
A Rational Interpolation Technique To Approximate The Time-
Dependent Matrix Exponential

STEPHEN STUBBERUD
ORINCON Corporation
9363 Towne Centre Dr.
San Diego, CA 92121

United States of America

Abstract - While the computation of the matrix exponential is known to be dubious, the computed value
is used widely in system analysis. This is especially true for the time-dependent matrix exponential. As
the systems that we model become more complex, the order of the systems, and thus the order of the
matrix exponential become larger. Even with today’s increases in processing power, the computation of
numerous values to visualize or analyze the system can tax computational output to point where a
degradation in performance can be seen by the user. Often great accuracy is not needed especially in the
visualization and interpolations can be used. In this paper, we present a rational interpolation method to
estimate the time-dependent matrix exponential that can also estimate the error bound of the interpolation.
We clearly note that, while this method utilizes significantly less computational resources than actual
computation, it is dependent on the actual computational method chosen for its performance.

Keywords – matrix exponential, rational interpolation, polynomial approximation, computational
efficiency, Taylor series, finite difference

1 Introduction

Some engineering software tools provide automated
calculation of points to provide visualization of the
system being analyzed. Also, in some analysis only
a rough estimate of the system behavior is needed or
even accurate. Even with today’s processing power,
our systems can experience a computational
bottleneck. Often this is a result of the increase in
the complexity of the systems being modeled.
Function evaluation for large scale models can tie up
precious computer resources, especially during the
project design and testing phases, when repeated
calculations are required. In the case of GUIs, many
calculations are required quickly in order to detail, in
near real-time, interesting sections of a graph. In
both cases, full computer accuracy (i.e., all digits of
a double precision number) is not usually required
and may be sacrificed to some degree to increase
computational speed. To alleviate this problem the
development of faster, yet still accurate,
computational techniques for various matrix-valued
functions is still being examined.

In previous works by the author and his colleagues
(see [4], [5], [6], and [9]), a rational interpolation

technique was developed for the frequency response
of the state-space system modeled by

Eέ x = Ax + Bu
y = Cx

where the matrix E may be either singular or
nonsingular. During this research, we theorized that
this technique could be adapted to evaluate the time
dependent version of the matrix exponential, eAt .

The matrix exponential’s theoretical use appears
throughout control theory [8]. It has often been used
to analyze systems modeled by the first-order state-
space model

έ x = Ax + Bu
y = Cx

where either the solution vector x(t) or a multiple
thereof is sought. Another prominent development,
the so-called hump of eAt

2
 , which describes the

trade-off between the speed of a system and its

transient behavior, has been noted to be of some
interest [2].

While its theoretical importance is great, there does
not exist a best numerical method to compute the
matrix exponential [7]. However, its explicit
computation usually can be avoided. In the few
cases where computation of the matrix exponential is
required, it is for the time-dependent matrix
exponential, eAt , for a large set defining the values
of t. In such cases, the acceptable methods for
computing the matrix exponential involve substantial
computations.

The principal development in this paper is a rational
interpolation method to compute the time-dependent
matrix exponential in both a fast and reliable
manner. We note here that this technique has been
devised to be applied over subintervals of the region
defined by the time set of t. In this way, we can
avoid potential numerical instabilities caused by
large-order interpolations, and new computational
bottlenecks, which often accompany larger systems,
are avoided.

2 Interpolation Development

The basic idea of this method is based on the simple
Taylor series approximation

G(t + h) = T0 + T1h +⋅ ⋅⋅ + Tkh

k + Ek (1)

but considered in the general interpolation form with
k+1 interpolation points :

G(t + h) = G0 + G1(h − h0) + ⋅⋅ ⋅
+Gk (h − h0)(h − h1) ⋅ ⋅ ⋅ (h − hk−1) + Ek (2)

is approximately O(knA

2) floating-point operations
(flops) for each value of h. The cost of computing
each coefficient matrix is approximately the same as
evaluating G by the method that would normally be
preferred. Thus, for a large number of values in the
set of t, a significant computational savings can be
made over the acceptable computational methods,
which normally require O(nA

3) flops.

2.1 The Polynomial Interpolation Algorithm for
the Matrix Exponential

The first coefficient matrix G0 of the k th -order
polynomial approximation (3) is equal to eA(t +h0) . In
order to compute the coefficient matrices G1,K,Gk ,
we shall employ finite differences of the function

M = eAt . (4)

The first order difference is defined by

 M[h0,h1] =
M(h1) − M(h0)

h1 − h0

 (5)

while higher-order differences are defined
recursively by

M[h0,h1,K,hk] =

M[h1,K,hk] − M[h0,K,hk−1]

h1 − h0

 (6)

The k th -order interpolation approximation can then
be written as

Pk(h) = M(h0) + M[h0,h1](h − h0) +L

+M[h0,h1,K,hk](h − h0)L(h − hk−1) (7)

with the interpolation error

Ek = M[h0,h1,K,hk ,h] (h − hi)

i= 0

k

∏ . (8)

Although finite differences have a certain elegance to
their formulation, they can encounter numerical
inaccuracies due to subtraction of near-equal-valued
quantities. An extreme example of this is the case in
which all of the interpolation points are the same. In
theory, the first-order difference is exactly the first
derivative of M, but numerically it is useless.
Fortunately, the differences of the matrix exponential
can be expressed in matrix product forms which
avoid these cancellation problems as the following
lemma and theorem show. A similar development
for the resolvent function, , can be found in [3]. We
present the first-order difference separately because
an interesting development occurs which affects the
hypothesis for the development of the product form
of the higher-order differences.

Lemma 1 Let

 G(h) = eA(t +h)

and, without loss of generality, .h0 = 0 Then

 G(h1) − G(h0) = e At(eAh1 − I) . (9)

Proof:

G(h1) − G(h0) = e A(t + h1) − eAt

= e AteAh1 − e AtI

= e At(eAh1 − I).

 Q.E.D.

Notice that in (9) there is not a term to cancel the
step difference which is the denominator of the finite
difference formula. For higher-order differences, the
simplicity and elegance that led us to a product form
for the finite difference would be ruined by the
necessity of computing the lowest common
denominator of each lower-order finite difference
contained in the higher-order finite difference.
However, if the step sizes are chosen to be uniform
with respect to each other, the denominator does not
cause any of these algebraic problems. The
following theorem extends Lemma 1 to the higher-
order finite differences using uniform steps to create
a closed-form solution to the denominator.

Theorem 2 Let

G(h) = eA (t +h) ,
h = hi − hi− 1, i = 1,K,n

and
 h0 = 0.
Then

G[h0 ,h1,K, hk] =

eAt (eAh − I)k

k!hk . (10)

Proof: Letting k = 2 , we get

G[h0 ,h1, h2] =
G[h1,h2] − G[h0 ,h1]

2h
.

Then by the preceding lemma

G[h0,h1,h2] =

eA (t +h)(eAh − I) −eAt (eAh − I)
h












/2h

=
(eA (t +h) − eAt)(eAh − I)

2h2

=
eAt(eAh − I)(eAh − I)

2h2

= eAt(eAh − I)2

2h2 .

Thus the result is true for k = 2 . Now assume that it
is true for k = n , and we will prove that it is then
true for k = n + 1.

 G[h0,h1,K,hn+1]

=
G[h1,h2,K,hn+1]− G[h0,h1,K,hn]

hn +1 − h0

= eA (t +h)(eAh − I)n − eAt (eAh − I)n

(n +1)!hn+1

= (eA (t +h) −eAt)(eAh − I)n

(n +1)!hn +1

=
eAt (eAh − I)n +1

(n +1)!hn +1 .

Since the result is true for k = n + 1, by induction
the theorem is proved.
 Q.E.D.

From this theorem, the polynomial interpolation
formula (7) becomes

Pk(h) = eAt + eAt (eAh − I)
hs

(h − h0) +L

 + eAt (eAh − I)k

(k)!hs
k (h − h0)(h − h1)L(h − hk −1)

 (11)

where
 hs = hi − hi −1, i = 1,K, k,

and

 t = t0 + h

where is the initial time of the interval on which we
are interpolating. However, for the error equation
(8) there does not exist such an elegant form.

The question then arises whether series (11)
converge. If the step size were allowed to become
zero, the series would degenerate into the Taylor
series expansion for the matrix exponential, which,
although can be numerically inaccurate, does
converge. The following theorem we shall
determine the conditions of the interpolation step
size for convergence of (11) for a nonzero
interpolation step size.

Theorem 3 For any stable system, an hs can be
found such that the infinite series

Pk(h) = eAt + eAt (eAh − I)
hs

(h − h0) +L

 +
eAt (eAh − I)k

(k)!hs
k (h − h0)(h − h1)L(h − hk −1)

 +L

is always convergent

Proof: Since the other terms cancel each other or are
constant, all we need to show the maximum
eigenvalue is less than one or that the following
condition of the spectral radius is true:

ρ eAh − I()<1.

This implies max
λ∈ Λ(A)

eλhs −1 <1.

We rewrite the equation as
eλmax hs −1 <1

↔ e (rm +θm j)hs −1 <1

↔ e2rmhs − 2ermhs cos θmhs()+1()1/ 2
<1

↔e2rmhs − 2ermhs cos θmhs()+1 <1

↔e2rmhs − 2ermhs cos θmhs() < 0

↔ermhs ermhs −2cos θmhs()()< 0

↔ermhs − 2cos θmhs() < 0

↔2cos θmhs() > ermhs

⇒ −π /2 <θhs < π /2

With this condition upon θ and the stability
criterion, we can see that we can always find a step
size small enough to meet the inequality.
 Q.E.D.

This shows that the interpolation routine is
numerically feasible.

2.2 Exponential Interpolation Algorithm

To begin, we choose the interpolation interval. Next,
decide what order interpolation to use. The step size
hs between the interpolation points which are to be
spread uniformly across the interval are then
computed. Then compute the initial matrix
exponential

C = eAto

Follow this by the computation of the interpolating
matrix exponential

 H = eAhs

Next compute the interpolation coefficient matrices.

 Xi = eAhs − I()Xi−1 / ihs()

where Xo = I . Premultiply each Xi by C.

Sum the approximation series

M(h) = Go + G1(h − h0) +L

 + Gk(h − h0)(h − h1)L(h − hk−1)

3 Numerical Example

A tenth-order example matrix was generated
randomly using MATLAB. The real Schur form of
the matrix was found. Those eigenvalues with real

parts that were unstable (positive) were made stable
by multiplying them by a negative one. We looked
at the interpolation of the region around the hump of
the 2-norm, [0,2]. We computed an interpolation and
the actual matrix exponential for each set of data.
We tried several different permutations of
interpolation point spacing, number of interpolation
points and regions over which we computed the
approximation compared to the interpolation points.
Results are shown for each.

Figure 1 shows the results of when five interpolation
points of spacing 0.2 are used. The error of the
interpolation is shown in Figure 2. Figure 3 shows
that the same interpolation scheme does well beyond
the hump until the change in dynamic behavior takes
place. We have seen that creating a second
interpolation region for the tail is good for the rest of
the curve. Figure 4 shows the result of using three
interpolation points of 0.3 spacing. The interpolation
error is seen in Figure 5. A larger region with more
interpolation points, eight, separated by 0.3 is shown
in Figure 6. These results indicate that the
interpolation routine works well even beyond the
region of the interpolation points. As with the results
in the frequency response version of the routine,
significant changes in the dynamics indicate where
new interpolation points are needed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

TextEnd

Interpolation
Actual

Figure 1: Interpolation of the region [0,1] with five
points is visually accurate.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

4

6
x 10-5

Figure 2: At an order of 10-6 the actual interpolation
error is small

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.5

2

2.5

3

3.5

4

4.5

5

Time

2-
no

rm
 o

f M
at

rix
 E

xp
on

en
tia

l

TextEnd

Figure 3: Beyond the region of the hump, the
interpolation grows without bound. It is outside its
region of approximation.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Time

2-
no

rm
 o

f M
at

rix
 E

xp
on

en
tia

l

TextEnd

Figure 4: Three Interpolation points do well.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-3

-2

-1

0

1

2

3

4

5

6

7
x 10-4

Time

In
te

rp
ol

at
io

n
Er

ro
r

TextEnd

Figure 5: The interpolation error grows at the tail of
the region which is outside the interpolation points.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Time

2-
no

rm
 o

f M
at

rix
 E

xp
on

en
tia

l

TextEnd

Figure 6: Interpolation across the entire hump region
is attainable with eight interpolation points across the
region.

4 Conclusion

In this paper an interpolation routine for
approximating the time-dependent matrix
exponential was developed. While the calculation of
the matrix exponential should be avoided, when the
need arises this technique can evaluate it accurately
and in a fraction of the time required by conventional
method. While the approach is sound more research
and development is required to make this a use
product in software design systems. A method to
estimating the interpolation error is of highest

priority; followed by the development of an
autonomous version of this technique to be readily.

References

[1] Atkinson, K.E., An Introduction to Numerical
Analysis, Wiley, New York, 1978.

[2] Hewer, G. A. and C.S. Kenney, “The Sensitivity
of the Stable Lyapunov Equation, “SIAM J. of
Control Opt., 26(1988), pp. 321-344.

[3] Kato, T., Perturbation Theory for Linear
Operators, 2nd Edition, Springer-Verlag, Hidelberg,
1982.

[4] Kenny, C.S., A.J. Laub, and S.C. Stubberud,
“Frequency Response via Rational Interpolation,”
Trans. Auto. Control, Vol. 38, No. 8, pp. 1203 -
1213, August 1993.

[5] Kenney, C.S., S.C. Stubberud, and A.J. Laub, “A
Rational Interpolation Method to Compute
Frequency Response,” Fifth Annual
NASA/NSF/DOD Workshop on Aerospace
Computational Control, Santa Barbara, Calif.,
August 1992.

[6] Kenney, C.S., S.C. Stubberud and A.J. Laub,
“Frequency Response via Rational Interpolation,”
Proceedings of the 1992 IEEE Control Systems
Society Symposium on Computer-Aided Control
System Design, pp. 188-195, Napa, Calif. March,
1992.

[7] Moler, C.B. and C. F. Van Loan, “Nineteen
Dubious Ways to Compute the Exponential of a
Matrix,” Siam Review, 20(1978), pp. 801-836.

[8] Santina, M.S., A.R. Stubberud, and G.H.
Hostetter, Digital Control System Design 2nd Edition,
Saunders College Publishing, Fort Worth, Texas,
1994.

[9] Stubberud, S.C., A.J. Laub, and C.S. Kenney,
“Computation of Frequency Response of Descriptor
Systems by Rational Interpolation,” Book Chapter,
Control and Dynamic Systems Series, C.T. Leondes
(ed.), vol. 56, pp. 267-301, 1993.

