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Abstract: - The paper proposes a new adaptive VS LMS algorithm, obtained by combining LMS algorithms with
different step sizes without calculating their weighting coefficients. As a criterion for choosing the VS LMS algorithm
step size, we take the ratio between the weighting coefficients' bias and variance. Identification of an unknown system
in nonstationary noisy environment is performed and simulations with the proposed and other VS LMS algorithms are
presented. Simulation results confirm the favorable properties of the proposed algorithm in nonstationary environment
with abrupt changes of unknown system parameters.
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1 Introduction
There is a number of adaptive algorithms, [1,2,3,4,6,8],
derived from the conventional LMS algorithm. Variable
step-size methods [4, 5, 6] aim to improve the
convergence of the LMS algorithm, while preserving the
steady-state performance. There are several criteria for
varying the LMS algorithm step-size: sign changes of
successive samples of the gradient [4], squared
instantaneous error and square of a time-averaging
estimate of the successive error autocorrelation [5].
These criteria lead to the corresponding types of VS
LMS algorithms, which are more efficient than the LMS
algorithm for coefficient's tracking in a nonstationary
environment.

In [8] we proposed one more possible approach for
the LMS-based adaptive algorithm performance
improvement. The idea is to combine various adaptive
LMS-based algorithms in order to obtain suitable
adaptive system that represents the best combination of
the algorithms. The solution proposed in [8] produced
favorable results, but it was associated with a parallel
calculation of weighting coefficients for several LMS-
based adaptive algorithms. Elements for estimating the
quality of an adaptive algorithm are recognized in a
specific statistical approach based on the comparison of
bias and variance, [7], of the adaptive system's weighting
coefficients, viewed as random variables.

Based on the idea of combining several LMS
algorithms, we here propose a new way of choosing the
step size for the VS LMS algorithm.

2 LMS Algorithm
Let us define the input signal vector:
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of the adaptive filter at an instant k, [1,2,3]. The output

error is: ),()()()( kXkWkdke
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−= where d(k) is the
reference signal. The filter output signal is given by
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The weighting coefficients in the LMS algorithm

are obtained from the following expression:
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where µ is the algorithm step size.
The considered adaptive system identification

problem consists in trying to adjust a set of weighting
coefficients so that the system output tracks a reference
signal, ( ) ( ) ( ) ( )Td k k X k n kW

∗= + , where n(k) is a zero-

mean Gaussian independent noise with the variance
2
nσ ,

and
*
( )W k is the optimal weighting vector (Wiener

vector). In a nonstationary environment
*
( )W k is time-

varying, and is described as, [3,5,9]:
* *
( 1) ( ) ( )W k W k Z k+ = + , (2)

where ( )Z k is a zero-mean sequence, independent on

( )X k and n(k), with covariance matrix IQ Z
2σ= .

An important performance measure for the adaptive
filters is its steady state mean square deviation (MSD).
For the adaptive LMS filters in nonstationary
environment, with standard assumptions as in [3,6], the
MSD is given by:
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where ( ) ( ) ( )V k W k kW
∗= − is the weighting vector

deviation and R is the autocorrelation matrix of the input

signal vector ( )X k . The first term in MSD, directly

proportional to the algorithm step size µ, is a
consequence of the gradient noise. The second one,
inversely proportional to µ, stems from the optimal filter
variations, (2). Note that the analysis for the stationary
case directly follows from the above relations, for Q null
matrix.

The misalignment, as we show, is due to both the
effects of gradient noise (weighting coefficients
variations around the average value) and the weighting
vector lag (difference between the average and the
optimal value), [3,6]. It can be written, for the i-th
weighting coefficient:
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where )(kpi is a zero-mean random variable with the

variance )(2 kiσ . Now, from (3) and (4) we can express
bias and variance for the i-th weighting coefficient, in
steady state, as:
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where 2
xσ is the variance of white zero mean input

signal )(kX .

As shown in [3,6], from (3) it is possible to obtain
the optimal algorithm step size for each coefficient:
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that minimizes the value of the MSD.
The above relation is not of much use in practice,

since in each iteration it requires availability of data
concerning optimal filter variations (2), as well as of the
input signal variance. If the optimal step size (6) is
substituted into (5), the equality of bias and variance
easily follows, i.e.
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3 Criterion for Comparison of LMS
Algorithms

Basic idea of the combined adaptive system lies in
parallel and independent adaptation of two or more
LMS adaptive algorithms, with the choice of the best
weighting coefficient value in each iteration [8].

Criterion for choosing the best weighting
coefficient value is based on comparing the values of

weighting coefficients’ bias and variance for each of the
parallel algorithms. The weighting coefficients )(kWi ,
for any parallel adaptive algorithm, assume random
values around the optimal values )(* kWi , with the bias

ii biaskWbias =))(( and the variance ikWi
σσ =)( . These

two quantities are related as [7,8]:
*( ) ( ) .i i i iW k W k bias κσ− − ≤ (8)

The above inequality holds with a probability ( )P κ ,
depending on the value of parameter κ . For example,
with 2κ = and a Gaussian distribution of random
variable )(kWi , inequality (8) is satisfied with 95%

probability, since (2)P is 0 95. .
Let us now define the confidence intervals for

random variables )(kWi , [7,8]:

( ) [ ( ) ( ) , ( ) ( ) ],i i i i iD k W k W kκ κ σ κ κ σ= − + ∆ + + ∆ (9)

where κ∆ is the parameter which takes into account

the bias of )(kWi . Then, from (8) and (9) we can
conclude that, as long as the bias is small, i.e.

i ibias κσ< ∆ , the optimal value )(* kWi belongs to the

confidence interval )(kDi , independently on
parameters of the LMS algorithm. It means that, for
small bias, the confidence intervals (9) for different
LMS algorithms intersect. When, on the other hand, the
bias becomes large, then the central positions of the
intervals are far apart for different algorithms, and they
do not intersect.

Since we do not have apriori information about the

ibias , we will use a specific statistical approach [7,8].
Taking, as a criterion for the bias/variance trade-off, the
condition that the bias and variance are of the same
order of magnitude [7], i.e.,

,i ibias κσ≅ ∆ (10)

we get the criterion for the choice of LMS adaptive
algorithm. Comparison of (7) with (10) indicates that

1κ∆ = should be used in our application. This criterion
is in accord with (7), the analytical expression for the
optimal step size.

Let us consider two LMS adaptive algorithms
whose coefficients are calculated with different step
sizes p and q qp >≥maxµ . We check if the confidence
intervals (9), for both algorithms in each iteration,
intersect. According to (8), (9) and (10), this reduces to
the check of the following inequality

( ) ( ) ( 1)( ).p q p q
i i i iW k W k κ σ σ− < + + (11)

If the intervals intersect (i.e., (11) is satisfied), it
means that the bias is already small (corresponding to
the steady state) so we should choose the weighting



coefficient with smaller variance or step size, i.e.
)(kW q

i . If the intervals do not intersect (bias is large)
we choose the weighting coefficient with the smallest
bias (larger step size), )(kW p

i , i.e. with best tracking of
optimal filter rapid variations .

We take the value of the variance 2)( µσ i at an

instant k , for the LMS with the step size µ , to be
equal to the variance value in the steady state. Note that
the estimate of the variances 2)( µσ i obtained by using
(5), depend on the particular problem. It should be
performed before the confidence intervals check.
Details of this estimation will be given later.

4 New VS LMS Adaptive Algorithm
The VS LMS algorithm has the same form as the

standard LMS algorithm, but in the course of adaptation
the algorithm step size µ is changed, [5,6]. By changing
the algorithm step size one changes the convergence
speed, as well as the amount of variation of the
weighting coefficients around the optimal value.

Formally, the VS LMS algorithm uses coefficients
update of the form:

),()()(2)()1( kXkMkekWkW +=+ (12)

where ))(),(),(),(()( 1210 kkkkdiagkM N −= µµµµ is a
diagonal matrix of step sizes for individual weighting
coefficients at the instant k.

In order to derive our VS LMS algorithm, let us
apply the presented combining method to two standard
LMS adaptive algorithms with different step sizes. Let
the first one have the maximal step size value maxµ
which does not violate the algorithm convergence
condition [1,2,3], while the second one is characterized
in each iteration by the variable step size )(kiµ .

The analysis from the previous section may now be
applied to these two algorithms. After choosing the
better algorithm, based on the proposed criterion, both
algorithms will, in each iteration, take the set of better
values of the weighting coefficients as a starting point
for the next iteration.

Thus, according to (12), denote the i -th weighting

coefficient at an instant k by )(kW p
i , )(kW q

i , for the
first and the second LMS algorithm, respectively.
Weighting coefficients for these algorithms would be
calculated, in each iteration, according to the relations

),()(2)1( max ikxkeWkW b
p
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where bW is the coefficient value selected as the best

choice from the previous iteration.
In order to define the criterion for choosing better

weighting coefficient and the step size value, at an
instant k+1, let us substitute (5), (13) and (14) into (11).
We get the inequality:

max
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where )1()()( −= kxkeka represents half of the

estimated i -th coordinate of the performance criterion
gradient for the LMS algorithm, [1,2,3].

The best bias-to-variance ratio is obtained for the
particular step size that turns (15) into an equality. By
solving inequality (15), we arrive at the relation for the
step size calculation for the i-th weighting coefficient in
the k-th iteration:

max min

min min

( 1)
( )

2 ( )( )

( )

n
i

i

i

if k
a kk

if k

κ σµ µ µ
µ

µ µ µ

+ − >= 
 ≤

(16)

Analysis of (16) leads to the idea of avoiding
advance calculation of the weighting coefficients, i.e.
the parallel LMS algorithms. Instead, based on the
calculation of the parameter a(k) and taking into
account (16), we determine the value )(kiµ , i.e. a more
appropriate step size of the LMS algorithm for each
weighting coefficient at each instant of time. Obviously,
this is just the idea of a VS LMS algorithm.

Figure 1: MSD for considered algorithms

In our simulations we have estimated the value of
2
nσ by using relation (5), where the variance 2

iσ is
obtained by, [7]:

,
26745.0
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kWkWmedian ii
iσ (17)

for k=1,2,…,L and 2 2

Z i
σ σ<< . The above relation

produces good estimates for all stationary cases, as well
as for the indicated nonstationary ones, including abrupt



coefficient changes.
Note that any other estimation of 2

nσ is valid for
the algorithm. Namely, although it somewhat affects the
step size choice precision, this error does not
significantly affect the overall algorithm performance,
as shown in [7].

Figure 2: Step size variations for the considered
algorithms

5 Simulation Results
The proposed new variable step size LMS (NVSS)

algorithm is implemented for nonstationary
environments in a system identification setup. The
performance of the algorithm is compared with the
Harris variable step size LMS algorithm (HVSS), [5],
and the robust variable step size LMS (RVSS)
algorithm, [5], which has been shown to have better
performance than other known variable step size
algorithms. Parameters of this algorithm are taken from
[5].

In all simulations presented here, the reference
signal d(k) is corrupted by a zero-mean uncorrelated
Gaussian noise with variance 2

nσ . The unknown system
has four time-invariant coefficients, and the FIR
adaptive filters are of the same order. Both considered
filters are excited by a zero-mean, white Gaussian
signal of unity variance. The optimal weighting vector
is nonstationary and generated according to the random
walk model (2), with .0001.02 =Zσ However, we
consider a more complex case with an additional abrupt
change of optimal weighting vector. The abrupt change
is generated by multiplying all the system coefficients
by -1 at the very middle of the adaptive procedure.
Results are obtained by averaging over 500 independent
runs, as in [5].

As it may be observed from the presented results,

in the first 30 iterations the noise power was estimated
according to the proposed solution and the relation (17).
Maximal and minimal step size of each algorithms are

11.0max =µ and 1000/maxmin µµ = The value of
parameter κ was κ =1.75.

The RVSS and HVSS have the following
parameters: α=0.97, β=0.8, γ=0.0027, m0=3 and m1=3,
with SNR=20dB. Figure 1 shows the MSD
characteristics for each algorithm. In order to clearly
compare the obtained results, for each simulation we
calculated the average MSD (MSDa). The corresponding
values of the average MSD are MSDa=0.60684,
MSDa=0.68004 and MSDa=1.55603, for the NVSS, the
RVSS and the HVSS, respectively. Thus, the NVSS has
the best overall performance. Figure 2 shows the
average step sizes for RVSS, HVSS and NVSS,
respectively. As it can be observed, the advantage of the
proposed algorithm stems from more appropriate
changes of its step size values.

6 Conclusion
The proposed VS LMS algorithm differs from the

other VS LMS algorithms only in the criterion for the
step size change. The new criterion is based on the
equality of bias and variance of the weighting
coefficients. This way we aim to improve the step size as
much as possible, with respect to the minimal mean
square deviation of weighting coefficients. This choice
of the criterion for the step size variation contributed to
considerable improvements in the adaptive algorithm
performance, since the current step size value is
calculated independently on its previous values.
Presented simulation results and analysis show
advantages of the proposed solution with respect to other
known algorithms for various values of system and
algorithm parameters.
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