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Abstract -  While the computation of the matrix exponential is known to be dubious, the computed value 
is used widely in system analysis.  This is especially true for the time-dependent matrix exponential.  As 
the systems that we model become more complex, the order of the systems, and thus the order of the 
matrix exponential become larger.  Even with today’s increases in processing power, the computation of 
numerous values to visualize or analyze the system can tax computational output to point where a 
degradation in performance can be seen by the user.  Often great accuracy is not needed especially in the 
visualization and interpolations can be used. In this paper, we present a rational interpolation method to 
estimate the time-dependent matrix exponential that can also estimate the error bound of the interpolation.  
We clearly note that, while this method utilizes significantly less computational resources than actual 
computation, it is dependent on the actual computational method chosen for its performance.  
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1  Introduction 
 
Some engineering software tools provide automated 
calculation of points to provide visualization of the 
system being analyzed.  Also, in some analysis only 
a rough estimate of the system behavior is needed or 
even accurate.  Even with today’s processing power, 
our systems can experience a computational 
bottleneck.  Often this is a result of the increase in 
the complexity of the systems being modeled. 
Function evaluation for large scale models can tie up 
precious computer resources, especially during the 
project design and testing phases, when repeated 
calculations are required.  In the case of GUIs, many 
calculations are required quickly in order to detail, in 
near real-time, interesting sections of a graph.  In 
both cases, full computer accuracy (i.e., all digits of 
a double precision number) is not usually required 
and may be sacrificed to some degree to increase 
computational speed.  To alleviate this problem the 
development of faster, yet still accurate, 
computational techniques for various matrix-valued 
functions is still being examined.  
 
In previous works by the author and his colleagues 
(see [4], [5], [6], and [9]), a rational interpolation 

technique was developed for the frequency response 
of the state-space system modeled by 
 

Eέ x = Ax + Bu
y = Cx

 

 
where the matrix E may be either singular or 
nonsingular.  During this research, we theorized that 
this technique could be adapted to evaluate the time 
dependent version of the matrix exponential, eAt . 
 
The matrix exponential’s theoretical use appears 
throughout control theory [8].  It has often been used 
to analyze systems modeled by the first-order state-
space model 
 

έ x = Ax + Bu
y = Cx  

 
where either  the solution vector x(t) or a multiple 
thereof is sought.  Another prominent development, 
the so-called hump of eAt

2
 , which describes the 

trade-off between the speed of a system and its 



transient behavior, has been noted to be of some 
interest [2]. 
 
While its theoretical importance is great, there does 
not exist a best numerical method to compute the 
matrix exponential [7]. However, its explicit 
computation usually can be avoided.  In the few 
cases where computation of the matrix exponential is 
required, it is for the time-dependent matrix 
exponential, eAt  , for a large set defining the values 
of t.  In such cases, the acceptable methods for 
computing the matrix exponential involve substantial 
computations. 
 
The principal development in this paper is a rational 
interpolation method to compute the time-dependent 
matrix exponential  in both a fast and reliable 
manner.  We note  here that this technique has been 
devised to be applied over subintervals of the region 
defined by the time set of t.  In this way, we can 
avoid potential numerical instabilities caused by 
large-order interpolations, and new computational 
bottlenecks, which often accompany larger systems, 
are avoided. 
 
2  Interpolation Development 
 
The basic idea of this method is based on the simple 
Taylor series approximation 
 
G(t + h) = T0 + T1h +⋅ ⋅⋅ + Tkh

k + Ek  (1) 
 
but considered in the general interpolation form with  
k+1 interpolation points  : 
 
G(t + h) = G0 + G1(h − h0) + ⋅⋅ ⋅
+Gk (h − h0)(h − h1) ⋅ ⋅ ⋅ (h − hk−1) + Ek  (2) 
 
is approximately O(knA

2 )  floating-point operations 
(flops) for each value of h.  The cost of computing 
each coefficient matrix is approximately the same as 
evaluating G by the method that would normally be 
preferred.  Thus, for a large number of values in the 
set of t, a significant computational savings can be 
made over the acceptable computational methods, 
which normally require O(nA

3 ) flops. 
 
2.1 The Polynomial Interpolation Algorithm for 
the Matrix Exponential 
 

The first coefficient matrix G0  of the  k th -order 
polynomial approximation (3) is equal to eA( t +h0 ) .  In 
order to compute the coefficient matrices G1,K,Gk , 
we shall employ finite differences of the function 
 

M = eAt .   (4) 
 
The first order difference is defined by 
 

 M[h0,h1] =
M(h1) − M(h0 )

h1 − h0

 (5) 

 
while higher-order differences are defined 
recursively by 
 
M[h0,h1,K,hk] =

      
M[h1,K,hk] − M[h0,K,hk−1]

h1 − h0

 (6) 

 
The  k th -order interpolation approximation can then 
be written as  
 

  

Pk(h) = M(h0) + M[h0,h1](h − h0) +L

+M[h0,h1,K,hk](h − h0)L(h − hk−1) (7) 
 
with the interpolation error 
 

  
Ek = M[h0,h1,K,hk ,h] (h − hi)

i= 0

k

∏ .  (8) 

 
Although finite differences have a certain elegance to 
their formulation, they can encounter numerical 
inaccuracies due to subtraction of near-equal-valued 
quantities.  An extreme example of this is the case  in 
which all of the interpolation points are the same.  In 
theory, the first-order difference is exactly the first 
derivative of M, but numerically it is useless.  
Fortunately, the differences of the matrix exponential 
can be expressed in matrix product forms which 
avoid these cancellation problems as the following 
lemma and theorem show.  A similar development 
for the resolvent function, , can be found in [3].  We 
present the first-order difference separately because 
an interesting development occurs which affects the 
hypothesis for the development of the product form 
of the higher-order differences. 
 
Lemma 1  Let 



 
 G(h) = eA( t +h)  
 
and, without loss of generality, .h0 = 0   Then 
 
 G(h1) − G(h0 ) = e At(eAh1 − I) . (9) 
 
Proof: 
 
G(h1) − G(h0 ) = e A( t + h1 ) − eAt  

= e AteAh1 − e AtI
 

= e At(eAh1 − I).    

    Q.E.D. 
 
Notice that in (9) there is not a term to cancel the 
step difference which is the denominator of the finite 
difference formula.  For higher-order differences, the 
simplicity and elegance that led us to a product form 
for the finite difference would be ruined by the 
necessity of computing the lowest common 
denominator of each lower-order finite difference 
contained in the higher-order finite difference.  
However, if the step sizes are chosen to be uniform 
with respect to each other, the denominator does not 
cause any of these algebraic problems.  The 
following theorem extends Lemma 1 to the higher-
order finite differences using uniform steps to create 
a closed-form solution to the denominator. 
 
Theorem 2   Let 
 

 
  

G(h) = eA ( t +h) ,
h = hi − hi− 1,            i = 1,K,n

 

 
and 
  h0 = 0.  
Then 
 

  
G[h0 ,h1,K, hk ] =

eAt (eAh − I)k

k!hk . (10) 

 
Proof:  Letting  k = 2 , we get 
 

G[h0 ,h1, h2 ] =
G[h1,h2] − G[h0 ,h1 ]

2h
. 

 
Then by the preceding lemma 
 

G[h0,h1,h2 ] =

eA ( t +h )(eAh − I) −eAt (eAh − I)
h

 

 
 
 

 

 
 
 
/2h

=
(eA ( t +h) − eAt )(eAh − I)

2h2

=
eAt(eAh − I)(eAh − I)

2h2

= eAt(eAh − I)2

2h2 .

 

 
Thus the result is true for k = 2 .  Now assume that it 
is true for  k = n , and we will prove that it is then 
true for k = n + 1. 
 
  G[h0,h1,K,hn+1]  
 

  

=
G[h1,h2,K,hn+1]− G[h0,h1,K,hn ]

hn +1 − h0

= eA ( t +h )(eAh − I)n − eAt (eAh − I)n

(n +1)!hn+1

= (eA ( t +h ) −eAt )(eAh − I)n

(n +1)!hn +1

=
eAt (eAh − I)n +1

(n +1)!hn +1 .

 

 
Since the result is true for k = n + 1, by induction 
the theorem is proved.    
   Q.E.D. 
 
 
From this theorem, the polynomial interpolation 
formula (7) becomes 
 

Pk(h) = eAt + eAt (eAh − I)
hs

(h − h0) +L

      + eAt (eAh − I)k

(k)!hs
k (h − h0)(h − h1)L(h − hk −1)

          (11) 
 
where 
    hs = hi − hi −1,            i = 1,K, k,  
 
and 
 



   t = t0 + h  
 
where  is the initial time of the interval on which we 
are interpolating.  However, for the error equation 
(8) there does not exist such an elegant form. 
 
The question then arises whether series (11) 
converge.  If the step size were allowed to become 
zero, the series would degenerate into the Taylor 
series expansion for the matrix exponential, which, 
although can be numerically inaccurate, does 
converge.  The following theorem we shall 
determine the conditions of the interpolation step 
size  for convergence of (11) for a nonzero 
interpolation step size. 
 
Theorem 3   For any stable system, an hs can be 
found such that the infinite series 
 

  

Pk(h) = eAt + eAt (eAh − I)
hs

(h − h0) +L

   +
eAt (eAh − I)k

(k)!hs
k (h − h0)(h − h1)L(h − hk −1)

   +L

 

is always convergent 
 
Proof:  Since the other terms cancel each other or are 
constant, all we need to show the maximum 
eigenvalue is less than one or that the following 
condition of the spectral radius is true: 
 

ρ eAh − I( )<1. 
 

This implies max
λ∈ Λ(A)

eλhs −1 <1. 

 
We rewrite the equation as 
eλmax hs −1 <1

↔ e (rm +θm j )hs −1 <1

↔ e2rmhs − 2ermhs cos θmhs( )+1( )1/ 2
<1

 

↔e2rmhs − 2ermhs cos θmhs( )+1 <1

↔e2rmhs − 2ermhs cos θmhs( ) < 0

↔ermhs ermhs −2cos θmhs( )( )< 0

↔ermhs − 2cos θmhs( ) < 0

↔2cos θmhs( ) > ermhs

⇒ −π /2 <θhs < π /2

 

With this condition upon θ  and the stability 
criterion, we can see that we can always find a step 
size small enough to meet the inequality. 
     Q.E.D. 
 
This shows that the interpolation routine is 
numerically feasible. 
 
2.2 Exponential Interpolation Algorithm 
 
To begin, we choose the interpolation interval.  Next, 
decide what order interpolation to use.  The step size 
hs between the interpolation points which are to be 
spread uniformly across the interval are then 
computed.  Then compute the initial matrix 
exponential  
 

C = eAto  
 
Follow this by the computation of the interpolating 
matrix exponential 
 
      
  H = eAhs  
 
Next compute the interpolation coefficient matrices.   
 
 Xi = eAhs − I( )Xi−1 / ihs( )  
 
where Xo = I .  Premultiply each Xi  by C. 
 
Sum the approximation series 
 

        

M(h) = Go + G1(h − h0) +L

    + Gk(h − h0)(h − h1)L(h − hk−1)   
 
3  Numerical Example 
 
A tenth-order example matrix was generated 
randomly using MATLAB.  The real Schur form of 
the matrix was found.    Those eigenvalues with real 



parts that were unstable (positive) were made stable 
by multiplying them by a negative one.  We looked 
at  the interpolation of the region around the hump of 
the 2-norm, [0,2].  We computed an interpolation and 
the actual matrix exponential for each set of data.  
We tried several different permutations of 
interpolation point spacing, number of interpolation 
points and regions over which we computed the 
approximation compared to the interpolation points.  
Results are shown for each. 
 
Figure 1 shows the results of when five interpolation 
points of spacing 0.2 are used.  The error of the 
interpolation is shown in Figure 2.  Figure 3 shows 
that the same interpolation scheme does well beyond 
the hump until the change in dynamic behavior takes 
place.  We have seen that creating a second 
interpolation region for the tail is good for the rest of 
the curve.  Figure 4 shows the result of using three 
interpolation points of 0.3 spacing.  The interpolation 
error is seen in Figure 5.  A larger region with more 
interpolation points, eight, separated by 0.3 is shown 
in Figure 6.  These results indicate that the 
interpolation routine works well even beyond the 
region of the interpolation points.  As with the results 
in the frequency response version of the routine, 
significant changes in the dynamics indicate where 
new interpolation points are needed. 
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Figure 1:  Interpolation of the region [0,1] with five 
points is visually accurate. 
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Figure 2:  At an order of 10-6 the actual interpolation 
error is small 
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Figure 3:  Beyond the region of the hump, the 
interpolation grows without bound.  It is outside its 
region of approximation. 
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Figure 4:  Three Interpolation points do well. 
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Figure 5:  The interpolation error grows at the tail of 
the region which is outside the interpolation points. 
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Figure 6:  Interpolation across the entire hump region 
is attainable with eight interpolation points across the 
region. 
 
4 Conclusion 
 
In this paper an interpolation routine for 
approximating the time-dependent matrix 
exponential was developed.  While the calculation of 
the matrix exponential should be avoided, when the 
need arises this technique can evaluate it accurately 
and in a fraction of the time required by conventional 
method. While the approach is sound more research 
and development is required to make this a use 
product in software design systems.  A method to 
estimating the interpolation error is of highest 

priority; followed by the development of an 
autonomous version of this technique to be readily. 
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