
Elements of an Object-Oriented FEM Program
for Multibody Systems Analysis

 KROMER Valérie, DUFOSSÉ François, GUEURY Michel

Equipe de Recherche en Interfaces Numériques – Modélisation des Matériaux du Génie Civil
Université Henri Poincaré, Nancy 1

ESSTIN, 2 rue Jean Lamour, 54500 Vandoeuvre-lès-Nancy
FRANCE

Abstract: -The principal objective of this paper is to give elements of the object-oriented architecture of a finite
element code dedicated to multibody systems analysis. Emphasis is placed on the adequacy between object-oriented
programming and the finite element method used for the treatment of three-dimensional multibody flexible
mechanisms with large rotations and large strains. Numerical examples are given in order to demonstrate the software
capabilities.

Key-Words: - Object-oriented programming, Finite element code, Multibody systems analysis

1 Introduction
Several researchers have worked in the application of
object-oriented programming techniques to the finite
element method in recent years, in various domains of
interest in finite element developments (constitutive law
modeling, rapid dynamics, coupled problems, nonlinear
analysis, symbolic computation, among others). The
recent article of Mackerle [1] gives a bibliography with
more than 150 references covering the period 1996-
1999.

However, like many other engineering applications,
multibody systems analysis codes (ADAMS [2], DADS
[3], MBOSS [4]) are written in Fortran. Therefore, the
main objective of this work is to describe one approach
to the design and implementation of a multibody
systems analysis code using an object-oriented
architecture.

The principal features of object-oriented
programming are summarized in the first section. It is
shown that the structure of multibody systems present
similarities with object-oriented concepts, and
consecutively lend themselves very well to object-
oriented programming techniques. The formalism used
for the treatment of multibody systems is presented in
the second section. The third section deals with the
object-oriented architecture of the computational engine
of the software. Finally, numerical examples are given
in the last part of the paper.

2 Object-oriented concepts and
multibody systems analysis
The object-oriented philosophy comes from the idea
that tools (methods) must be associated with the

information (data or attributes) they manage. The key
concepts of object-oriented programming (abstraction,
encapsulation, inheritance, polymorphism) can be found
in many computer journals and language user guides
[5,6].

The abstraction of the data type is realized by the
means of a class, which incorporates the definition of
the structure as well as the operations on the abstract
data type. An object is an instance of the class, which
means that it is the material realisation of the abstract
data type defined by the class. For instance, at its
highest level of abstraction, the architecture of a
multibody system can be thought of as consisting of
four basic objects : bodies, constraints between bodies,
loads and motions.

The encapsulation designates the independent self-
containment of classes and their methods and attributes.
The class members can be declared as public, protected,
or private. Usually, for safety reasons, the attributes are
declared as private and can be reached through public
methods, defining the interface of the objects.
Encapsulation is an ideal concept for multibody
systems, as its implementation concentrates the
attributes and methods associated with an object such
that access is permitted only through well-defined
interfaces.

The inheritance concept is used to define object
hierarchies. An object can have many children
(instances of a subclass) which inherit its data and
member functions. It can also have one or several
parents (single or multiple inheritance). A subclass is
usually of a special type and has additional methods and
attributes members relating to it.

The last concept is polymorphism, which designates
the capability of object-oriented applications to interpret
the same request differently depending on the object
being processed. It is realised through the definition of
abstract objects using virtual member functions.
Abstract objects allow the writing of generic algorithms
and the easy extension of the existing code. For
instance, through polymorphism, it is possible to
describe any constraint between two bodies without
regard to joint type (revolute joint, translational joint,
etc) and body type (rigid, flexible, etc). The
implementation details of the specific bodies and joints
involved in the connection are hidden by abstraction in
the joint and body objects.

3 Multibody system analysis
The choices concerning mechanical formalisms have
been made in order to favor concepts as modularity,
polyvalence and evolutivity, which fit particularly well
to the object-oriented philosophy.

3.1 Flexible beam dynamic formulation
In order to describe the dynamics of a flexible beam, an
inertial reference frame is used for the description of the
translational motion, whereas a body-fixed frame is
used for the rotary motion [7,8]. The motion due to rigid
motion is not distinguished from that due to the
deformations. Moreover, the translational inertia is
completely decoupled from the rotary inertia. The
advantage to this is that the beam inertia is identical in
form to that of rigid body dynamics. As a consequence,
the same formalism can be used for mechanisms
containing rigid elements as well as deformable
elements.

Fig.1. Spatial beam kinematics

The location from the inertial origin of an arbitrary
point P on the beam (Fig.1) is represented by the
following position vector :
 bii luXr

rrrr
++= (1)

where X
r

 is the position vector of a point of the original
neutral axis, u

r
 is the total translational displacement

vector of the neutral axis, l
r

 is a vector connecting the

beam neutral axis to the material point P located on the
deformed beam cross-section. The notation _i or _b in
(1) indicates that the quantity is expressed with respect
to the inertial frame or with respect to the body-fixed
frame, respectively.

The orientation of the body-fixed reference frame is
expressed with respect to the inertial reference frame
through an orthogonal transformation matrix [] R .

The body frame components of the angular velocity
tensor are obtained by :

 [] [][]
















−
−

−
==

0ωω
ω0ω
ωω0

R R -ω~

12

13

23
T& (2)

where ωi (i = 1 to 3) are the components of the angular
velocity vector ω

r
, the notation []x & indicates the time

derivative, the notation []x~ indicates a skew symetric
tensor and the notation []Tx indicates a transpose
matrix.

The final discrete equations of motion of a flexible
beam element are given as :
























































=++

b

i

b

i

F
F

S
S

D
0

ω
u

J0
0m

r

r

r

r

r

r

&r
&&r

 (3)

where [m] and [J] represent the mass and inertia
matrices ; u&&

r
 and ω&

r
 represent the nodal accelerations

vectors ; D
r

 represents the non-linear acceleration,
bi,

S
r

and bi,F

r
 represent the internal and external force vectors

partitioned into translational and rotational parts,
respectively.

Thus, the unconstrained equations of an arbitrary
configuration of flexible beams and rigid bodies can be
written in terms of one set of kinematical coordinates
denoting both the nodal coordinates of the flexible
members and the physical coordinates of the rigid
bodies.

3.2 Equations of motion for multibody systems
By incorporating the Lagrange multipliers λ

r
, the

equations of motion for constrained flexible multibody
systems are written as follows :

 []































=+ ω

u
T

Q
Q

λB
ω
u

J0
0m

r

r
r

&r
&&r

 (4)

In order to alleviate the equations, the same notation
has been used (in (4) or in (3)) to represent elementary
or assembled matrices and vectors. The right-hand side
vector of (4) contains the remaining force-type terms
as :

















































−−=
D
0

S
S

F
F

Q
Q

b

i

b

i

ω

u

r

r

r

r

r

r

r

r

 (5)

P,l

b3

b2 b1

u

X
r

i3
i1

i2

In equation (4), the notation contains both the
holonomic and non-holonomic constraints in the
constraint force vector λ]B[T

r
. The]B[matrix, called

the constraint Jacobian matrix, is deduced from the
kinematic relationship between the bodies of the system.
Classical Jacobian matrices modeling standard joints
(universal, revolute, spherical, translational joints) are
described in [9].

Thus, given the Jacobian matrices for the joints and
beam connections, the equations (4) can be employed in
a systematic manner in order to represent an arbitrary
assemblage of articulated flexible and rigid components.

3.3 Resolution of multibody systems equations
The resolution of multibody systems equations requires
the use of an adapted algorithm for the time integration
of the generalized coordinates (translational coordinates
u
r

 and angular velocities ω
r

). It must also include a
proper treatment of three-dimensional finite rotations
[10], as well as a method to satisfy the kinematic
constraints conditions. In order to introduce an attractive
modularity in the solution procedures, which favors the
object-oriented philosophy, the integration of the
generalized coordinates is performed separately from
the calculation of the constraint forces (Lagrange
multipliers λ

r
) [11].

The generalized coordinates are calculated with a
particular explicit integration procedure, called « two-
stage staggered algorithm », first developed by Park
[11], which is based on an interlaced application of the
central difference algorithm such that the generalized
coordinates are advanced one-half time step at a time.

The rotational orientation parameters are not directly
integrable from the angular velocity vector. As a
consequence, a procedure must be developed to update
the configuration orientation given the angular velocity.
Various methods have been proposed for the
parametrization of large rotations [12]. The Euler
parameters representation has been chosen in this work,
because of their algebraic nature and especially because
they do not possess any singularity limitation. Once the
angular velocities are calculated, the angular
orientations are updated with the implicit trapezoidal
formula.

The Lagrange multipliers are solved by the use of a
stabilized constraint force procedure associated to the
implicit forward Euler formula. Details about the
procedures used for the updating of the rotational
orientation and of the Lagrange multipliers can be found
in [13].

As one can see, the updating of the generalized
coordinates, of the rotational orientation and of the
Lagrange multipliers are performed separately. These
separated treatments lead to an attractive modular

software implementation, which favors the object-
oriented philosophy and eases the introduction of new
algorithms and new formalisms in the future.

4 Description of the computational engine

4.1 Global description
The computational engine is written in C++ ANSI,
independently of the preprocessor and the compiler. We
selected C++, which seems to be, currently, the
language providing numerical efficiency, portability,
flexibility and is easy to use.

Moreover, C++ gives the possibility to use specific
features, as the overloading of functions and operators,
or the templates mechanism, which can greatly ease
programming.

The current architecture is based on the hypotheses
and formalism presented in the previous section.
However, it has been conceived in order to provide a
flexible and extensive set of objects that facilitate
multibody systems analysis and which can be adapted to
meet future developments.

The global architecture is organized around several
basic classes associated with the classical steps of a
multibody finite element analysis (geometry definition,
meshing, interactions definition, finite element
formulation, behaviour law, joints definition, solving
algorithms, writing results).

The management of the different stages of the
analysis is performed by the major class Domain, which
represents the heart of the software architecture (Fig.2).
It has been created to represent an elementary problem
(corresponding to a specific multibody system analysis).

Fig.2. Global architecture of the software

4.2 Description of the major basic classes

4.2.1 Parametrization of the rotations
The abstract Rotation class is of particularly great
importance. This class manages the information for the
different parametrizations of the finite rotations
(rotational vector, Euler parameters, Rodrigues
parameters, among others), which are used in several
steps of the calculation (calculation of the internal
forces, calculation of the constraint Jacobian matrices).

Domain

Joint_Formulation

Element Formulation

Material_Behaviour

Interactions Algorithm

The classes corresponding to a specific parametrization
of the rotations are derived from the Rotation base class
(Fig.3). The virtual methods of Rotation are
implemented in the derived classes, as well as specific
methods.

Fig.3. Derived classes from the Rotation virtual class

4.2.2 Finite element formulation
The class Element_Formulation (Fig.4) is the abstract
master class of the finite elements library. It provides
virtual methods of computation of the different finite
element arrays and tables (mass matrix, strain operator,
…). The effective computation depends on the chosen
formalism and may vary appreciably. In these
conditions, the object-oriented philosophy eases the
implementation of new formalisms, without requiring a
complete redefinition of the software’s architecture.

Fig.4. Classes associated with the finite element

modelization

The abstract class Element_Type contains virtual
methods for the calculation of the element’s shape
function and its derivatives. From Element_Type,
subclasses corresponding to a specific finite element are
derived (for example, Beam2 for a two-nodes beam
element).

The class Beam2_Formulation is derived from
Element_Formulation. One of its attributes is a pointer
to the desired finite element, Beam2, for example. This
class corresponds to a specific finite element

formulation, and allows the redefinition of the methods
according to the type of the element.

4.2.3 Joints formulation procedure
The Joint class has been created for the modelization of
the joints between bodies. The abstract class
Joint_Formulation allows the treatment of the joints
according to different formalisms (Fig.5). Currently, the
only available class is the derived class Jacobian, for
the calculation of the constraint Jacobian matrices
required in the Lagrange multipliers technique described
in section 3.3.

Although not currently implemented, other
procedures of treatment for the constraint equations
(Master/Slave methods, among others) can be
introduced in a straighforward way, by a simple
derivation of Joint_Formulation.

Fig.5. Classes associated with constraints modelization

4.2.4 Algorithms
The different solving algorithms presented in section 3.3
are defined in classes derived from the abstract class
Algorithm (Fig.6).

Algorithm contains methods and attributes which
are common to the different algorithms. Thus, the
implementation of new algorithms can be achieved
easily.

Fig.6. Abstract class Algorithm

4.3 Description of the class Domain
The summarized description of the major class Domain
is given in figure 7. The Main() function (Fig.8) is used
only to create an object whose type is the class Domain.

Master Slave Jacobian

Joint Formulation Joint Node

Rotation

Euler Parameters Rodrigues Parameters

Rotational Vector

Inheritance relationship

Beam2 Beam2_Formulation

Element Type Element_Formulation

Element

Inheritance relationship
Aggregation relationship

Implicit Euler

Algorithm

Implicit Trapezoidal

Modified Central Difference

Class Domain
{
private :
 List<Element> *element_list_ ;
 List<Node> *node_list_ ;
 List<Joint> *joint_list_ ;
 List<Interaction> *boundary_conditions_list_ ;
 List<Interaction> *loading_list_ ;
 Matrix<double> *global_mass_matrix_;
 Vect<double> *global_NL_acceleration_ ;
 Element elem_ ;
 .…
protected :
 int nb_node_,nb_element_,nb_joint_,nb_eq_ ;
 .…
public :
 void GetElement_Domain() ;
 void GetNode_Domain() ;
 .…
 void Initialization() ;
 void Give_Init_Conditions() ;
 void InitRotation_Euler_Param() ;
 ….
 int NbEq() {return nb_eq_ ;}
 void TopElement() {element_list_->Top() ;}
 Element *GetElement()

{return element_list_->Get() ;}
 .…
 void Solve() ;
 void Solve_at(const double &time) ;
 void Terminate() ;
 ….
} ;

Fig.7. Domain class definition

Main()
{

Domain *domain ;
domain = new Domain ;
domain->Solve() ;
delete domain ;

}

Fig.8. Main function

The analysis is performed through the message
Solve() of the class Domain (Fig.9). This message first
generates the lists of nodes, elements, joints and
interactions from the files created by the preprocessor.
Three initialization methods are then activated and the
iterative resolution is initiated. At the end of the
resolution, Terminate() is activated in order to free the
memory occupied by the initializations.

void Domain::Solve()
{

this->GetElement_Domain() ;
this->GetNode_Domain() ;
….
//initialization of the different matrices and vectors
this->Initialization() ;
//initial conditions
this->Give_Init_Conditions() ;
//initialization of the Euler parameters and the
rotation matrices
this-> InitRotation_Euler_Param() ;
double time=0. ;
//max_time and deltat are defined by the user
int nb_step=(int)(max_time/(deltat/2.)) ;
for (int step=1 ;step<=nb_step ;step++)
{

 time+=deltat/2. ;
 this->Solve_at(time) ;

}
this->Terminate() ;

}

Fig.9. Solve() method of the class Domain

At each time step, the calculation is performed by the
method Solve_at(). The figure 10 shows the operations
which follow the activation of Solve_at(). Summarized
explanations of these operations are given as inline
comment remarks.

void Domain::Solve_at(const double &time)
{
// updating scheme for the generalized coordinates

this->Algo() ;
// updating the Euler parameters and the rotation
matrices
this->Update_Rotational_Orientation(time) ;
global_mass_matrix_=

new Matrix<double>(this->NbEq());
global_NL_acceleration_=

new Vect<double>(this->NbEq());
….
// iteration on all elements
for (this->TopElement() ;

elem_=this->GetElement()) ;)
{
// choice of the finite element formulation

Beam2_Formulation eq(elem_,this,time) ;
Matrix<double> *mass_elem ;
// calculation of the elementary mass matrix
mass_elem=eq.Calculate_Mass_Matrix() ;
int *loc ;
// localization table of the element
loc=elem_Loce() ;

// calculation of the global mass matrix
this->Assemble

(global_mass_matrix_,mass_elem,loc) ;
delete mass_elem ;
….

}
// calculation of the external force vector from
loading_list_
this->CreateFext(time);
// definition of the right-hand side vector Q

r

/(equation 5)
this->Create_System_one(time) ;
// calculation of the Lagrange multipliers λ

r

//according to the chosen algorithm
//(for example, Euler formula)
this->Solve_Lagrange_Multipliers(time) ;
// correction of the right-hand side vector Q

r
with the

//current constraint force vector λ]B[T
r

this->Create_System_two(time) ;
//calculation of the nodal accelerations vectors u&&

r
//and ω&r (eq. 4)
this->Solve_Generalized_Coordinates(time) ;
// saves the current solution and frees memory
this->Terminate(time) ;

}

Fig.10. Solve_at() method of the class Domain

5 Numerical examples
The two numerical examples presented in this paper are
purely academic. Nevertheless, they illustrate the
potential of the software, whose computational engine
has been designed in order to integrate flexible and rigid
bodies into the architecture in a unified manner.
Moreover, it is able to deal with both open-loop and
closed-loop systems in a systematic way.

5.1 Example 1 : Winding of an embedded beam

Fig.11. Pure bending of an embedded beam

The first example concerns the pure bending of a beam
whose first extremity is embedded and whose second
extremity is submitted to an external torque (Fig. 11).
The beam is discretized in twelve linear beam elements.

Fig.12. Successive deflections of the embedded beam

The torque is applied incrementally, the k coefficient

(2k0 ≤≤) being assimilated to the time. The time step
is equal to 0002,0k =∆ . The successive deflections are
shown on figure 12. According to the Euler classical
formula [14], the deflection of the beam is a circle

portion. For π== 2
EI

MLθ , the deformed configuration

of the beam is a closed circle.

5.2 Example 2 : Three-bar mechanism
The second example is a three-bar mechanism (Fig.13).
The bars 1 and 3 are rigid. They are connected through
revolution joints to the flexible bar 2. Densities and
inertia are the same for the three bars. The first bar is
submitted to a constant angular velocity ω. The rigid
bars are discretized in two linear beam elements, while
the flexible bar is discretized in four linear beam
elements. The time step is equal to 0.0002. The
successive deflections are shown on figure 14. The
numerical results are in perfect agreement with the
results obtained by Ibrahimbegovic [15].

Fig.13. Three-bar mechanism

X

L = 12 in

M = k m

Z

Y

E = 30.106 lb/in2
G = 15.106 lb/in2
S = 1 in2
I = 1/12 in4
m = πEI/L

ES = GS =1 E+6
EI = GJ = 1 E+5
Sρ = 1
Jρ = Diag(20,10,10)

0.36

0.72

ω = 10 rad/s

bar 1
bar 2

bar 3

0.36

0.36

Fig.14. Successive deformed configurations
of the three-bar mechanism

6 Conclusions
In this paper, the architecture of a new finite element
software for the simulation of flexible mechanisms has
been presented. The program has been designed
according to object-oriented principles. This approach
allows us to simplify the architecture of the program
and to take advantage of the inherent synergy between
object-oriented design and multibody systems analysis.
The flexibility of the software is made possible thanks
to the clear modularization that can be reached with
object-oriented programming, with a marked separation
of functionalities. Extensibility and reusability of
object-oriented programming are clearly shown : the
introduction of new formalisms or new solving
strategies can be achieved easily, with small changes of
some existing classes or the definition of new classes. In
any case, it does not require the complete redefinition of
the software architecture.

References:

[1] J. Mackerle, Object-oriented techniques in FEM and

BEM. A bibliography (1996-1999), Finite Element
in Analysis and Design, Vol.36, 2000, pp.89-196.

[2] R.R Ryan, ADAMS : Multibody system analysis
software. In : Scheihlen W, editor, Multibody
Systems Handbook, Berlin: Springer, 1990.

[3] P.E. Nikravesh, I.S. Chung, Application of Euler
parameters for the dynamic analysis of three-
dimensional constrained mechanical systems,
Journal of Mechanical Design, Vol.104, 1982,
pp.785-791.

[4] P.E. Nikravesh, G. Gim, Systematic construction of
the equations of motion for multibody systems
containing closed kinematic loops, Proceedings of
the ASME Design Automation Conference, 1989.

[5] B. Meyer, Object-Oriented Software Design, ISBN :
0-13-629049-3 or 0-13-629031-0 PBK, Prentice-
Hall, 1988.

[6] G.L. Fenves, Object-oriented programming for
engineering software development, Engineering
with Computers, Vol.6, 1990, pp.1-15.

[7] K.C. Park, J.D. Downer, J.C. Chiou, C. Farhat, A
modular multibody analysis capability for high
precision, active control and real-time applications,
International Journal for Numerical Methods in
Engineering, Vol.32, 1991, pp.1767-1798.

[8] J.D. Downer, K.C. Park, J.C. Chiou, Dynamics of
flexible beams for multibody systems : a
computational procedure, Computer Methods in
Applied Mechanics and Engineering, Vol.96, 1992,
pp.373-408.

[9] J.C. Chiou, Constraint treatment techniques and
parallel algorithms for multibody dynamic analysis.
PHD Thesis, University of Colorado, 1990.

[10] A. Ibrahimbegovic, On the choice of finite rotation
parameters, Computer Methods in Applied
Mechanics and Engineering, Vol.149, 1997, pp.49-
71.

[11] K.C. Park, J.C. Chiou, J.D. Downer, Explicit-
Implicit staggered procedure for multibody
dynamics analysis, Journal of Guidance, Control
and Dynamics, Vol.13, 1990, pp.562-570.

[12] A. Cardona, M. Géradin, A beam finite element
non-linear theory with finite rotations, International
Journal for Numerical Methods in Engineering,
Vol.26, 1988, pp.2403-2438.

[13] F. Dufossé, Approche orientée objet appliquée à la
conception d’un logiciel dédié à l’analyse des
systèmes multicorps, PHD Thesis, Université Henri
Poincaré, Nancy I, 2001.

[14] K.S. Surana, R.M. Sorem, Geometrically non-linear
formulation for three dimensional curved beam
elements with large rotations, International Journal
for Numerical Methods in Engineering, Vol.28,
1989, pp.43-73.

[15] A. Ibrahimbegovic, S. Mamouri, On rigid
components and joint constraints in nonlinear
dynamics of flexible multibody systems employing
3D geometrically exact beam model, Computer
Methods in Applied Mechanics and Engineering,
Vol.188, 2000, pp.805-831.

