
An algorithm for corrugated paper cutting
DAMIR KALPIC, VEDRAN MORNAR, KRESIMIR FERTALJ

Faculty of Electrical Engineering and Computing
University of Zagreb

Unska 3, 10000 Zagreb
CROATIA

Abstract: - An automated machine cuts the rolls of corrugated paper longitudinally and splits the paper stripe into
multiple conveyors, where in each of them a different equidistant lateral cut can be applied. There is a choice of input
rolls of infinite length but different widths. The market requirement for large series of different rectangle-shaped
articles has to be met. Upper limits for the articles also exist. The minimum material consumption is the objective of
optimisation. A recursive function to generate all the possible cutting schemas is written. It provides for formulation of
a linear programming model. The minimisation of machine set-up costs cannot be practically solved by binary
variables because of the prohibitive problem size. Instead, an iterative navigation around the achieved optimum
solution, using the dual activity values is devised.

Key-Words: - Cutting stock problem, Linear programming, Integer programming, Production planning, Duality

1 Introduction
A factory producing corrugated paper packages applies
an automated cutting machine. The input roll of paper is
cut longitudinally into at most Q stripes. Adjacent stripes
can further proceed through T conveyors. On each of
these conveyors the belonging stripes are cut laterally
and therefore the articles, which are cut on each
conveyor, have the common length as shown in Figure 1.

Wr

Li Pi

A cutting
scheme

Fig. 1 Cutting machine with 3 conveyors

2 Problem Formulation
The company using described machines has produced
the cutting schemes manually and asked for advice
weather it could be automatic. The authors considered

the problem and the first conceivable solution led to
mixed integer programming. The requirements for
integer variables derive from the discrete number of
schemas to be cut on one hand and from fixed charge
property of the cutting technology. A certain minimum
length of paper stripe is indispensable for the process to
be technologically feasible but also financially, due to
the incurred fixed costs required for the machine set up.
The idea of integer programming was quickly abandoned
due to excessive computational complexity of such
models. Rounding off is acceptable since the counts of
schemas are generally rather large numbers. The
problem of fixed charge is approached via iterative
modifications of the linear programming model, as shall
be explained further on. Some basic data structures that
can be found in any proper textbook [1] were applied to
support data input and storage. A recursive algorithm to
produce possible cutting schemas was developed. The
schemas are mapped into a linear programming model
input file aimed for our proprietary software LPE [2].
Iterative interactive iterations are devised to produce a
feasible and acceptable cutting plan.

2.1. Input data, sets and lists
The first set of input data consists of the widths of
available input corrugated paper rolls. From these data,
an ordered set R {Wr} is formed, where the length of
each roll is assumed to be infinite and the width is Wr, r
= 1…nr and Wr > Wr+1 for r = 1…nr-1. The input roll’s
usable width is reduced by value WST, an inherent
waste due to the applied technology.

The next group of input data consists of triplets: required
number of articles, article width and article length. The
articles to be produced form the set of pairs P {Pp, Lp}
for p =1…np, where Pp is the width and Lp is the length
of article p. The production plan requirements form the
set B {bp} of the same cardinality np.

2.2. Linear program
The selection of appropriate cutting schemas, such that
they shall satisfy the market requirements and consume
minimum possible paper area, proceeds by application of
linear programming. The linear programming model is
constructed from the input data.

2.2.1 Decision variables
np is the number of articles p to be produced.
Ssr is the number of repetitions for schema s, cut from
roll r.

2.2.2 Constraints
The required number of articles must be produced:
np ≥ bp ; p = 1…np

The number of excessive articles to be produced is
limited by a tolerance that can depend upon the required
production quantity and/or upon the article, and it can be
generally defined as Tp ≥ 1.
np ≤ Tp bp ; p = 1…np

2.2.3 Objective function
The principal objective is to minimise the whole area of
used paper.

min z = area of the consumed paper + z’

The area of the consumed paper z is calculated within
the schema generation algorithm in a later chapter.
z’ is a corrective term added to the objective function,
aimed to stimulate the production of excessive articles
out of the paper that would otherwise be wasted:

z’ = - f · Σ np · Pp · Lp / W1
 p

The stimulation is significantly, e.g. for f = 0.01 it is at
least 100 times less favourable than the penalty for paper
consumption. This ensures that excessive production will
not occur, unless from paper otherwise wasted.

2.2.4 Formulation of the linear program
To solve the linear program, a proprietary software LPE
[2] is used. It does not require the input data to be sorted,
nor specially declared as ROWS, COLUMNS,
BOUNDS or RHS.

Instead of that, equations, variables and bounds are used
in a free order. Therefore, the constraints and the
corrective member elements of the linear programming
model can be created in parallel to the data input. A
sample of the linear programming model data is given,
with adjacent comments in mathematical notation:

LO n001 1950 n1 ≥ 1950
n001 z -3.362442 z’ := z’ – 3.362442 * n1
UP n001 2145 n1 ≤ 2145
LO n002 10200 n2 ≥ 10200
n002 z -2.973837 z’ := z’ – 2.973837 * n2
UP n002 11220 n2 ≤ 11220
LO n003 4600 n3 ≥ 4600
n003 z -3.183721 z’ := z’ – 3.183721 * n3
UP n003 5060 n3 ≤ 5060

… …

2.2.5 Generation of cutting schemas
The articles to be cut form a set of linear lists L {Lk}.
Each list groups articles of equal lengths because they
can be cut laterally together. An atom of the list Lk
contains the article identifier p, its width Pp and its
length Lp. Thus, cardinality of L equals to the number of
distinct article lengths nl.

Additional set of lists is required: Z{Mc}. Each list of

articles Mc is one of the nc =

T
nl

 combinations among

the lists L, which all contain elements for possible joint
schema generation. The number of combinations may
appear prohibitive, but in practical applications, the
count of conveyers, T seems to be small, e.g. 2 or 3. The
recursive function gen to generate the schemas is called
for each Mc, and for each available roll. It means that it
is called nr * nc times from the main program. In each
of these calls, all the technologically feasible cutting
schemas are generated. Each of them is treated as a one-
dimensional problem of cutting the rolls longitudinally.
The technological feasibility check regarding the
maximum number of longitudinal cuts Q, as trivial, is
left out from the algorithm description. Let A{ap} be the
set of numbers of articles p that are produced out of a
current cutting schema. The generated cutting schema is
not recorded in the central memory but its description is
formulated as elements of the linear programming
model. Only the schema length is recorded in set D{ds}
and used later for presentation of results. For the same
reason, the apparently redundant input roll identifier is
recorded. The algorithm to generate the schemas and to
write the second part of the linear programming model
proceeds as follows:

s := 0
D := Ø
for r = 1 to nr
 for each Mc ∈ Z
 for each ap ∈ A
 ap := 0
 gen (Mc, Wr - WST, r, 1, A, D, s)

function gen (M, W, r, i, A, D, s)
 if i ≤ |M|
 p := Mi
 for j := W / Pp down to 0 by step -1
 ap := j
 remainder := W – j Pp
 if remainder ≥ min Pk
 k ∈ M

 gen (M, remainder, r, i+1, A, D, s)
 else
 maxlength := max Lk

 k ∈
 M
 a

k
> 0

 s := s +1
 for k := 1 to |M|
 q := Mk
 if aq > 0
 aq := aq maxlength / Lq
 write “S”, s, r, “ n”, k, aq
 write “S”, s, r, “ z”, maxlength Wr
 ds := maxlength

A sample of the linear programming model data is given,
with adjacent comments in mathematical notation:

S0000101 n001 2.000000 n1 := n1 + 2 * s11
S0000101 z 1644750 z := z + 1644750 * s11
S0000201 n001 2.000000 n1 := n1 + 2 * s21
S0000201 z 1606500 z := z + 1606500 * s21
S0000301 n001 1.000000 n1 := n1 + s31
S0000301 z 1377000 z := z + 1377000 * s31
S0000402 n001 2.000000 n1 := n1 + 2 * s42
S0000402 z 1644750 z := z + 1644750 * s42
S0000502 n001 1.013072 n1 := n1 + 1.013072 * s52
S0000502 n002 1.000000 n2 := n2 + s52
S0000502 z 1666250 z := z + 1666250 * s52

… …

For a reminder: np is the number of articles p to be
produced, Ssr is the number of repetitions for schema s,
cut from roll r.
In the given sample, the article with identifier 1 can be
produced from rolls 1 or 2 within the schemas 1, 2, 3 or
4, 5, respectively. In the schemas 1, 2, 3 and 4 it is the
longest article. It is repeated as 2 stripes in schemas 1, 2

and 4, and as a single stripe in the schema 3. The schema
5 achieved the length of article 2, which is longer then
the article 1. Therefore, within the schema 5, the
repetition factor for article 1 is larger than one and it is
not an integer.

3 Solution and interpretation of
results

The program LPE [2] processes the generated input data
and the results are stored in a file. In principle, the final
solution cannot be infeasible, except for trivial reasons,
e.g., if a required article is wider than the widest
available roll. The roll lengths are supposed to be
infinite. The upper bounds for articles cannot cause
infeasibility, because the unused paper can be wasted
instead. These upper bounds nevertheless make sense
because they provide for balance among excessive
production, if such occurs.
The results of the optimisation are read from the solution
file as values of the variables Ssr > 0 and are stored into
the set of quadruples X{s, ys, ls, rs}. The set cardinality
ns is the count of basic cutting schemas in the optimal
solution. The value s denotes schema identifier, ys is the
number of repetitions of schema s in the solution, i.e. it
is the solution value for Ssr, ls is the schema length
fetched from the set D and rs is the identifier of the input
roll. The value for ys is rounded off to the next largest
integer.
The normative of articles that are cut from the schema s
and the identifier r of the roll are reconstructed from the
linear programming input file. The set A {ap} is now
filled for each schema that appears as basic in the
optimal solution, and it contains the count of repetitions
of article p within that schema. This data, read from the
linear programming model, are stored in A only for basic
schemas, one current schema at a time, thus avoiding the
excessive RAM consumption.

The number of produced articles p from the current
schema s is obtained as

LateralCountp * LongitudinalCountp

For a current schema s ∈ X & ap > 0, LateralCountp =
 ap / [ls / Lp + ε] .

ε = 0.000005 is a numerical error correction.

The term in denominator represents the count of
longitudinal article repetitions within a single schema, as
a real number. The number of article repetitions within a

schema is divided by that number and the decimals are
cut off to obtain the lateral repetition for that article.

LongitudinalCountp = ys * ls / Lp is self-explanatory.

An example for the optimum results in numerical form:

1 article of dimensions 0945 * 0765 is cut
- laterally 1 time, longitudinally 1950 times (1950
pieces)
9 article of dimensions 0965 * 0860 is cut
- laterally 1 time, longitudinally 1735 times (1735
pieces)
Roll width is 2100
Waste width is 190
Unit schema length is 860
Schema #0007002 is repeated 1735 times
The length of the series is 1492100

5 article of dimensions 1015 * 0530 is cut
- laterally 1 time, longitudinally 1100 times (1100
pieces)
9 article of dimensions 0965 * 0860 is cut
- laterally 1 time, longitudinally (678 pieces)
Roll width is 2100
Waste width is 120
Unit schema length is = 860
Schema #0028302 is repeated 678 times
The length of the series is 583080

The overall length of roll of width 2100 is 10133940
The overall length of roll of width 1800 is 11065075
…
Of the required 1950, article # 1 produced 1950 pieces
Of the required 10200, article # 2 produced 10201 pieces
…
Useful area is 37703819264.000000
Consumed area is 41198407680.000000
Yield is 91.517661%

A list of articles F is initially formed and filled only
with article identifiers. The atoms contain two pointers:
to a subsequent article and to the list of all the basic
schemas containing the article.

p1 p2 p3 p4

s1, r1 s5, r2 s2, r1 s3, r2

s4, r2 s2, r1

s6, r2

 Fig. 2 Articles connected to the cutting schemas

The example in the Fig. 2 shows 4 articles, which are
produced from 2 different input rolls and are cut by 6
different schemas. Such a list is formed from the
optimisation results.

As already stated, the solution cannot be formally
infeasible. However, there may exist a technological
infeasibility, as a violation of the user’s requirement that
no cutting schema series be shorter than the length C.
This is an empirical requirement arising from the
problem of fixed costs incurred by adjusting the
machine. The exact formulation to meet this requirement
is mathematically rather simple:

ys * ls ≥ C * δs , δs = 0, 1; ∀ s

ys * ls ≤ G * δs , δs = 0, 1; ∀ s

G represents an arbitrary large number.

Expressed verbally, the number of repetitions of a
schema s multiplied by the schema length must be at
least C long, otherwise it cannot be greater than zero.
This simple statement is not easy to implement. Binary
program has the a priori complexity of O (2Σ), where Σ
is the overall count of generated schemas. This count can
easily exceed the value of few thousand. Therefore,
introduction of mixed integer or binary programming is
not practically feasible.
The possibility to edit interactively the achieved results
was implemented instead. Due to the characteristics of
linear programming, it may happen that a short series
does appear in the optimum solution. It is represented by
a basic Ssr bearing a relatively small value.
The user is prompted to choose whether s/he wants to
reduce the number of schemas. If the answer is “Yes”,
using the list F and the set X, the program searches for
the schema applied in the shortest series. Then it checks
whether this schema can be omitted from the solution. It
cannot be omitted if it is a single schema for production
of any article. If so, it also implies that a short series is
not due to some peculiarity of linear programming but to
a small production requirement for a certain article.
However, there is a possibility, if it is a relatively narrow
article, that it could be combined with some other article
in a longer series. On the other hand, if the shortest
series is not cut by a unique schema, there exist a
probability that the schema for this shortest series can be
omitted from the optimum solution. Formally, the
solution will be deteriorated (or strictly speaking, it
cannot become better), but the removal of a short series
can actually reduce the fixed costs, which were not
contained in the linear programming model. In this latter
case, the user is advised to eliminate this schema. The

user can accept the advice, if there is any, or overrule it
by entering the schema to be eliminated. Again, if such a
schema is unique for production of any article in the
optimal solution, the elimination is rejected. If the
elimination is possible, the linear programming input
data are revised by fixing to zero the entered schema,
together with all the currently non-basic schemas. This
will force the linear program to try to realise the required
production with a reduced number of schemas. The
result might be feasible and acceptable for the user, but
now it can also become infeasible. Then comes the
possibility for the user to increase the number of
schemas. For the schemas that were fixed to zero, the
expressed dual value in the infeasible solution is
reviewed. While the solution is infeasible, the program
LPE evaluates a composite sum of current coefficients in
infeasible rows [3] to reduce the sum of infeasibilities.
This sum acts likewise as the dual activity in a feasible
basis. Therefore, the minimum negative dual solution is
searched for. At least one such value must exist to point
to a schema that would, by its unit increase, mostly
contribute to the reduction of infeasibility. Such a
schema is suggested to be considered to enter the
optimisation. The user can accept the advice or overrule
it by entering some other schema identification. The
optimisation is repeated and the whole procedure can
also be repeated. If the solution is feasible and the user
wants to add an additional schema, no negative dual
value can be encountered and the user is notified that
addition of a new schema does not make sense.
However, it is allowed, because it overrules the fixation
to zero of the entered schema and it may serve on
purpose for further navigation around the optimum
solution.

4 Conclusion
The program was tested in a plant that produces
corrugated paper packages on a cutting machine made
by Agnati, s.p.a., Italy, model RDA-14, with two
conveyors.
The user prepared some sample data, and the results
have shown advantage over the manual schema
planning, in reduced workload for the planner and in
better material utilisation.
However, one must be aware that the solution of the
cutting schemas is only a local optimum. In discussion
with the user it has emerged that minimisation of paper
consumption is not the proper objective. A proper
objective would be the same, as it was in the production
planning for another user [4]; the maximisation of
contribution, i.e. to maximise the difference between
income and variable costs.

A comprehensive model should encompass:
a) Selling prices
b) Fixed orders
c) Quantities for anonymous customer, to be

sold with certain probability at a certain
price

d) Roll costs
e) Machines productivity
f) Set-up times
g) Waste of material at the set-up
h) Original sources of variable costs

(consumption of electricity, oil, steam,
water etc.)

i) The prices of electricity, water, oil, steam,
water, etc.

j) Workers’ engagement
k) Variable part of salaries
l) Stock keeping costs

…and probably much more.

To achieve the proper goal, optimisation of cutting is not
a bad starter. However, to take full advantage of
optimisation techniques, an integrated information
system is a prerequisite.
And finally, although the numerical results have
demonstrated advantage of the applied algorithm, the
implementation has been postponed since the users were
not convinced that implementation of a user-friendly
interface is a trivial problem. Many users unfortunately
prefer nice looking screens and reports to the value of
the embedded algorithm. This aspect should never be
forgotten by any operational researcher.

References
[1] Weiss M A, Data Structures and Algorithm Analysis

in C, Addison-Wesley, 1997
[2] Kalpic D, Algoritmi linearnog programiranja na

malom racunalu (Linear programming algorithms
for a small computer) PhD thesis: Faculty of
electrical engineering: Zagreb, Croatia, 1982

[3] Orchard-Hays W, Advanced linear-programming
computing techniques, McGraw-Hill, New York.,
1968

[4] Kalpic D, Baranovic M and Mornar V, Case study
based on a multi-period multi-criteria production
planning model. European Journal of Operational
Research 87, 1995, pp 658-669, 1995

