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Abstract: Preliminary results are presented for a color-flow imaging system being developed to detect early

cancer by imaging tissue elasticity and blood flow simultaneously. The principal challenge is to separate blood

velocities from movement of the surrounding tissues even though the corresponding Doppler spectra overlap.

This report examines a broad range of digital filter designs using pulse-echo measurements from tissue-like

materials. Adaptive eigenfilters are most able to separate the sources of physiological motion. When used

with an improved autocorrelation technique (2-D autocorrelator), accurate and precise velocity estimates were

obtained for slow pulsatile flow in 3-mm-diameter vessels with a peak velocity of 30 mm/s.

Key-Words: Color-Flow Imaging, Velocity Estimation, Autocorrelator, Clutter Rejection Filtering, Adaptive

Digital Filter Design.

1 Introduction
Ultrasonic color-flow imaging (CFI) systems pro-

vide valuable diagnostic blood velocity information

in real-time, noninvasively, and at a cost much less

than competing imaging modalities. Unfortunately,

most commercial ultrasound scanners are limited in

their ability to enable researchers to experiment with

new signal processing strategies. For example, new

methods for imaging vascularization and perfusion of

metastatic tumors while assessing viscoelastic prop-

erties hold promise for improved early detection but

can’t be carried out on commerical scanners. To fa-

cilitate such investigations, we built a laboratory sys-

tem with ample flexibility and present our findings

in this report.

It is well known that neoplasms have increased

vascularity to supply fast-growing tissues with nutri-

ents [1]. Concurrently, these tissues are structurally

remodelled causing them to stiffen due to hyperpla-

sia, fibrosis [2], and desmoplasia [3]. To measure

blood velocity and tissue elasticity simultaneously,

we are developing a laboratory ultrasound scanner

capable of standard as well as novel procedures for

imaging blood flow and strain [4]. In this paper

we focus on the signal and image processing neces-

sary for estimating low blood velocities, down to a

few mm/s, while maintaining the real-time acquisi-

tion aspects of the approach. We are also interested

in separating flow and strain information by appro-

priate application of adaptive filters. The latter goal

is essential since signal components that carry strain

information produce artifacts in CFI and vice versa.

To keep image quality high, the variance of velocity

and strain estimates must be kept as low as possible

by optimal suppression of certain signal components

depending on whether strain or flow is to be esti-

mated.

This paper is organized as follows: in section 2 the

conventional autocorrelator is compared with an im-

proved autocorrelator version. Different clutter filter

classes are compared in section 3. Finally, experi-

mental results are shown in section 4.

2 Blood Velocity Estimation
The development and implementation of unbiased,

low-variance velocity estimators for real-time CFI,

particularly for low flow situations, is a challeng-

ing signal processing problem. The goal is to sup-

press noise and clutter from slow-moving tissues sur-

rounding the flowing blood. Suppression is neces-

sary because tissue echoes are orders of magnitude

greater than those from blood at frequencies below

15 MHz. The adverse influence of clutter can be

reduced by minimizing the size of the echo sample

volume, but even if the entire sample volume is inside

a blood vessel, clutter from reverberations and trans-

ducer side lobes will affect the signal. In this section,

we focus on blood velocity estimation by assuming

clutter has been removed from the echo signal before

estimation. Section 3 describes adaptive filters for

this task. A simplified block diagram of our blood

velocity measurement system is shown in Fig. 1.

Echo signals are amplified, filtered, and decomposed

into baseband in-phase (I) and quadrature-phase (Q)

components. The IQ–signal generation, computed

in software via quadrature demodulation, yields the

complex envelope for estimating phase. Required
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Fig.1: Block diagram of our measurement system for estimating

blood velocity

range resolution is achieved in CFI by transmitting

ultrasound pulses and range gating the echo signals.

Velocity estimators measure the inter-pulse time de-

lay for sequential transmissions at a fixed spatial po-

sition. It is assumed that changes in echoes from

pulse trains are due to blood movement and noise.

Motion measurements are relative, requiring at

least two pulse transmissions at a given line of sight

(LOS) before the ultrasound beam can be scanned

to the next LOS. For noise reduction, the number

of pulse transmissions N , or packet size, is usu-

ally greater than 2. Their transmission rate is the

pulse repetition frequency fPRF . Recorded radio

frequency (RF) echo signals are organized in 2-D

arrays where the terms “fast-time” (columns) and

“slow-time” (rows) define the direction of the beam

axis (RF sampling, index m) and pulse packet di-

mension (PRF sampling, index n), respectively. The
situation is depicted in Fig. 2. Provided that scat-

terers move with velocity v, the center Doppler fre-

quency in slow-time direction is (2vz · f0/c) where

vz = v · cosΘ is the axial velocity component vz,
f0 is the center frequency of the RF pulse, c is the

longitudinal sound speed and Θ is the angle between

the beam axis and the velocity vector v. If echo

Fig.2: Acquisition in Scan–mode (left) and matrix representation

of data (right). Matrix dimensions are M × rN . The situation

for M–mode is similar except there is no transducer motion along

the x-axis (r = 1).

signals originate from a time-steady velocity field,

the complex envelope sequence is characterized as

a complex Gaussian random process. As such, it

is entirely described by its autocorrelation function.

Most commercial CFI estimators use a phase do-

main technique known as the autocorrelator estima-

tor [5] because of its numerical efficiency and real-

time capability. Other velocity estimation techniques

are known (e.g., time domain cross-correlation, 2-

D Fourier-transform, maximum likelihood estimator,

maximum entropy method). While some exhibit su-

perior performance to the autocorrelator, their com-

putational requirements are much greater, thus elim-

inating real-time applications.

2.1 Conventional (1-D) Autocorrelator
The conventional autocorrelator measures the axial

component vz of the velocity vector by estimating the

average phase shift between consecutive echo signals

with respect to the central frequency of the trans-

mitted pulses. It can be considered one-dimensional

(1-D) as processing occurs along the slow-time axis.

The autocorrelator is able to provide estimates of the

mean Doppler frequency in the time domain because

of a relationship between spectral moments and au-

tocorrelation derivatives. vz is proportional to the

phase of the complex 1-D autocorrelation function

R(�) at lag � = 1 in slow-time direction [5]:

vz =
c

2
fPRF

2πf0
arctan

(
�[R̂(1)]
�[R̂(1)]

)
, (1)

where � and � denote the real and imaginary parts.

R̂(�) is an estimate of the autocorrelation function

and can be calculated at each depth m from in-phase

I(n) and quadrature-phase Q(n) baseband samples

in slow-time direction:

R̂(�) =
1

N − �

N−2∑
n=0

[I(n) + jQ(n)] ·

·[I(n + �) − jQ(n + �)] . (2)

It is known [6] that the autocorrelation frequency

estimator yields unbiased estimates in lossless media

when the spectrum is symmetric about its mean1.

2.2 2-D Autocorrelator
The conventional autocorrelator described in section

2.1 is implemented in the vast majority of com-

mercial scanners though it can be improved a great

deal without sacrificing the real-time aspect. Un-

der ideal, narrow-band conditions, mean Doppler fre-

quency and thus autocorrelator-based phase estima-

tion provide unbiased velocity estimates. However,

the broad-band pulse transmission required in CFI to

obtain spatial resolution coupled with the frequency-

dependent attenuation in tissues leads to estimation

bias. For example, the mean Doppler frequency shift

produced by slow physiological blood flow is small

1Clutter filters, however, may influence the bias and variance

of the mean frequency estimates.



when compared with the pulse frequency down-shift

caused by tissue attenuation. Also, the stochastic

nature of the scattered pressure field produces radio

frequency fluctuations while the conventional auto-

correlator assumes the RF to be constant. As a result,

the uncertainty in mean Doppler frequency measure-

ments increases even for noiseless signals and where

flow is constant with time.

The 2-D autocorrelator overcomes these draw-

backs with its ability to estimate both the Doppler fre-

quency and radio frequency within each range gate.

Furthermore, the RF center frequency of the trans-

ducer need not be known or measured beforehand,

and therefore spectral changes over time, in temper-

ature, etc. do not influence performance. Another

advantage of the 2-D autocorrelator is that explicit

estimation of the RF can overcome the bias effect

that frequency-dependent attenuation has on the con-

ventional autocorrelator. The 2-D autocorrelator was

found to offer a consistently higher velocity preci-

sion than the conventional autocorrelator under all

conditions [7]. The velocity precision of the 2-D

autocorrelator is comparable to the conventional au-

tocorrelator using half the packet size. These facts

make the 2-D autocorrelator ideal for estimating low

velocities in real-time. vz2D can be estimated using

the 2-D autocorrelation function R2D(k, �) at lags

(k, �) = (0, 1) and (k, �) = (1, 0) [7]:

vz2D =
c

2

fPRF
2π arctan

(�[R̂2D(0,1)]

�[R̂2D(0,1)]

)
fdem + fs

2π arctan
(�[R̂2D(1,0)]

�[R̂2D(1,0)]

) . (3)

fdem is the demodulation frequency and must be

taken into consideration when baseband IQ data are

used, fs is the sampling rate in fast-time direction and

R̂2D is the 2-D correlation function estimate of the

complex baseband signal I(m, n) + jQ(m, n) given
by:

R̂2D(k, �) =
M−k−1∑

m=0

N−�−1∑
n=0

[I(m, n) + jQ(m, n)] ·

·[I(m + k, n + �) − jQ(m + k, n + �)].

The factor 1/[(N − �)(M − k)] used to obtain un-

biased estimates of the correlation function cancels

inside the arctan functions.

Fig. 3 shows a comparison of errors obtained from

the conventional and 2-D autocorrelators applied to

the same IQ data set modelling a constant velocity

field. 10000 independent echo signals correspond-

ing to different LOS were used. Each signal was

divided into 100 range gates and the packet size was

N = 8, so error estimates were obtained from 7 ·106
measurements of velocity. This large number is nec-

essary here to derive estimation mean velocities with

adequately low standard deviation. The range gate

length was chosen to match the −20 dB transmit

pulse duration (0.512 µs or 64 samples at fs = 125
MS/s) with f0 = 15 MHz. Velocity errors are shown

for SNR = ∞ and 10 dB. It can be clearly seen that

both estimators provide very small absolute errors

(bias) while the 2-D autocorrelator additionally pro-

vides much lower standard deviations over the entire

range of true velocities up to the aliasing velocity.

However, the superiority of the 2-D autocorrelator

disappears at very low SNR or significant velocity

spreads inside the range gates where signals become

decorrelated. Velocity spread from turbulent flow is

very low in low flow situations. In our experience,

SNRs greater than 5 dB are sufficient for superior

performance of the 2-D autocorrelator. Depending on

measurement parameters (pulse frequency, Doppler

shift, pulse and range gate lengths, packet size) SNRs

below 0 dB can still provide reliable results.
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Fig.3: Comparision of conventional and 2-D autocorrelator:

mean velocity error (bias) and velocity standard deviation σv

as a function of velocity for SNR = ∞ (left) and SNR = 10
dB (right). The maximum velocity that can be estimated in this
case before aliasing occurs is 73 mm/s.

Applying the 1D autocorrelator or other signal

processing methods that estimate only the Doppler

shift can increase estimation bias significantly when

pulsed ultrasound is used in attenuating media. The

results shown in Fig. 4 clearly demonstrate that the

2-D autocorrelator reduces velocity bias in dispersive

media with physiological attenuation.
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Fig.4: Velocity estimates at SNR = 10 dB. f0 = fdem = 15

MHz, but the center frequency of the echo signals is 14 MHz due

to frequency-dependent attenuation. The broken horizontal lines
indicate the true velocity of 5.92 mm/s. The 2-D estimator (right

side) provides unbiased results with lower σv (5.9204±0.029)

mm/s, as opposed to the conventional estimator, (5.5327±0.184)
mm/s.



3 Clutter-Filter Designs
CFI requires that we choose a packet size (usually

N = 4 . . . 20) that achieves the best compromise

between the need for a high color frame rate and

low color noise (velocity errors). Since clutter fil-

ters operate along the slow-time axis, only a few

echo samples are available for filtering. The design

of adaptive high-pass clutter filters for suppressing

low-frequency Doppler components in diverse con-

ditions is difficult to optimize. It requires a high

stop-band attenuation, flat frequency response in the

pass-band and a very small transition region. The

demands are greater if velocity estimates are to be

combined with strain estimates. We briefly discuss

the basic properties of various filter classes before

showing experimental results.

3.1 FIR Filters
Given that N is usually small, low-order FIR filters

are usually inappropriate because the transition fre-

quency band is too large. Furthermore, the number

of valid output samples, N minus the filter order,

becomes too small when one considers that the vari-

ance for autocorrelation estimates is inversely propor-

tional to the number of valid filter output samples.

While we do not consider FIR designs, it has been

shown [9] that minimum-phase FIR filters and mir-

roring techniques can yield acceptable performance.

3.2 Initialized IIR Filters
IIR filters exhibit narrower transition bands than FIR

filters for the same order. However, appropriate ini-

tialization of the internal filter states must be applied

in order to suppress the transient filter response and

reduce the “ring-down time”. Three different ini-

tialization techniques are investigated in this paper

[8, 9]:

• Zero initialization: the initial filter state vector

is set to zero for times less than zero. Often, this

technique yields unacceptably large transients.

• Step initialization: the filter state vector is set

depending on the filter and data values. Tran-

sients can be partially suppressed from a priori

knowledge that the input signal is dominated by

high-amplitude, low Doppler frequency (nearly

stationary) clutter. We apply a unit-step input

and calculate the internal filter states at t = ∞.

These values are scaled at each range depth

(fast-time) by the amplitude of the first data

sample in the pulse packet before being loaded

into the filter.

• Projection initialization: the filtered signal is

decomposed into steady-state and transient com-

ponents. Using an appropriate projection oper-

ator [8], which projects the signal in the “tran-

sient response subspace”, it is possible to de-

compose the filtered signal into two orthogonal

components and subtract the transient subspace

component from the output.

3.3 Regression Filters
Regression filters operate on the assumption that the

slowly varying clutter component in the signal can be

approximated by a set of curves such as polynomials.

The least-square fit to the low-frequency clutter com-

ponent in the echo signal is subtracted. The curve

set is chosen to form an orthonormal basis for a K–

dimensional clutter subspace of the N–dimensional

signal space. The least-square clutter fit is the pro-

jection of the signal into the clutter subspace. The

linear filtering operation can be generally expressed

in matrix notation:

y = A · x (4)

with x being the complex input signal vector, y be-

ing the (filtered) complex output signal vector, both

of dimension N × 1, and A as the filter matrix of

dimension N × N :

A = I−
K−1∑
k=0

bk · bH
k , (5)

where bk is the set of orthonormal basis vectors,

often Legendre or Chebychev polynomials, (. . . )H is

the Hermitian operator, and I is the identity matrix.

The frequency response of the filter can by calculated

by

H(ω) = 1 − 1
N

K−1∑
k=0

|Bk(ω)|2 (6)

where Bk(ω) is the Fourier transform of the basis

vector bk [10]. In order to design high-pass filters,

K must be small. Regression filters are adaptive in

the sense that the polynomial coefficients vary de-

pending on the data.

3.4 Adaptive Eigenfilters
The eigenfilter approach is to create basis functions

for the clutter space that adapt to specific clutter sig-

nal statistics. Since the basis set and coefficients are

determined by the data, eigenfilters are truly adap-

tive. The Hotelling transform2 decomposes x into

2Hotelling was the first to derive the transformation that

transforms discrete variables into uncorrelated coefficients. He

referred to it as the “method of principal components”. The

analogous transformation for transforming continuous data was

discovered by Karhunen and Loéve.



N orthonormal components by using the eigenvec-

tors (e1, . . . , eN ) of the clutter covariance matrix CC

as basis3:

CC = E{x · xH} (7)

where E{·} is the expected value. Signal compo-

nents related to large eigenvalues correspond to clut-

ter because clutter signals are usually much larger

than flow signals. The Hotelling signal expansion is

optimal in the sense that no other transform packs

as much energy into the first components (optimum

energy concentration property). This means, in our

case, that the clutter approximation minimizes the

mean square error and therefore a maximum reduc-

tion of clutter energy is obtained by removing the

component of the signal contained in the subspace

spanned by (e1, . . . , eK) with K < N . Eqn. 5 and

Eqn. 6 can be used to calculate the filter matrix A
and filter frequency response. In a practical situa-

tion CC is unknown but can be estimated from the

data in the region of interest by spatial averaging in

fast-time direction:

ĈC =
1
m

m∑
i=1

xi · xi
H . (8)

Stationarity is not assumed in the estimation of the

correlation matrix, and therefore the Eigenvector-

based filter is able to adapt even to clutter echos

which originate from accelerated tissue.

3.5 Comparison of the Filter Frequency Re-
sponses

Fig. 5 shows the frequency responses of the differ-

ent filter classes described in this paper for a packet

size N=16. Initilization of second order IIR fil-

ters with high-pass butterworth characteristics largely

suppresses transients and thereby improves the fre-

quency response towards the steady state case. We

would like to remind the reader that, due to the

low number of filter input samples, the steady state

frequency response can never be achieved. Zero-

initialized IIR filters provide a DC attenuation of only

about 10 dB which renders CFI in the presence of

clutter impossible. Projection-initialized IIR filters

and regression filters have very similar frequency re-

sponses. The Eigenvector-based high-pass filter has

even steeper roll-off than the IIR filter in its steady

state.

4 Experimental Results
To study the performance of the 2-D autocorrelator

and various clutter filters we conducted the following

3Clutter signals stem from a zero mean complex Gaussian

process and hence covariance and correlation matrices are iden-

tical.
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experiment. A soft tissue-mimicking graphite-gelatin

phantom (elastic modulus 18 kPa, [11]) was con-

structed with two cylindrical flow channels [12]. A

blood-like scattering fluid — a 1% by mass suspen-

sion of cornstarch in water — flowed through the

channels. The first channel (3 mm diameter) was

connected to an infusion pump that generated steady

Poiseuille flow with a maximum velocity of the par-

abolic flow-profile in the center of the channel of

about 15 mm/s. The second channel (5 mm diame-

ter) was connected to a peristaltic pump (5 pulses/s)

to produce cyclic motion in the gelatin and modulate

the steady flow in the first channel. We could not

produce significant clutter from pulsatile gelatin mo-

tion using a single channel phantom without alias-

ing blood velocities. However, by separating the

two effects into adjacent channels, it was possible

to add clutter at approximately the same velocity as

the blood flow, which provides the greatest challenge

for clutter filters.

Data were acquired in M–mode from above the

center of the 3 mm diameter channel using our

laboratory scanner and a single-element spherically-

focussed transducer (12.7 mm diameter, f0 = 15

MHz, f/3.5). Fig. 6 depicts the color-coded veloc-

ities calculated by the 2-D autocorrelator which are

overlayed on the regular brightness image. With-

out the pulsed pressure, the gelatin was motionless

and flow in the 3 mm channel was steady over time

and showed spatial velocities in the range (0 . . . 15)
mm/s. With pulsed pressure, measured gelatin veloc-

ities ranged between ±5 mm/s, and flow in the 3 mm

channel was temporally modulated where the veloc-

ities ranged from (−1 . . . 30) mm/s. The softer flow

channel strained more than the surrounding gelatin,

so the large modulation in the channel is to be ex-

pected. Fig. 7 shows velocity maps corresponding to

the color-flow image depicted in Fig. 6 after differ-

ent clutter filters were applied. The zero-initialized



Fig.6: Color-flow M–mode image of pulsatile flow and pulsatile

tissue motion. The horizontal time axis covers about 1 s. The

ultrasound pulse duration of 0.5 µs matches the range gate length

of approx. 400 µm. The color flow velocity scale is adjusted to

make the color-coded tissue motion clearly visible (the flow at

peak pressure inside the channel is therefore out of range).

IIR filter is not able to suppress the gelatin mo-

tion (clutter) outside the channel. Step initialization

suppresses clutter but also flow inside the channel.

The regression filter significantly cancels clutter but

also disturbs the flow profiles. Only the adaptive

Eigenvector-based filter completely cancels all tissue

motion and leaves the flow inside the channel almost

unchanged.
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Fig.7: Different filters were applied to suppress tissue motion:

zero initialized (top left) and step initialized (top right) second

order IIR, first order regression (bottom left) and Eigenvector-

based (bottom right) filters. The latter shows by far the best
performance.

5 Conclusions
We showed that an extension of the well-known con-

ventional autocorrelator can significantly improve the

quality of flow estimation, especially for low veloc-

ities. Different clutter filters were also investigated

and we were able to demonstrate that an adaptive

Eigenvector-based approach provides excellent per-

formance in discriminating between flow and clutter

even if the velocities are low and roughly the same

in both parts. These are very promising results for

the development of our combined flow-strain imag-

ing, where strain is estimated from clutter to describe

elastic properties and improve early detection of ma-

lignant tumors.
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