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Abstract: -The principal objective of this paper is to give elements of the object-oriented architecture of a finite 
element code dedicated to multibody systems analysis. Emphasis is placed on the adequacy between object-oriented 
programming and the finite element method used for the treatment of three-dimensional multibody flexible 
mechanisms with large rotations and large strains. Numerical examples are given in order to demonstrate the software 
capabilities. 
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1 Introduction 
Several researchers have worked in the application of 
object-oriented programming techniques to the finite 
element method in recent years, in various domains of 
interest in finite element developments (constitutive law 
modeling, rapid dynamics, coupled problems, nonlinear 
analysis, symbolic computation, among others). The 
recent article of Mackerle [1] gives a bibliography with 
more than 150 references covering the period 1996-
1999. 

However, like many other engineering applications, 
multibody systems analysis codes (ADAMS [2], DADS 
[3], MBOSS [4]) are written in Fortran. Therefore, the 
main objective of this work is to describe one approach 
to the design and implementation of a multibody 
systems analysis code using an object-oriented 
architecture.  

The principal features of object-oriented 
programming are summarized in the first section. It is 
shown that the structure of multibody systems present 
similarities with object-oriented concepts, and 
consecutively lend themselves very well to object-
oriented programming techniques. The formalism used 
for the treatment of multibody systems is presented in 
the second section. The third section deals with the 
object-oriented architecture of the computational engine 
of the software. Finally, numerical examples are given 
in the last part of the paper.   

 
2 Object-oriented concepts and 
multibody systems analysis 
The object-oriented philosophy comes from the idea 
that tools (methods) must be associated with the 

information (data or attributes) they manage. The key 
concepts of object-oriented programming (abstraction, 
encapsulation, inheritance, polymorphism) can be found 
in many computer journals and language user guides 
[5,6].  

The abstraction of the data type is realized by the 
means of a class, which incorporates the definition of 
the structure as well as the operations on the abstract 
data type. An object is an instance of the class, which 
means that it is the material realisation of the abstract 
data type defined by the class. For instance, at its 
highest level of abstraction, the architecture of a 
multibody system can be thought of as consisting of 
four basic objects : bodies, constraints between bodies, 
loads and motions.  

The encapsulation designates the independent self-
containment of classes and their methods and attributes. 
The class members can be declared as public, protected, 
or private. Usually, for safety reasons, the attributes are 
declared as private and can be reached through public 
methods, defining the interface of the objects. 
Encapsulation is an ideal concept for multibody 
systems, as its implementation concentrates the 
attributes and methods associated with an object such 
that access is permitted only through well-defined 
interfaces.  

The inheritance concept is used to define object 
hierarchies. An object can have many children 
(instances of a subclass) which inherit its data and 
member functions. It can also have one or several 
parents (single or multiple inheritance). A subclass is 
usually of a special type and has additional methods and 
attributes members relating to it.  



 

The last concept is polymorphism, which designates 
the capability of object-oriented applications to interpret 
the same request differently depending on the object 
being processed. It is realised through the definition of 
abstract objects using virtual member functions. 
Abstract objects allow the writing of generic algorithms 
and the easy extension of the existing code. For 
instance, through polymorphism, it is possible to 
describe any constraint between two bodies without 
regard to joint type (revolute joint, translational joint, 
etc) and body type (rigid, flexible, etc). The 
implementation details of the specific bodies and joints 
involved in the connection are hidden by abstraction in 
the joint and body objects. 

 
 

3 Multibody system analysis 
The choices concerning mechanical formalisms have 
been made in order to favor concepts as modularity, 
polyvalence and evolutivity, which fit particularly well 
to the object-oriented philosophy. 
 
3.1 Flexible beam dynamic formulation 
In order to describe the dynamics of a flexible beam, an 
inertial reference frame is used for the description of the 
translational motion, whereas a body-fixed frame is 
used for the rotary motion [7,8]. The motion due to rigid 
motion is not distinguished from that due to the 
deformations. Moreover, the translational inertia is 
completely decoupled from the rotary inertia. The 
advantage to this is that the beam inertia is identical in 
form to that of rigid body dynamics. As a consequence, 
the same formalism can be used for mechanisms 
containing rigid elements as well as deformable 
elements. 
 
 
 
 
 
 
 
 
 
 

Fig.1. Spatial beam kinematics 
 

The location from the inertial origin of an arbitrary 
point P on the beam (Fig.1) is represented by the 
following position vector :  
 bii luXr
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where X
r

 is the position vector of a point of  the original 
neutral axis, u

r
 is the total translational displacement 

vector of the neutral axis, l
r

 is a vector connecting the 

beam neutral axis to the material point P located on the 
deformed beam cross-section. The notation _i or _b in 
(1) indicates that the quantity is expressed with respect 
to the inertial frame or with respect to the body-fixed 
frame, respectively. 

The orientation of the body-fixed reference frame is 
expressed with respect to the inertial reference frame 
through an orthogonal transformation matrix [ ] R . 

The body frame components of the angular velocity 
tensor are obtained by : 
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where ωi (i = 1 to 3) are the components of the angular 
velocity vector ω

r
, the notation [ ]x &  indicates the time 

derivative, the notation [ ]x~  indicates a skew symetric 
tensor and the notation [ ]Tx  indicates a transpose 
matrix. 

The final discrete equations of motion of a flexible 
beam element are given as : 
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where [m] and [J] represent the mass and inertia 
matrices ; u&&

r
 and ω&

r
 represent the nodal accelerations 

vectors ; D
r

 represents the non-linear acceleration, 
bi,

S
r

 
and bi,F

r
 represent the internal and external force vectors 

partitioned into translational and rotational parts, 
respectively. 

Thus, the unconstrained equations of an arbitrary 
configuration of flexible beams and rigid bodies can be 
written in terms of one set of kinematical coordinates 
denoting both the nodal coordinates of the flexible 
members and the physical coordinates of the rigid 
bodies.  
 
3.2 Equations of motion for multibody systems  
By incorporating the Lagrange multipliers λ

r
, the 

equations of motion for constrained flexible multibody 
systems are written as follows : 
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In order to alleviate the equations, the same notation 
has been used (in (4) or in (3)) to represent elementary 
or assembled matrices and vectors. The right-hand side 
vector of (4) contains the remaining force-type terms 
as : 
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In equation (4), the notation contains both the 
holonomic and non-holonomic constraints in the 
constraint force vector λ]B[ T

r
. The ]B[  matrix, called 

the constraint Jacobian matrix, is deduced from the 
kinematic relationship between the bodies of the system. 
Classical Jacobian matrices modeling standard joints 
(universal, revolute, spherical, translational joints) are 
described in [9].  

Thus, given the Jacobian matrices for the joints and 
beam connections, the equations (4) can be employed in 
a systematic manner in order to represent an arbitrary 
assemblage of articulated flexible and rigid components. 
 
3.3 Resolution of multibody systems equations 
The resolution of multibody systems equations requires 
the use of an adapted algorithm for the time integration 
of the generalized coordinates (translational coordinates 
u
r

 and angular velocities ω
r

). It must also include a 
proper treatment of three-dimensional finite rotations 
[10], as well as a method to satisfy the kinematic 
constraints conditions. In order to introduce an attractive 
modularity in the solution procedures, which favors the 
object-oriented philosophy, the integration of the 
generalized coordinates is performed separately from 
the calculation of the constraint forces (Lagrange 
multipliers λ

r
) [11].  

The generalized coordinates are calculated with a 
particular explicit integration procedure, called « two-
stage staggered algorithm », first developed by Park 
[11], which is based on an interlaced application of the 
central difference algorithm such that the generalized 
coordinates are advanced one-half time step at a time. 

The rotational orientation parameters are not directly 
integrable from the angular velocity vector. As a 
consequence, a procedure must be developed to update 
the configuration orientation given the angular velocity. 
Various methods have been proposed for the 
parametrization of large rotations [12]. The Euler 
parameters representation has been chosen in this work, 
because of their algebraic nature and especially because 
they do not possess any singularity limitation. Once the 
angular velocities are calculated, the angular 
orientations are updated with the implicit trapezoidal 
formula.  

The Lagrange multipliers are solved by the use of a 
stabilized constraint force procedure associated to the 
implicit forward Euler formula. Details about the 
procedures used for the updating of the rotational 
orientation and of the Lagrange multipliers can be found 
in [13]. 

As one can see, the updating of the generalized 
coordinates, of the rotational orientation and of the 
Lagrange multipliers are performed separately. These 
separated treatments lead to an attractive modular 

software implementation, which favors the object-
oriented philosophy and eases the introduction of new 
algorithms and new formalisms in the future.  
 
 
4 Description of the computational engine 
 
4.1 Global description 
The computational engine is written in C++ ANSI, 
independently of the preprocessor and the compiler. We 
selected C++, which seems to be, currently, the 
language providing numerical efficiency, portability, 
flexibility and is easy to use.  

Moreover, C++ gives the possibility to use specific 
features, as the overloading of functions and operators, 
or the templates mechanism, which can greatly ease 
programming.  

The current architecture is based on the hypotheses 
and formalism presented in the previous section. 
However, it has been conceived in order to provide a 
flexible and extensive set of objects that facilitate 
multibody systems analysis and which can be adapted to 
meet future developments. 

The global architecture is organized around several 
basic classes associated with the classical steps of a 
multibody finite element analysis (geometry definition, 
meshing, interactions definition, finite element 
formulation, behaviour law, joints definition, solving 
algorithms, writing results).  

The management of the different stages of the 
analysis is performed by the major class Domain, which 
represents the heart of the software architecture (Fig.2). 
It has been created to represent an elementary problem 
(corresponding to a specific multibody system analysis).  
 
 
 

 
 
 
 
 

Fig.2. Global architecture of the software 
 
4.2 Description of the major basic classes 
 
4.2.1 Parametrization of the rotations 
The abstract Rotation class is of particularly great 
importance. This class manages the information for the 
different parametrizations of the finite rotations 
(rotational vector, Euler parameters, Rodrigues 
parameters, among others), which are used in several 
steps of the calculation (calculation of the internal 
forces, calculation of the constraint Jacobian matrices). 

Domain 

Joint_Formulation 

Element  Formulation 

Material_Behaviour

Interactions Algorithm 



 

The classes corresponding to a specific parametrization 
of the rotations are derived from the Rotation base class 
(Fig.3). The virtual methods of Rotation are 
implemented in the derived classes, as well as specific 
methods.  

  
 
 
 
 
 
 

 
 
 

Fig.3. Derived classes from the Rotation virtual class 
 
4.2.2 Finite element formulation 
The class Element_Formulation (Fig.4) is the abstract 
master class of the finite elements library. It provides 
virtual methods of computation of the different finite 
element arrays and tables (mass matrix, strain operator, 
…). The effective computation depends on the chosen 
formalism and may vary appreciably. In these 
conditions, the object-oriented philosophy eases the 
implementation of new formalisms, without requiring a 
complete redefinition of the software’s architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4. Classes associated with the finite element 

modelization 
 

The abstract class Element_Type contains virtual 
methods for the calculation of the element’s shape 
function and its derivatives. From Element_Type, 
subclasses corresponding to a specific finite element are 
derived (for example, Beam2 for a two-nodes beam 
element). 

The class Beam2_Formulation is derived from 
Element_Formulation. One of its attributes is a pointer 
to the desired finite element, Beam2, for example. This 
class corresponds to a specific finite element 

formulation, and allows the redefinition of the methods 
according to the type of the element. 
 
4.2.3 Joints formulation procedure 
The Joint class has been created for the modelization of 
the joints between bodies. The abstract class 
Joint_Formulation allows the treatment of the joints 
according to different formalisms (Fig.5). Currently, the 
only available class is the derived class Jacobian, for 
the calculation of the constraint Jacobian matrices 
required in the Lagrange multipliers technique described 
in section 3.3.  

Although not currently implemented, other 
procedures of treatment for the constraint equations 
(Master/Slave methods, among others) can be 
introduced in a straighforward way, by a simple 
derivation of Joint_Formulation.  
 
 
 
 
 
 
 
 
 

 
Fig.5. Classes associated with constraints modelization 

 
4.2.4 Algorithms 
The different solving algorithms presented in section 3.3 
are defined in classes derived from the abstract class 
Algorithm (Fig.6).  

Algorithm contains methods and attributes which 
are common to the different algorithms. Thus, the 
implementation of new algorithms can be achieved 
easily. 
 
 
 
 
 
 
 
 

 
 

Fig.6. Abstract class Algorithm 
 
4.3 Description of the class Domain 
The summarized description of the major class Domain 
is given in figure 7. The Main() function (Fig.8) is used 
only to create an object whose type is the class Domain.  
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Class Domain  
{ 
private :  
  List<Element> *element_list_ ; 
  List<Node> *node_list_ ; 
  List<Joint> *joint_list_ ; 
  List<Interaction> *boundary_conditions_list_ ; 
  List<Interaction> *loading_list_ ; 
  Matrix<double> *global_mass_matrix_; 
  Vect<double> *global_NL_acceleration_ ; 
  Element elem_ ; 
  .… 
protected :  
  int nb_node_,nb_element_,nb_joint_,nb_eq_ ; 
  .… 
public :   
  void GetElement_Domain() ; 
  void GetNode_Domain() ; 
  .… 
  void Initialization() ; 
  void Give_Init_Conditions() ; 
  void InitRotation_Euler_Param() ; 
 …. 
  int NbEq() {return nb_eq_ ;} 
  void TopElement() {element_list_->Top() ;} 
  Element *GetElement()  

{return element_list_->Get() ;} 
  .… 
  void Solve() ; 
  void Solve_at(const double &time) ; 
  void Terminate() ; 
  …. 
} ; 

 
Fig.7. Domain class definition 

 
Main() 
{ 

Domain *domain ; 
domain = new Domain ; 
domain->Solve() ; 
delete domain ; 

} 
 

Fig.8. Main function 
 

The analysis is performed through the message 
Solve() of the class Domain (Fig.9). This message first 
generates the lists of nodes, elements, joints and 
interactions from the files created by the preprocessor. 
Three initialization methods are then activated and the 
iterative resolution is initiated. At the end of the 
resolution, Terminate() is activated in order to free the 
memory occupied by the initializations.  

 

void Domain::Solve() 
{ 

this->GetElement_Domain() ; 
this->GetNode_Domain() ; 
…. 
//initialization of the different matrices and vectors 
this->Initialization() ;                   
//initial conditions 
this->Give_Init_Conditions() ;  
//initialization of the Euler parameters and the 
rotation matrices   
this-> InitRotation_Euler_Param() ;   
double time=0. ; 
//max_time and deltat are defined by the user 
int nb_step=(int)(max_time/(deltat/2.)) ;   
for (int step=1 ;step<=nb_step ;step++) 
{ 

  time+=deltat/2. ; 
  this->Solve_at(time) ; 

} 
this->Terminate() ; 

} 
 

Fig.9. Solve() method of the class Domain 
 

At each time step, the calculation is performed by the 
method Solve_at(). The figure 10 shows the operations 
which follow the activation of Solve_at(). Summarized 
explanations of these operations are given as inline 
comment remarks. 
 
void Domain::Solve_at(const double &time) 
{ 
// updating scheme for the generalized coordinates 

this->Algo() ;    
// updating the Euler parameters and the rotation 
matrices    
this->Update_Rotational_Orientation(time) ;    
global_mass_matrix_= 

new Matrix<double>(this->NbEq()); 
global_NL_acceleration_= 

new Vect<double>(this->NbEq()); 
…. 
// iteration on all elements 
for (this->TopElement() ; 

elem_=this->GetElement()) ;)   
{ 
// choice of the finite element formulation 

Beam2_Formulation eq(elem_,this,time) ;     
Matrix<double> *mass_elem ; 
// calculation of the elementary mass matrix 
mass_elem=eq.Calculate_Mass_Matrix() ;    
int *loc ; 
// localization table of the element 
loc=elem_Loce() ;      



 

// calculation of the global mass matrix 
this->Assemble 

(global_mass_matrix_,mass_elem,loc) ;   
delete mass_elem ; 
…. 

} 
// calculation of the external force vector from 
loading_list_  
this->CreateFext(time);     
// definition of the right-hand side vector Q

r
  

/(equation 5) 
this->Create_System_one(time) ;   
// calculation of the Lagrange multipliers λ

r
  

//according to the chosen algorithm  
//(for example, Euler formula) 
this->Solve_Lagrange_Multipliers(time) ;  
// correction of the right-hand side vector Q

r
with the 

//current  constraint force vector λ]B[ T
r

 
this->Create_System_two(time) ;   
//calculation of the nodal accelerations vectors u&&

r   
//and ω&r (eq. 4) 
this->Solve_Generalized_Coordinates(time) ;  
// saves the current solution and frees memory 
this->Terminate(time) ;     

} 
 

Fig.10. Solve_at() method of the class Domain 
 

 
5 Numerical examples 
The two numerical examples presented in this paper are 
purely academic. Nevertheless, they illustrate the 
potential of the software, whose computational engine 
has been designed in order to integrate flexible and rigid 
bodies into the architecture in a unified manner. 
Moreover, it is able to deal with both open-loop and 
closed-loop systems in a systematic way. 
 
5.1 Example 1 : Winding of an embedded beam 
 
  
 
 
 
 
 
 
 
 
 

 
 

Fig.11. Pure bending of an embedded beam 

The first example concerns the pure bending of a beam 
whose first extremity is embedded and whose second 
extremity is submitted to an external torque (Fig. 11). 
The beam is discretized in twelve linear beam elements. 

 
Fig.12. Successive deflections of the embedded beam 

 
The torque is applied incrementally, the k coefficient 

( 2k0 ≤≤ ) being assimilated to the time. The time step 
is equal to 0002,0k =∆ . The successive deflections are 
shown on figure 12. According to the Euler classical 
formula [14], the deflection of the beam is a circle 

portion. For π== 2
EI

MLθ , the deformed configuration 

of the beam is a closed circle. 
 

5.2 Example 2 : Three-bar mechanism 
The second example is a three-bar mechanism (Fig.13). 
The bars 1 and 3 are rigid. They are connected through 
revolution joints to the flexible bar 2. Densities and 
inertia are the same for the three bars. The first bar is 
submitted to a constant angular velocity ω. The rigid 
bars are discretized in two linear beam elements, while 
the flexible bar is discretized in four linear beam 
elements. The time step is equal to 0.0002. The 
successive deflections are shown on figure 14. The 
numerical results are in perfect agreement with the 
results obtained by Ibrahimbegovic [15]. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.13. Three-bar mechanism 
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Fig.14. Successive deformed configurations  
of the three-bar mechanism 

 
 
6 Conclusions 
In this paper, the architecture of a new finite element 
software for the simulation of flexible mechanisms has 
been presented. The program has been designed 
according to object-oriented principles. This approach 
allows us to simplify the architecture of the program 
and to take advantage of the inherent synergy between 
object-oriented design and multibody systems analysis. 
The flexibility of the software is made possible thanks 
to the clear modularization that can be reached with 
object-oriented programming, with a marked separation 
of functionalities. Extensibility and reusability of 
object-oriented programming are clearly shown : the 
introduction of new formalisms or new solving 
strategies can be achieved easily, with small changes of 
some existing classes or the definition of new classes. In 
any case, it does not require the complete redefinition of 
the software architecture. 
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