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Abstract: - An automated machine cuts the rolls of corrugated paper longitudinally and splits the paper stripe into 
multiple conveyors, where in each of them a different equidistant lateral cut can be applied. There is a choice of input 
rolls of infinite length but different widths. The market requirement for large series of different rectangle-shaped 
articles has to be met. Upper limits for the articles also exist. The minimum material consumption is the objective of 
optimisation. A recursive function to generate all the possible cutting schemas is written. It provides for formulation of 
a linear programming model. The minimisation of machine set-up costs cannot be practically solved by binary 
variables because of the prohibitive problem size. Instead, an iterative navigation around the achieved optimum 
solution, using the dual activity values is devised. 
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1 Introduction 
A factory producing corrugated paper packages applies 
an automated cutting machine. The input roll of paper is 
cut longitudinally into at most Q stripes. Adjacent stripes 
can further proceed through T conveyors. On each of 
these conveyors the belonging stripes are cut laterally 
and therefore the articles, which are cut on each 
conveyor, have the common length as shown in Figure 1. 
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Fig. 1    Cutting machine with 3 conveyors 

 
 

2 Problem Formulation 
The company using described machines has produced 
the cutting schemes manually and asked for advice 
weather it could be automatic. The authors considered 

the problem and the first conceivable solution led to 
mixed integer programming. The requirements for 
integer variables derive from the discrete number of 
schemas to be cut on one hand and from fixed charge 
property of the cutting technology. A certain minimum 
length of paper stripe is indispensable for the process to 
be technologically feasible but also financially, due to 
the incurred fixed costs required for the machine set up. 
The idea of integer programming was quickly abandoned 
due to excessive computational complexity of such 
models. Rounding off is acceptable since the counts of 
schemas are generally rather large numbers. The 
problem of fixed charge is approached via iterative 
modifications of the linear programming model, as shall 
be explained further on. Some basic data structures that 
can be found in any proper textbook [1] were applied to 
support data input and storage. A recursive algorithm to 
produce possible cutting schemas was developed. The 
schemas are mapped into a linear programming model 
input file aimed for our proprietary software LPE [2]. 
Iterative interactive iterations are devised to produce a 
feasible and acceptable cutting plan. 

2.1. Input data, sets and lists 
The first set of input data consists of the widths of 
available input corrugated paper rolls. From these data, 
an ordered set R {Wr} is formed, where the length of 
each roll is assumed to be infinite and the width is Wr, r 
= 1…nr and Wr > Wr+1 for r = 1…nr-1. The input roll’s 
usable width is reduced by value WST, an inherent 
waste due to the applied technology. 



The next group of input data consists of triplets: required 
number of articles, article width and article length. The 
articles to be produced form the set of pairs P {Pp, Lp} 
for p =1…np, where Pp is the width and Lp is the length 
of article p. The production plan requirements form the 
set B {bp} of the same cardinality np.  

2.2. Linear program 
The selection of appropriate cutting schemas, such that 
they shall satisfy the market requirements and consume 
minimum possible paper area, proceeds by application of 
linear programming. The linear programming model is 
constructed from the input data. 
 
2.2.1 Decision variables 
np is the number of articles p to be produced. 
Ssr is the number of repetitions for schema s, cut from 
roll r.  
 
2.2.2 Constraints 
The required number of articles must be produced: 
np ≥ bp   ;   p = 1…np 
 
The number of excessive articles to be produced is 
limited by a tolerance that can depend upon the required 
production quantity and/or upon the article, and it can be 
generally defined as Tp ≥ 1. 
np ≤ Tp bp  ;   p = 1…np 
 
2.2.3 Objective function 
The principal objective is to minimise the whole area of 
used paper.  
 
min z = area of the consumed paper  + z’ 
 
The area of the consumed paper z is calculated within 
the schema generation algorithm in a later chapter. 
z’ is a corrective term added to the objective function, 
aimed to stimulate the production of excessive articles 
out of the paper that would otherwise be wasted: 
 
z’ = - f  · Σ np · Pp · Lp /  W1 
                  p 

The stimulation is significantly, e.g. for f = 0.01 it is at 
least 100 times less favourable than the penalty for paper 
consumption. This ensures that excessive production will 
not occur, unless from paper otherwise wasted. 
 
2.2.4 Formulation of the linear program 
To solve the linear program, a proprietary software LPE 
[2] is used. It does not require the input data to be sorted, 
nor specially declared as ROWS, COLUMNS, 
BOUNDS or RHS. 

Instead of that, equations, variables and bounds are used 
in a free order. Therefore, the constraints and the 
corrective member elements of the linear programming 
model can be created in parallel to the data input. A 
sample of the linear programming model data is given, 
with adjacent comments in mathematical notation: 
 
LO n001 1950 n1 ≥ 1950 
n001 z -3.362442 z’ := z’ – 3.362442 * n1 
UP n001 2145 n1 ≤ 2145 
LO n002 10200 n2 ≥ 10200 
n002 z -2.973837 z’ := z’ – 2.973837 * n2 
UP n002 11220 n2 ≤ 11220 
LO n003 4600 n3 ≥ 4600 
n003 z -3.183721 z’ := z’ – 3.183721 * n3 
UP n003 5060 n3 ≤ 5060 

… … 
 
2.2.5 Generation of cutting schemas 
The articles to be cut form a set of linear lists L {Lk}. 
Each list groups articles of equal lengths because they 
can be cut laterally together. An atom of the list Lk 
contains the article identifier p, its width Pp and its 
length Lp. Thus, cardinality of L equals to the number of 
distinct article lengths nl.  
 
Additional set of lists is required: Z{Mc}. Each list of 

articles Mc is one of the nc = 
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the lists L, which all contain elements for possible joint 
schema generation. The number of combinations may 
appear prohibitive, but in practical applications, the 
count of conveyers, T seems to be small, e.g. 2 or 3. The 
recursive function gen to generate the schemas is called 
for each Mc, and for each available roll. It means that it 
is called nr * nc times from the main program. In each 
of these calls, all the technologically feasible cutting 
schemas are generated. Each of them is treated as a one-
dimensional problem of cutting the rolls longitudinally. 
The technological feasibility check regarding the 
maximum number of longitudinal cuts Q, as trivial, is 
left out from the algorithm description. Let A{ap} be the 
set of numbers of articles p that are produced out of a 
current cutting schema. The generated cutting schema is 
not recorded in the central memory but its description is 
formulated as elements of the linear programming 
model. Only the schema length is recorded in set D{ds} 
and used later for presentation of results. For the same 
reason, the apparently redundant input roll identifier is 
recorded. The algorithm to generate the schemas and to 
write the second part of the linear programming model 
proceeds as follows: 



 
s := 0 
D := Ø 
for r = 1 to nr 
  for each Mc   ∈ Z 
    for each ap ∈ A 
                  ap := 0  
    gen (Mc, Wr - WST, r, 1, A, D, s) 
 
function gen (M, W, r, i, A, D, s) 
  if i ≤ |M| 
    p := Mi 
    for j :=  W / Pp  down to 0 by step -1 
      ap  := j 
      remainder := W – j  Pp 
      if remainder ≥  min   Pk 
                    k  ∈ M 

        gen (M, remainder, r, i+1, A, D, s) 
      else 
        maxlength :=  max      Lk  

                                                     k  ∈
 M
 a

k 
> 0 

                s := s +1 
        for k := 1 to |M| 
          q := Mk 
          if aq  >  0 
            aq  := aq   maxlength / Lq 
             write “S”, s, r, “ n”, k, aq 
        write “S”, s, r, “ z”, maxlength   Wr 
                ds  :=  maxlength 
 
A sample of the linear programming model data is given, 
with adjacent comments in mathematical notation: 
 
S0000101 n001 2.000000 n1 := n1 + 2 * s11 
S0000101 z 1644750 z := z + 1644750 * s11  
S0000201 n001 2.000000 n1 := n1 + 2 * s21 
S0000201 z 1606500 z := z + 1606500 * s21 
S0000301 n001 1.000000 n1 := n1 + s31 
S0000301 z 1377000 z := z + 1377000 * s31 
S0000402 n001 2.000000 n1 := n1 + 2 * s42 
S0000402 z 1644750 z := z + 1644750 * s42 
S0000502 n001 1.013072 n1 := n1 + 1.013072 * s52 
S0000502 n002 1.000000 n2 := n2 + s52 
S0000502 z 1666250 z := z + 1666250 * s52 

… … 

For a reminder: np is the number of articles p to be 
produced, Ssr is the number of repetitions for schema s, 
cut from roll r.  
In the given sample, the article with identifier 1 can be 
produced from rolls 1 or 2 within the schemas 1, 2, 3 or 
4, 5, respectively. In the schemas 1, 2, 3 and 4 it is the 
longest article. It is repeated as 2 stripes in schemas 1, 2 

and 4, and as a single stripe in the schema 3. The schema 
5 achieved the length of article 2, which is longer then 
the article 1. Therefore, within the schema 5, the 
repetition factor for article 1 is larger than one and it is 
not an integer. 

3 Solution and interpretation of 
results 
 
The program LPE [2] processes the generated input data 
and the results are stored in a file. In principle, the final 
solution cannot be infeasible, except for trivial reasons, 
e.g., if a required article is wider than the widest 
available roll. The roll lengths are supposed to be 
infinite. The upper bounds for articles cannot cause 
infeasibility, because the unused paper can be wasted 
instead. These upper bounds nevertheless make sense 
because they provide for balance among excessive 
production, if such occurs. 
The results of the optimisation are read from the solution 
file as values of the variables Ssr > 0 and are stored into 
the set of quadruples X{s, ys, ls, rs}. The set cardinality 
ns is the count of  basic cutting schemas in the optimal 
solution. The value s denotes schema identifier, ys is the 
number of repetitions of schema s in the solution, i.e. it 
is the solution value for Ssr, ls is the schema length 
fetched from the set D and rs is the identifier of the input 
roll. The value for ys is rounded off to the next largest 
integer. 
The normative of articles that are cut from the schema s 
and the identifier r of the roll are reconstructed from the 
linear programming input file. The set A {ap} is now 
filled for each schema that appears as basic in the 
optimal solution, and it contains the count of repetitions 
of article p within that schema. This data, read from the 
linear programming model, are stored in A only for basic 
schemas, one current schema at a time, thus avoiding the 
excessive RAM consumption. 
 
The number of produced articles p from the current 
schema s is obtained as  
 
LateralCountp * LongitudinalCountp  
 
For a current schema s ∈ X & ap > 0, LateralCountp = 
 ap / [ ls / Lp + ε] . 
 
ε = 0.000005 is a numerical error correction. 
 
The term in denominator represents the count of 
longitudinal article repetitions within a single schema, as 
a real number. The number of article repetitions within a 



schema is divided by that number and the decimals are 
cut off to obtain the lateral repetition for that article. 
 
LongitudinalCountp = ys * ls / Lp  is self-explanatory. 
 
 
 
An example for the optimum results in numerical form: 
_________________________________________________________ 
# 1 article of dimensions 0945 * 0765 is cut 
- laterally 1 time, longitudinally 1950 times (1950 
pieces) 
# 9 article of dimensions 0965 * 0860 is cut 
- laterally 1 time, longitudinally 1735 times (1735 
pieces) 
Roll width is 2100 
Waste width is 190 
Unit schema length is 860 
Schema #0007002 is repeated 1735 times 
The length of the series is 1492100 
_________________________________________________________ 
# 5 article of dimensions 1015 * 0530 is cut 
- laterally 1 time, longitudinally 1100 times (1100 
pieces) 
# 9 article of dimensions 0965 * 0860 is cut 
- laterally 1 time, longitudinally (678 pieces) 
Roll width is 2100 
Waste width is 120 
Unit schema length is = 860 
Schema #0028302 is repeated 678 times 
The length of the series is 583080 
_________________________________________________________ 
The overall length of roll of width 2100 is 10133940 
The overall length of roll of width 1800 is 11065075 
… 
Of the required  1950, article #  1 produced  1950 pieces 
Of the required 10200, article #  2 produced 10201 pieces 
… 
Useful area is   37703819264.000000 
Consumed area is 41198407680.000000 
Yield is 91.517661% 

 
A list of articles F is initially formed and filled only 
with article identifiers. The atoms contain two pointers: 
to a subsequent article and to the list of all the basic 
schemas containing the article. 

p1 p2 p3 p4 

s1, r1 s5, r2 s2, r1 s3, r2 

s4, r2 s2, r1 

s6, r2 

  Fig. 2 Articles connected to the cutting schemas 

 

 
The example in the Fig. 2 shows 4 articles, which are 
produced from 2 different input rolls and are cut by 6 
different schemas. Such a list is formed from the 
optimisation results. 
 
As already stated, the solution cannot be formally 
infeasible. However, there may exist a technological 
infeasibility, as a violation of the user’s requirement that 
no cutting schema series be shorter than the length C. 
This is an empirical requirement arising from the 
problem of fixed costs incurred by adjusting the 
machine. The exact formulation to meet this requirement 
is mathematically rather simple: 
 
ys * ls  ≥  C * δs ,  δs = 0, 1;   ∀ s 

ys * ls  ≤  G * δs ,  δs = 0, 1;   ∀ s  

 
G represents an arbitrary large number. 
 
Expressed verbally, the number of repetitions of a 
schema s multiplied by the schema length must be at 
least C long, otherwise it cannot be greater than zero.  
This simple statement is not easy to implement. Binary 
program has the a priori complexity of O (2Σ), where Σ 
is the overall count of generated schemas. This count can 
easily exceed the value of few thousand. Therefore, 
introduction of mixed integer or binary programming is 
not practically feasible. 
The possibility to edit interactively the achieved results 
was implemented instead. Due to the characteristics of 
linear programming, it may happen that a short series 
does appear in the optimum solution. It is represented by 
a basic Ssr bearing a relatively small value. 
The user is prompted to choose whether s/he wants to 
reduce the number of schemas. If the answer is “Yes”, 
using the list F and the set X, the program searches for 
the schema applied in the shortest series. Then it checks 
whether this schema can be omitted from the solution. It 
cannot be omitted if it is a single schema for production 
of any article. If so, it also implies that a short series is 
not due to some peculiarity of linear programming but to 
a small production requirement for a certain article. 
However, there is a possibility, if it is a relatively narrow 
article, that it could be combined with some other article 
in a longer series. On the other hand, if the shortest 
series is not cut by a unique schema, there exist a 
probability that the schema for this shortest series can be 
omitted from the optimum solution. Formally, the 
solution will be deteriorated (or strictly speaking, it 
cannot become better), but the removal of a short series 
can actually reduce the fixed costs, which were not 
contained in the linear programming model. In this latter 
case, the user is advised to eliminate this schema. The 



user can accept the advice, if there is any, or overrule it 
by entering the schema to be eliminated. Again, if such a 
schema is unique for production of any article in the 
optimal solution, the elimination is rejected. If the 
elimination is possible, the linear programming input 
data are revised by fixing to zero the entered schema, 
together with all the currently non-basic schemas. This 
will force the linear program to try to realise the required 
production with a reduced number of schemas. The 
result might be feasible and acceptable for the user, but 
now it can also become infeasible. Then comes the 
possibility for the user to increase the number of 
schemas. For the schemas that were fixed to zero, the 
expressed dual value in the infeasible solution is 
reviewed. While the solution is infeasible, the program 
LPE evaluates a composite sum of current coefficients in 
infeasible rows [3] to reduce the sum of infeasibilities. 
This sum acts likewise as the dual activity in a feasible 
basis. Therefore, the minimum negative dual solution is 
searched for. At least one such value must exist to point 
to a schema that would, by its unit increase, mostly 
contribute to the reduction of infeasibility. Such a 
schema is suggested to be considered to enter the 
optimisation. The user can accept the advice or overrule 
it by entering some other schema identification. The 
optimisation is repeated and the whole procedure can 
also be repeated. If the solution is feasible and the user 
wants to add an additional schema, no negative dual 
value can be encountered and the user is notified that 
addition of a new schema does not make sense. 
However, it is allowed, because it overrules the fixation 
to zero of the entered schema and it may serve on 
purpose for further navigation around the optimum 
solution. 

4 Conclusion 
The program was tested in a plant that produces 
corrugated paper packages on a cutting machine made 
by Agnati, s.p.a., Italy, model RDA-14, with two 
conveyors. 
The user prepared some sample data, and the results 
have shown advantage over the manual schema 
planning, in reduced workload for the planner and in 
better material utilisation. 
However, one must be aware that the solution of the 
cutting schemas is only a local optimum. In discussion 
with the user it has emerged that minimisation of paper 
consumption is not the proper objective. A proper 
objective would be the same, as it was in the production 
planning for another user [4]; the maximisation of 
contribution, i.e. to maximise the difference between 
income and variable costs. 
 
 

A comprehensive model should encompass: 
a) Selling prices 
b) Fixed orders 
c) Quantities for anonymous customer, to be 

sold with certain probability at a certain 
price 

d) Roll costs 
e) Machines productivity 
f) Set-up times 
g) Waste of material at the set-up 
h) Original sources of variable costs 

(consumption of electricity, oil, steam, 
water etc.) 

i) The prices of electricity, water, oil, steam, 
water, etc. 

j) Workers’ engagement 
k) Variable part of salaries 
l) Stock keeping costs 
 
…and probably much more. 
 

To achieve the proper goal, optimisation of cutting is not 
a bad starter. However, to take full advantage of 
optimisation techniques, an integrated information 
system is a prerequisite. 
And finally, although the numerical results have 
demonstrated advantage of the applied algorithm, the 
implementation has been postponed since the users were 
not convinced that implementation of a user-friendly 
interface is a trivial problem. Many users unfortunately 
prefer nice looking screens and reports to the value of 
the embedded algorithm. This aspect should never be 
forgotten by any operational researcher. 
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