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Abstract: - How can the performance of a social robot be measured? Are existing metrics and techniques 
appropriate for physically and socially embodied autonomous mobile robots? With the rapid expansion of 
robust robotic systems from strong industrial applications to domestic and entertainment domains which 
naturally involve social interactions, a requirement to gauge a system’s abilities either individually or 
relatively has emerged. This paper discusses the implications that arise in aiming to assess the performance of 
robots engaged in a degree of social interaction with people. 
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1   Introduction 
“ It is much easier to make measurements than to 
know exactly what you are measuring.”   [John 
William Navin Sullivan  (1886 - 1937)]  

The trend in science has always been to try and 
quantify observations and results. In psychology, 
where complex factors abound, a form of 
quantifying in terms of probabilities and statistical 
significances has been towed in to justify 
conclusions and theories. Artificial intelligence and 
robotics, being even more computationally 
entrenched, do not even consider the possibility of 
non-quantitative analyses or benchmarks. 
Performance assessment has always been elusive in 
robotics as the problem of measuring intelligence 
has always surfaced other problems such as the 
definition of intelligence. As the area of social 
robotics advance [1][2][3], proper benchmarks to 
assess social robots become even more difficult to 
design. How do you measure how well a robot 
integrates into a social setting? Even if the classic 
Turing test were appropriate, it is still based on 
qualitative observations and subjective 
interpretations, which are considered inappropriate 
evaluation methods in the circles of science and 
recalls the age-old qualitative-quantitative debate in 
the social sciences. Besides, does a social robot have 
to pass a Turing test in order to perform 
successfully? For example, cartoon characters would 
never pass a Turing test for being real entities, but 
they can still be perceived as integrated entities as 
humans in social settings. Reminders of the Turing 
test also raise another issue in performance 
assessment: does the successful social robot have to 

be socially intelligent, or only appear to be passed 
off as socially capable? 
 This paper argues against a basis for the 
dichotomies of qualitative-quantitative or 
behavioural-internal methods of evaluation, in 
particular for social robotics. These methods 
complement each other and are interrelated. A 
competent social robot obviously would require a 
rudimentary set of social knowledge. However, 
sophistication does not necessarily require 
comparable complexities in design because 
roboticists can take advantage of people’s tendency 
to anthropomorphise in their interpretations (see 
section 4). The question then turns to the validity of 
this reliance on subjective and qualitative 
interpretation, though, after all, social function is 
about behaviour. Our expectations are reasonable 
only when we expect to create robots that know (not 
robots who understand) social values and morals. 
Analogously, there is a difference between a robot 
that is programmed to prioritise recharging its 
batteries when energy levels are low so that it 
neglects all other programmed goals, and the human 
who feels the instinct of survival. Yet, are we 
satisfied enough with a robot that can behave with 
these survival instincts? 
 
 

2   Robot Experimentation 
In order to assess the functionality and success of a 
control paradigm for real world robotics, one 
normally seeks to collect a set of empirical data, 
analyse it, and hopefully arrive at the conclusion that 
the appropriate final “value”  indicates a level of 
accomplishment. Realistically, this is not possible in 



robotics. Experimentation is an inherently subjective 
process, particularly in the field of autonomous real-
world mobile robotics where the control paradigms 
generally apply little long-term learning and are 
programmed based on a human’s perspective of the 
problem domain. Existing qualitative and 
quantitative research methodologies in real world 
robotics should prompt many of us to rethink some 
basic assumptions about such notions as: the nature 
and role of robot research, and the theory behind 
existing approaches to the design and development 
of control paradigms for robots functioning in real 
world environments. 
The problem has always been the choice of 
appropriate references for assessment. It is because 
of this basic issue that there are no general 
benchmark experimental procedures for autonomous 
mobile robotics. This issue of assessment is replete 
in computational and engineering backgrounds. For 
example, in computational linguistics, the debate 
remains as to how to assess the performance of 
natural language processor that performs tasks on 
which even human experts disagree. 
As the anthropomorphic metaphor in socially 
interacting robot becomes more dominant (i.e. social 
robots or humanoid robots [1][2][3][4], the field of 
robotics also inherit the methodology problems in 
sociology (e.g. whether quantitative methods capture 
the complexities in the social domain), without 
having lost those from robotics. The question is 
whether the measure of success of a robot is in the 
accomplishment of a task or whether it replicates 
how a group of humans would behave in completing 
the task (i.e. emulation of human behaviour). Is 
assessing by goals enough or is that too limited?  
In seeking to assess multi-agent systems techniques, 
Jennings et al. [5] propose the following qualitative 
criteria where agents have a sufficient degree of 
social functionality: 

• How do socially responsible agents fare in 
terms of their individual benefit? 

• How does the overall collective fare in terms of 
the global benefit? 

• How do socially responsible agents compare on 
an individual and overall system perspective to 
other types of multi-agent system? 

• How do responsible communities behave when 
there is an imbalance in terms of the value of 
individual and/or social actions? 

While these represent a more conceptual analysis of 
a system of socially capable agents, a stronger set of 
criteria is required which directly embraces both the 
physical and social embodiment of a collective of 
robots required to undertake complex social tasks.  

The performance assessment of the social robot 
consequently becomes severely complex when they 
not only interact with other robots but also interact 
socially with people. 
The following section briefly reviews existing 
benchmarking techniques and discusses the issues 
regarding the development of more suitable 
approaches for social robot experimentation. 
 
2.1.1   Benchmarking in Robotics 
Traditionally, once experiments are designed and 
undertaken to demonstrate the performance of a 
system, a set of replicable metrics are required to 
assess and evaluate the experimental results. 
However, very little work on the qualitative and 
quantitative assessment of robot control 
architectures and its principles has been undertaken 
in autonomous mobile research. Existing literature 
on benchmark testing to date includes [6] and the 
work on the Mars Microrover Navigation [7]. No 
universal systematic benchmark procedures have 
been developed to assess differing robot control 
methodologies. A primary factor in the lack of 
standardised formal testing is the diversity of robot 
platforms and their software control algorithms. It is 
only recently that off-the-shelf robots can be easily 
purchased, i.e. the Nomad Technologies Inc. or the 
Real World Interface Inc. family of robots. The 
majority of research to date has been using unique 
robot prototypes and highly tailored platforms for 
experimentation. The primary approaches for 
performance measurement in autonomous mobile 
robotics can generally be categorised as: 

• Theoretical predictions of performance 
• Computer simulations 
• Real-world experiments 

While complexity problems occur with the 
generation of an artificial representation of the 
robot-environment interaction in the first two 
approaches, the use of real world experimentation 
leads to problems stemming from the collection of 
useful data and their interpretation and analysis [8].  
In general, internal representation-based approaches 
to modelling real world scenarios (as found in 
classical AI) pose basic problems in maintaining 
real-world validity and system robustness [13]. On 
the other hand external observer-dependent 
approaches as found in emergent systems are 
difficult to both replicate and quantify [14][15]. In 
reviewing the validity of simulations, Gat [9] noted 
that two broad categories exist in mobile robot 
research: 

• Theoretical work with little experimental 
verification 



• Experimental work with little theoretical 
verification 

Theoretical and simulation perspectives on real 
world robot performance cannot sufficiently model 
or approximate such factors as sensor noise, 
occlusions and resolution limits, friction, surface 
deformation, to list but a few. While often used as a 
criticism of robot research, the strong linking of 
theoretical and experimental approaches in 
physically embodied systems will continuously 
plague researchers in both camps until someone 
conveniently develops a working realistic model of 
the world (!). For now, where researchers have 
traditionally resorted to theory and simulation to 
justify techniques, the real-world puts a spanner in 
the works. 
While observer dependent assessment provide a 
degree of abstraction from the actual mechanisms 
employed to generate system behaviour, analysing 
these mechanisms allows another perspective of the 
robot. Smithers points out [10] that behaviour-based 
approaches [11][12] in robotics result in the robot 
behaviours being an emergent property of agent-
environment interactions. This contradicts, in a 
sense, the principle of many behaviour-based robot 
control strategies, which aim to develop a robust, 
coherent and specific set of behaviours like 
follow_wall. Assessment of such explicit 
behaviours is straightforward, as they must be 
formally specified before implementation. 
Comparing the implemented behaviour against the 
definitions show that specifications should 
encompass such notions as behaviour thresholds, 
tolerances whereby the observable execution of the 
behaviour can be assessed based on these criteria. To 
design an explicit behaviour without such dynamic 
attributes is a gross oversimplification of the 
complexity of the real world and contradicts the 
basic issues of embodiment.  
Another dimension arises when one seeks to develop 
more complex behaviours, and the corresponding 
definition of reference parameters and tolerances for 
their assessment becomes severely complex. 
Similarly, emergent behaviours, like those found in 
[16], do not lend themselves to such analysis. 
Consequently, it has generally been argued that it is 
important to augment the “ it works”  form of 
evaluation with more quantitative measures of 
performance given that experimental replication 
with such emergent behaviours is difficult.  
The VR-Workbench [17] seeks to address the 
synthesis between observational and internal 
perspectives with a view towards reinforcing the 
notion of physical embodiment of inherently symbol 
manipulating computer-based systems through the 

fusion of both real-world experimentation and a 
virtual reality manifestation. Through the process of 
recalibration of a robot’s position in the VR space 
based on the synchronisation of the robots distance 
from location cues in both the VR and real spaces, 
the robot’s localisation error map can be generated 
and fed back into the control system to develop a 
more robust robot localisation strategy. 
Unfortunately such a system is still environmentally 
constrained with limited transference to alternate 
physical spaces due primarily to sensor limitations 
such as the reflectivity issues of the robots sonar 
sensors and calibration issues of its colour vision 
system.  
Perhaps one of the more successful attempts to 
tackle the issue of standardisation for multi-robot 
performance is the RoboCup initiative 
(www.robocup.org). It provides standard test 
environments, robot functionality and construction 
constraints in order to assess alternate control 
paradigms. To date, the only empirical reference 
derived from RoboCup games is the scoring and the 
consequent championship winning team. The 
audience passively observes particularly obvious 
traits exhibited by any one system over another, i.e. 
speed, reliability, adaptability and coordination. This 
highlights a key point in future benchmarking of 
embodied systems. In order to assess the 
performance of a robot, such apparently abstract yet 
concrete criteria as the final score of a RoboCup 
competition does provide a quantitative assessment 
of one system over another without distilling 
behaviours into local disjoint measurements. 
 
 

3   Social Robotics 
Social robotics adds an even more opaque set of 
complexities to benchmarking. How do you measure 
successful social interaction? What are the goals in 
designing a social robot? As robotics stride the 
social domain hence psychology, and with the 
difficulties in designing quantitative metrics, 
understanding performance qualitatively seems to be 
the most logical first step. This naturally invokes the 
qualitative-quantitative debate. Moreover, this in 
turns leads to the “problem” of people’s tendency to 
project anthropomorphic qualities on other entities 
and the stigma of anthropomorphism in science. 
 
3.1 Goals of the social robot 
First, the goals of a social robot must be delineated 
in order to know what performance to assess. A 
social robot must be able: 



• To interact in a given social scenario (exhibit 
social initiative); by virtue of the definition of 
“social” , this implies being able to interact. 
Being able to interact includes interpretation of 
others’  expressions (whether verbal or gestural) 
as well as portraying expressions, which are 
interpretable and faithful to robot’s 
representation of what it has expressed. 

• To adapt. Social intelligence is about adapting 
and learning behaviours of other participants in 
the social circle (whether human or machine) 
and situations 

In assessing these goals, is goal or task completion 
enough? Perhaps if the task is well defined enough. 
But how can subjectivity be separated from 
qualitative observation? Is subjectivity all that bad 
(onwards to the qualitative-quantitative debate)? 
With the amazing complexities of sociality, 
observer-dependency appears to an inherent feature 
in evaluating the social robot. In this case can we 
even dissociate qualitative observation from 
performance assessment? 
 
3.2   Qualitative vs. Quantitative 
In 1904, Edward Thorndike stated, “anything that 
exists, exists in a certain quantity and can be 
measured” . In 1927, the motto: “When you cannot 
measure, your knowledge is meagre and 
unsatisfactory”  was prominently and permanently 
carved onto the face of the University of Chicago’s 
social science research building. Distinguished 
faculty of the day were alleged to have muttered 
“and if you cannot measure, measure it anyhow” 
[20]. The qualitative-quantitative dichotomy in fact 
dates back as early as the 17th century where 
“quantitativists”  were characterized by some as 
“vulgar statisticians”  [21].  
Quantification is a human and political process of 
discarding information from the incredibly rich and 
complex fabric of real world environments. 
Information is lost and discarded when situations 
and scenarios are reduced to numbers. In theoretical 
systems, such control is possible and such 
quantification appropriate but, as the sciences of 
chaos and complexity teach us, real world systems 
are neither simple nor predictable when so 
oversimplified, especially after bifurcations of key 
parameters, which drive the behaviour of any 
otherwise simple system into even greater 
uncertainty. Emergent intelligence demonstrates this 
[14][15]. 
In essence, researchers of those sciences pertaining 
to the complexity of the real world should be careful 
not to succumb to a false certainty of quantification, 

where there exists the false hope of over controlling 
reality. The inherent flaw lies in the empirical study 
of natural systems and the consequent abstraction 
from the fundamental embodiment issues found in 
autopoietic entities [22][23]. Subjecting an animal to 
mechanistic qualitative and quantitative analysis 
forces a digital perspective of an analogue world. It 
leads to some assumptions, though needed for 
digitisation, may be unknowingly fundamentally 
flawed. This should provide researchers with an 
insight into why robot systems consistently fail. 
When a system becomes embodied in a physical 
world, the world and its uncompromising 
complexities are inherent attributes of the overall 
system to be “measured” . Real world robotics is one 
such domain. This reiterates the fundamental 
embodiment issues raised in [22][23]. 
Moreover, so called quantitative methods and data 
often have qualitative bases. A survey that collects 
people’s opinions of da Vinci’s Mono Lisa painting 
(love, like, dislike, hate) is qualitative. However, 
when the survey requests the opinions to be on a 
scale from 0 to 10 is considered quantitative – is this 
quantised data better or more valid? Or is the Turing 
test invalid because it is more qualitative in nature 
than quantitative?  
Social robotics is robotics impinging on social 
science, and thus inherits some of the problems 
found in both areas. Cognition and human behaviour 
are more complex – how do you isolate factors for 
things as complex as social interactions? 
In recent times, however, the competing paradigms 
of quantitative and qualitative research have become 
almost working partners in educational research. 
One of the pitfalls often associated with qualitative 
methods and evaluation have been 
anthropomorphising and overly subjective 
interpretations. They also make comparisons of 
different research difficult. Qualitative methods do 
tend to allow for more unreliable conclusions and 
wider disagreements (hence reduced ability to 
predict outcomes for same scenarios but different 
observers) than purely quantitative approaches. 
However, much of the roots of science have 
stemmed from qualitative observations, which 
bootstrap for subsequent mathematical formulation.  
 
3.3  Assessment in Social Robotics  
 
With the debate over qualitative-quantitative 
approaches, and the unsatisfactory and working 
definitions of “ intelligence”  (much more “social 
intelligence”), a standardised performance metric 
remains work in progress. 



The panel of NIST’s 2000 Performance Metrics 
Workshop [18], with the focus of measuring 
machine intelligence, have suggested that task 
completion be the best evaluation scenario rather 
than direct evaluation (thus analogous to the 
RoboCup testing environment). One suggestion 
from the conference discussions proposed 
systematic observations of a robot designed to be a 
rich social participant in interaction with humans 
(say in a natural history museum). Evaluation would 
include systematic qualitative observations/ 
evaluations combined with quantitative metrics such 
as the number of people who followed the robot to 
look at specific exhibits, length of time people spent 
with the robot, and how well they performed on a 
quiz compared with those who did not interact with 
the robot. They admit, however, to the difficulty of a 
task to be objectively and quantitatively measured. 
Indeed, many factors such as the robot appearance 
and mode of interaction (e.g., voice quality) would 
need to be controlled in order to eliminate any 
confounding factors when comparing across 
different architectures. 
This section has attempted to lay out the goals of a 
social robot and the concerns which arise in trying to 
assess the success with which it reaches these goals. 
It notes the inevitable (at least for now) partial on 
qualitative observations. As with all more subjective 
observations, this leads to a problem of possible 
inconsistencies among observers. This section also 
pointed out the importance of anthropomorphism in 
social robot assessment, and any further 
developments in performance metrics should require 
a better understanding of our tendency to project 
anthropomorphic qualities.  
Despite the increased difficulty in comparing across 
social robot performances, which is further 
confounded by anthropomorphism, robot design has 
become relatively easier. That is, in order to design a 
sophisticated robot, the roboticist does not need to 
have a design that is equally as complex. The panel 
of NIST’s 2000 Performance Metrics Workshop 
also agreed that “social behavio[u]r is fundamental: 
it compensates for the lack of perfection of the 
individual intelligent system” [19]. This probably is 
precisely because if robots can behave above a 
certain threshold of social intelligence and 
approachability, it is easier for the interacting human 
to attribute more anthropomorphic features (such as 
intelligence) to the robot than otherwise, thus 
compensating for the actual limitations of the robot. 
If played right, the social capabilities and 
sophistication of the social robot can almost be 
achieved through an illusion. 

Our tendency to anthropomorphise may simplify 
design tasks; however, it also highlights an 
additional dilemma: the success of a social robot in a 
social scenario seems to be based strongly on 
subjective responses. For instance, one possibility is 
to measure performance by how much people can 
project anthropomorphic qualities given a particular 
robot (so the more a robot can elicit 
anthropomorphic projections, the more successful 
the robot). With our lack of understanding of 
anthropomorphism, this method is not the most 
reliable unless we can normalise against the 
possibility that some people naturally project 
anthropomorphic qualities much more readily than 
others.  
There is then the problem of a robot’s appearance, 
which is part of the strength of a social robot (social 
approachability) and is valid in the assessment 
process in deciding its essential foci. One should be 
concerned about the appearance insomuch that it 
facilitates people’s tendencies to anthropomorphise; 
however, do we need to worry about making a social 
robot “prettier”  in order to attract interactors 
(dealing with the dynamics influencing human 
social interaction)? Is there a concern of obscuring 
some of the issues and goals in designing a social 
robot, and of course, how do we quantitatively 
control for aesthetics?  
Both quantitative and qualitative approaches are 
important and complement each other. Until we 
understand the mechanisms underlying 
anthropomorphism and other social interactions, 
perhaps performance evaluation remains qualitative. 
In seeking to address this issue, more research must 
be undertaken to explain how people project 
anthropomorphic qualities while interpreting a 
robot’s actions. 
Thus, a quantitative (and qualitative) metric remains 
work in progress, but we may advance with more 
insights with further understanding of the 
mechanisms underlying anthropomorphism. In order 
to begin the unexplored task of researching these 
mechanisms, we describe a set of experiments we 
are currently undertaking. 

 
 

4  Exploring Anthropomorphism: 
  Emotion Robots  
Experiments on projective anthropomorphism using 
a collective of Khepera robots demonstrate the 
power of employing human-like behaviours to 
bootstrap the social interaction scenario between 
people and robots. Preliminary experiments were 
run where one or many robots were performing 



wandering, wall-following, or “dancing”  behaviours 
and subjects were required to relate their 
observations. An interesting result occurred with a 
robot which was performing a Braitenburg 
wandering behaviour but which was also sensitive 
to lighting conditions. Shining a desk lamp on it 
resulted in a jittery behaviour that many observers 
attributed to the robot as being “afraid of the light” . 
These informal preliminary experiments led to our 
exploration of how simple motions could be 
interpreted as much more complex intentions and 
lay the basis for the beginning of our research on 
anthropomorphism and its role in social interaction 
and social robots.  

4.1   The Seven Dwarves 
Seven Khepera robots were programmed to perform 
motion behaviours intended to illustrate the 
characters of the seven dwarves in the famous 
Disney version of the fairy tale Snow White: Happy, 
Dopey, Bashful, Doc, Grumpy, Sneezy, Sleepy. 
As the Khepera robots are limited in their actuator 
capabilities (two wheels with an optional gripper) 
the expressive capabilities of each robot was highly 
constrained.  

 

Fig 1. Khepera robot in experimental environment 

A web site with video clips of the robots performing 
is published online with a questionnaire for 
participants to describe what they perceived the 
robots to be doing [24]. The online experiment was 
designed  to enable a bigger pool of subjects from 
more diverse backgrounds to participate in the 
experiment. The objective was not for people to 
recognise the motivation for generating such motion 
behaviours in the robots but rather to express what 
they believed was the scenario for such motion 
behaviours.  
Preliminary results have already demonstrated 
people’s inclination (whether consciously or not) to 
overlay a degree of anthropomorphic behaviour in 
their interpretations of the robots’  actions. While 
relatively few people deduced that the robots were 
representing the seven dwarves, some participants 
did define the robots motions in terms of emotional 
motivations. These experiments are also being 

extended further to explore other issues (such as the 
influence of more explicit social associations such as 
costumes or storytelling through the motions of 
interacting robots), and shall be all cross-compared 
with the current baseline experiments.  

    

Fig 2. The robots (a) “Joe”  and (b) “Anthropos”  

Preliminary testing with the robot “Anthropos”  and 
“Joe” have also already demonstrated the influence 
of anthropomorphic features in one’s explanation of 
a robot’s action. Work in progress is aiming to 
develop these experiments on human-robot social 
interaction further. 

4.2   Discussion 
These experiments raise the questions similarly 
posed for emergent intelligence experiments in 
robotics, that of repeatability and the ability to 
define and realise explicit complex behaviours. The 
development of the Facial Action Coding System 
(see [25]) would suggest that the development of a 
similar behavioural “alphabet”  for motion 
behaviours for expression, particularly in social 
scenarios, is imminent. Work such as “Kismet”  [3] 
has already looked to define a set of expression 
behaviours for robots engaged in social scenarios 
with people. Such a coding system could sufficiently 
mask the techniques lying behind the generation of 
particular behaviours thereby facilitating alternate 
approaches to behaviour generation. The actual 
programming strategies employed to realise 
particular behaviours become arbitrary. 
This idea can be extended further to the degree of 
using “projective intelligence”  as the measurement 
of intelligence in artificial systems rather than 
basing assessment on the traditionally view defined 
empirical data. The Turing Test inherently uses 
projective intelligence in its assessments of being 



“ intelligent”  or not. The fight for “numeric”  proof is 
difficult to validate. 
 
 

5   Conclusion 
If the social sciences reject idea that social sciences 
can be studied with the same methods as natural or 
physical sciences, do social robots pose a similar 
problem? If a social robot’s behavior is always 
bound to the context in which it occurs, behavior 
must be studied holistically in context rather than 
being manipulated. If the method is therefore to base 
assessment on the observer’s perspective, this makes 
qualitative research an intensely personal and 
subjective style of research for the social robot. But, 
is it possible to reduce social reality to variables in 
the same manner as physical reality? Research on 
embodied robotics and artificial intelligence would 
disagree [22][23][26]. 
Exploring projective anthropomorphism could 
provide key insights into the development of the 
“ illusion of life”  and the “ illusion of intelligence” 
through projective intelligence in embodied robotic 
systems. If a robot “ looks”  intelligent, then the 
particular computational mechanisms lying behind 
the realisation of that behaviour are arbitrary. The 
real issue arises in how to maintain such an illusion 
over time. Does this inherently require that the robot 
be “ intelligent”  at a more fundamental level? Do we 
need to go beyond “pageantry”  towards the “ truth”  
if the result is the same? Can pageantry intelligence 
endure over time? Social robotics provides a 
powerful framework to finally build a system that 
will pass the Turing Test. 
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