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Abstract: - In the engineering analysis of the response of the foundation in layered soil, subjected to direct or 
seismic excitation, parametric analysis is the most desirable type of analysis because it has potentials for better 
optimal design. We are presenting a computational approach, which yields dynamic displacements of a 
foundation and wave motion in layered soil. The computational approach yields wave-modes and their 
amplitudes as parameters, and the influence of each wave mode on the vibration of the foundation and on the 
spreading of waves into the surroundings. Computation is accomplished in the frequency domain. It uses the 
finite element method where the radiating conditions on the fictive boundary are satisfied exactly. We are 
presenting a brief outline of the key formulas of the computational approach. Numerical results are partially 
compared to the exact ones, suggesting the efficiency of the approach. 
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1   Introduction 
In the analysis of the soil-structure interaction the 
soil behaves practically as an infinite space (half-
space). Thus, the essential phenomenon is the 
occurrence of the propagating waves, which 
propagate in the direction away from the source of 
excitation. Mathematically these waves satisfy 
radiating (Sommerfeld) conditions, [1] [2], which 
imposes the crucial difficulty in the computing 
procedures. In the case when an non-homogeneity 
and/or variation of the boundary conditions exist, 
the solution of the wave equation, which requires the 
fulfillment of the radiation conditions, is feasible 
only numerically. Although a variety of numerical 
and semi-analytical methods are available for the 
analysis of the soil-structure interaction, none of 
them is simple and exact at the same time. If we 
glance over them, we could describe them roughly 
as follows. Boundary element methods satisfy 
radiation conditions, but are not simple to apply for 
complex cases, see for example [3] [4]. By finite-
element methods the radiation conditions are 
satisfied only by using special elements on the 
fictive boundary, or by evaluating certain 
computational phases analytically, see for instance 
[4]-[6]. Operator methods require the 
implementation of special operators on the fictive 
boundary, for instance [7]-[12]. We can classify the 
available methods superficially and briefly as being 

either a great deal sophisticated and in certain cases 
exact, or simple and considerably approximate.  
    To analyze the foundation-layered soil interaction 
we use the approach that yields exact results when 
the layers rest over a rigid half-space, [13]. The 
results are considerably accurate also for the cases 
where the sub-soil is not rigid, providing that the 
foundation dimensions are approximately five times 
smaller than the cumulative depth of the layers. The 
modeling of the soil and the foundation is performed 
by FEM, which is comfortable for complex cases. 
The computation is in the frequency domain and the 
radiating conditions are exactly satisfied on the 
fictive boundary. When needed, the transient 
excitation can easily be analyzed by transforming 
the results from the frequency to the time domain.  
The approach yields parametric analysis of 
interaction, which is particularly advantageous for 
practical engineering analysis. 
 
 
2   Problem Formulation and Outline 
of the Computing Procedure 
We are considering a two-dimensional case of 
antiplane shear wave motion, yet the approach is 
valid for the case of general wave motion in parallel 
waveguides. The displacements in a soil with 
parallel layers, which have no foundation, are 
governed by the wave equation in the frequency 



domain, Equation (1), of course with distinct wave 
numbers k for different layers. 
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The theoretical solution is a linear combination of 
wave modes [1], and is presented by Equation (2) 
when using the co-ordinate system in Fig.1.  
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In Equation (2) fn are eigen-functions, and An, Bn are 
constants which are determined by lateral boundary 
conditions. They represent wave-modes and 
amplitudes, respectively. Here, the amplitudes are 
called also weighting or modal factors. The bn are 
distinct wave numbers, which depend on the 
characteristics of the case under consideration.  
     Let us consider wave motion in the segment (a 
cell) between any two cross-sections, for instance 
cross-sections 1 or 2 in Fig. (1). Then, according to 
Equation (2), each displacement and stress wave-
mode satisfy Equation (3).  
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Indices 1 and 2 stand for the values on cross-
sections 1 and 2, respectively, and n stands for the n-
th wave-mode. Regarding Equation 1, the meaning 
of λn is given by Equations (4). 
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The constant in the exponent is given by Equation 
(5). 
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On the other hand, due to the uniqueness of the 
solution of wave equation, Equation (6) applies, 
where T1-2 is the matrix of transfer functions. 
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After equating the right hand sides of Equations (3) 
and (6), we get the eigenvalue problem, Equation 
(7).  
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     By modeling the cell with finite elements, the 
transfer function becomes the transfer matrix, which 
is computed from the dynamic stiffness or from the 
flexibility matrix. Solving Equation (7) by standard 
routines yields eigenvectors representing 
displacements and stress wave-modes. Evidently, 
eigenvalues with negative imaginary part, and real 
eigenvalues less then a unit, belong to radiating 
modes.  
     When the foundation is present, and the 
excitation as shown in Fig.1, the displacements on 
any distant cross-section, for instance cross-section 
1, must satisfy the radiating conditions. Therefore, 
wave motion consists of only radiating wave-modes, 
see Equation (8), where An are the amplitudes, and + 
sign stands for radiating modes. 
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The excitation displacements u0 are related to the 
radiating displacements and stresses on the cross 
section 1, called fictive boundary, by Equation (9), 
where T1-0 is the belonging transfer matrix. . 
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By solving Equations (8) and (9) on radiating 
displacements u1 get Dirichlet’s boundary 
conditions to solve the exterior problem as an 
interior one. Computed amplitudes An are the 
parameters of the wave motion showing exactly how 
much distinct wave-modes contribute to the 
displacement and stress field. Finally, it is obvious 
that various combinations of excitations and 
boundary conditions can be solved by the same 
approach as presented above. 
 
 
3   Numerical Example of Interaction 
of Foundation and Two-layered Soil   
The analyzed case is symbolically presented in Fig. 
(1). The soil consists of two layers over rigid 
subsoil. The contact between layers and the sub-soil 
is considered as firm. Each layer is 10 meters deep, 
the lower one has the wave number k1=2, while the 
upper one is softer and has k2=1. The shear module 



of the upper layer is two times greater than the lower 
layer. Excitation is given by linearly distributed 
displacements with the amplitude a unit, as 
suggested in Fig. (1). The frequency of excitation is 
a unit. The rigid foundation dimensions are 4mx5m 
with the material density two times greater than that 
of the layers. The fictive boundary is 30m from the 
excitation cross-section, which makes the 
considered section 30 meters long. The width of the 
cell is 0,3 meters and is chosen arbitrarily. Finite 
elements are simple linear ones. The mesh has 
46x41 nodal points, which can be observed in 
figures. 
   The solutions of Equation (7) are presented in 
Figures (2) and (3), some of the eigenvalues in Fig. 
(2), and some of the eigenvectors in Fig. (3). 
Comparison to exact values demonstrates excellent 
coincidence. All eigenvalues that belong to radiating 
wave modes are situated on the real axis between 
zero and one, they are diminishing standing waves, 
or have a negative imaginary part, propagating 
waves. The eigenvalues are marked by numbers, 
separately for standing and propagating wave-modes 
and according to the direction of propagation. Some 
of these numbers occur also in Fig. (3) to see to 
which eigenvalue a wave-mode belongs.  
      For the case of absence of the foundation, an 
analytical solution is computed in order to verify the 
numerical results. In the left graph in Fig. (4) 
radiating displacements are presented, while the 
graph on the right shows the absolute values of 
modal weighting factors (amplitudes) of constituent 
wave-modes – it represents the spectrum of 
displacements on the fictive boundary. It shows that 
the third mode is dominant, while the standing 
modes have vanished. Both figures demonstrate a 
considerably good agreement between analytical and 
numerical results.  
   The displacement field of foundation-soil 
interaction is presented in Fig. (5), and the absolute 
values of displacement profiles in Fig. (6). Fist three 
graphs show the displacements in the cross-sections 
of excitation, foundation site and fictive boundary, 
respectively. The fourth graph presents maximal 
displacements occurring outside of the analyzed 
segment at various cross-sections.  
 
 
4   Conclusion 
The presented theory and examples demonstrate that 
the computing approach is considerably simple. 
Already by simple finite elements and a rather 
coarse mesh we get excellent results. An advantage 
of the approach is that various engineering aspects 

can be analyzed with the aid of wave-modes and 
their weighting factor. Unfortunately, due to the 
limited length of this paper, only some advantages 
are presented.  
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Figure 1. Disposition of layers and foundation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Eigenvalues. Explanation of the graph - eigenvalues belong to: radiating modes 
(numbers on patches, only few leading of them are marked), exact values (filled circles, only few 
leading are presented), computed standing wavemodes (void circles), computed propagating 
wavemodes ( “ +” signs). 
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Figure 3. Firs five propagating wave-modes. Exact values -solid lines, computed - dashed lines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4. Displacements on the fictive boundary and their weighting factors. Exact values -
solid lines, computed - dashed lines. 
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Figure 5. Displacements field.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Absolute displacements profiles 
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