one entry in the
SU.

get_next()

push−up flow−down

push−up

push−up flow−down

flow−down

insert/replacedelete

sort−stage 1

sort−stage N−1

sort−stage 2

sort−stage 0

Figure 4: The sorter unit

SU is likely to be the most critical subsystem
for timing and thus some means to speedup its op-

erations might be needed. Fortunately, strictly ex-
act ordering is no required but almost exact order is
enough. Thus the operations of SS can be pipelined
in quite straight-forward manner. In worst case sim-
ple pipelining would cause a delay comparable to
the number of pipeline stages. However, this should
not have any meaningful impact on QoS.

3.3 Insertion Manager

The main task of IM is to keep the depths of heaps
close to each other. In this way the average of the
number of steps needed for heap operations is kept
close to minimum. While the system should be de-
signed to cope with worst case loads, the average
power consumption is reduced by minimising the
active periods of each heap manager. IM uses the
status information provided by each HM through
HUC. In the best situation the status information in-
cludes exact information of heap occupancy but it
might be possible that providing such information
is too expensive. Thus the status information could
be limited to heap full/empty with optional almost
full/empty information. However, this should be
enough for IM to keep the variation of heap depths
within certain limits.

Another task for the IM is to combine new inser-
tions with pendingdel-ops. This is done by select-
ing a heap with status indicating pendingdel-opfor
next insertion operation. If there is multiple pending
del-opsthe heap with oldest status or the emptiest
heap should be selected.

3.4 Performance Estimates

At this phase only the architecture and algorithms of
the proposed system have been designed while all
modelling with VHDL remains yet to be done. So
instead of calculating some performance estimates
based on some hypothetical clock speeds, minimum
clock speeds can be estimated based on the perfor-
mance requirements. When STM payload sizes and
minimum IP packet length of 40-octets are used the
required clock speeds are about 30 MHz for STM-
64, 120 MHz for STM-256, and 480 MHz for STM-
1024. This shows that speeds of 10-40 Gbit/s could
be supported even by current FPGA technology and
with STM-64 speeds the degree of parallelism can
be quite well reduced. Furthermore, even 160 Gbit/s
speed could be supported by today’s VLSI technol-
ogy.



The maximum processing delay can be calcu-
lated directly from the number of levels in heaps,
e.g. a system with 10-level heaps at 200 MHz has
maximum delay of 150 ns. The combining of de-
layeddel-op– newins-ophas no impact on this, as
the new value is inserted into the top of the heap.
Thus the worst case wait time for delayeddel-opis
more or less compensated by faster validation of the
top of the heap. This means that “out-of-orderness”
should be well below 1µs in realistic system con-
figurations and thus have negligible impact on QoS.

4 Conclusions

The proposed Massively Parallel Priority Queue has
been shown to be capable not only to cope with
latest SDH/SONET 40 Gbit/s line-speeds but to be
scalable for over 100 Gbit/s speeds. This formidable
level of performance has been achieved by using a
large number of parallel heaps to overcome the fun-
damental limitations on speeding up operations on
single heap. Thus MPPQ is capable of performing
operations at the rate of two per clock cycle which is
clear improvement compared to pipelined systems
that are limited into one operation in each 3rd-6th
cycle. Furthermore, the queue capacity of a MPPQ
based system can be easily tailored by matching the
number of concurrent heaps with the depth of the
heaps. As MPPQ does not require any excess book-
keeping the expensive on-chips memory is used as
efficiently as possible.

These results with MPPQ can give an inspira-
tion to think if not only STM-256 capable IP and
ATM line cards are possible but the speeds well be-
yond that. The trick could be in tweaking all the
subsystems to operate at a rate of single cycle per
an operation. It seems that it could be quite possi-
ble with, e.g. address lookup [9]. However, there
are many subsystems like buffer management and
packet classification that would require further study
to find out if they can be made to operate even at the
rates required by 40 Gbit/s interfaces.
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