
 A Teaching Environment to Model and Simulate Computer Processors  
 

Sebastiano PIZZUTILO and Filippo TANGORRA 
Dipartimento di Informatica 

Università degli Studi di Bari 
via Orabona 4, 70126 Bari 

ITALY 

 
Abstract: - The paper describes  a system to design computer processors and to simulate their behaviour  during the 
execution  of  assembly user programs. The system, called APE (Architecture Prototyping Environment), is based on 
a dynamic object oriented definition and use of processor components. After the user choice of  the architecture 
components, the system builds a processor simulator allowing users to study the processor behaviour. The iterative 
process of modelling the computer architecture, prototyping the corresponding simulator and simulating its behaviour, 
makes the system particularly useful in the activity of  teaching computer architectures.  
 
Key-Words: -Computer simulation, Object oriented prototyping, Teaching environment, Rapid prototyping. 
 

 
1   Introduction 

Computer architecture design and learning both 
need to proceed in an evolutionary way, beginning 
with an initial processor design and introducing 
progressively in the design process or in the learning 
process the complex organisation of a processor 
architecture. In fact, the goal is reached by means of a 
refinement process which starts from a working 
model, then investigates and evaluates the system 
features, modifying the initial model or adding further 
details. The effectiveness of the process lies in the 
capability of the software tool to investigate and 
evaluate the computer architecture design and its 
components. 

Generally, simulation is an efficient tool for both 
a clear comprehension of the functioning of complex 
systems and the exploration of new solutions to avoid 
building real systems. In the educational field, 
computer architecture simulators are adopted in 
laboratory activities in order to clarify theoretical 
concepts and to provide access to the internal 
processor state. 

 Processor simulators remain the best tools in 
architecture study, due to their ability to meet different 
requirements, such as i) focusing only on the main 
characteristics of complex commercial architectures; 
ii) reducing costs of developing a simulator, as regards 
hardware implementation costs in the prototyping 
activity; iii) reducing the difficulty of following 
technological  progress in updating laboratories with 
real machines  and so on. 

Among the best known processor-specific 
simulators in the didactic field is SPIM [1], which 
implements Hennessy and Patterson's MIPS 
R2000/R3000 RISC processors [2]. SPIM is used 
extensively in university courses.  

The choice of the processor for teaching computer 
architecture depends on the specific learning needs [3]. 
Generally, current simulators represent specific 
architecture types, such as RISC or CISC, on a specific 
hierarchical level of the computer organisation, such 
as a simplified ISA processor [4] or micro-
programming [5, 6] or gate [7] levels .  

The drawback of these experiences is that the 
architectural characteristics cannot be changed. This is 
critical because, when the computer architecture is 
fixed, the assembly language that allows the simulator 
to use the defined architecture, is also fixed [8].  
Therefore, if the architecture is modified, the computer 
simulator must also be re-designed in order to match 
the new characteristics with the assembly language.  
 We have developed a flexible tool which allows 
the user to define, test and dynamically modify 
computer architectures using the rapid prototyping 
paradigm.  

In this paper, we present the APE (Architecture 
Prototyping Environment) system, which allows the 
rapid prototyping of virtual computer architectures 
with the associated simulator.  

In the software development field, the rapid 
prototyping paradigm essentially consists of building a 
software system on the basis of user requirements and 
then of the user evaluation of the prototype. An 
appropriate interface allows the user to verify whether 
the prototype fits the design specifications, otherwise 
new user requirements are formulated to build a new 
prototype. In this way, the software system is obtained 
by refining initial requirements until they correspond 
to user needs [9]. Similarly, APE is aimed at designing 
and simulating a computer architecture starting from 
the definition of architectural requirements.  From 
these requirements, it is possible to obtain a software 
prototype that simulates the defined architecture and 



 

allows the testing of the architecture with its assembly 
language, in order to verify the coherence between the 
prototype and the user requirements.  

The computer architecture design is performed 
through an object-oriented approach which involves  
constructing a system by using objects that encapsulate 
properties and functions of basic hardware 
components, such as building  blocks. 

 
 

2  Object-Oriented Approach for the 
Architecture Component Description 
In our approach the computer architecture design is 

viewed as a collection of hardware components 
(objects).  Register types (program counter, stack 
pointer, general, index…), ALU, cache memory, 
storage locations are primitives with which we 
represent a computer architecture design. These 
primitives must be designed opportunely in order to 
support the rapid prototyping paradigm in simulating 
the computer architecture. The  design has to be done 
by characterising the hardware component with a 
corresponding reuse of software components [10]. So, 
we have implemented the software components as 
objects [11]. 

Every object has attributes, whose values can also 
be other objects, and methods which represent the 
procedures that manage objects. All the objects that 
share the same attributes and methods are grouped in a 
class. The structuring of the so defined classes permits 
the definition of the properties of hardware 
components (objects) selected in the design process. 

The figure 1 reports the main classes diagram of a 
CISC architecture in UML (Unified Modeling 
Language) [12], which is de facto a standard in the 
object-oriented software development. 

In our approach, the methods are machine language 
instructions or addressing methods associated with a 
specific architectural component or object. The 

addressing methods can be auto-consistent (for 
example in the case of immediate or direct addressing) 
or related to other objects (for example, in case of 
register or indexed addressing which require, to be 
executed, the reference of the content of other 
registers). In the first case, the addressing method is 
available at the creation of the object instance; in the 
second one, the method is available only in the 
presence of the previously defined objects. 

The minimal architectural requirement is described 
in figure 1 by the mandatory participation of 
Accumulator, Program_Counter  and Status classes 
in their respective relationships  with   the Processor 
class. 

This approach is very flexible. In fact, it is possible 
to model a multiprocessor architecture by simply 
varying the multiplicity indicators “1” and “1” of the 
relationship “uses” between the Memory class and the 
Processor class in “1” and “*” or “*” and “*”. In this 
way we can model the basic multiprocessor 
architecture with a shared memory and a 
multiprocessor with local memories respectively.  

From an implementation point of view,  this means 
that, in the case of multiprocessors with a shared 
memory (one-to-many relationship), it is possible to 
associate multiple instances (each with its own register 
set and its own language) of a Processor class to a 
single Memory class instance. In this case, the problem 
is the representation of multiple processors capable of 
processing  multiple programs simultaneously. On the 
other hand, the simulator must provide (classes with) 
algorithms to manage the concurrency in the memory 
access and to schedule jobs which can be executed 
efficiently.  

In the case of  multiprocessors with local memory 
(many-to-many relationship), the main problem is the 
displaying of all the components of the independent 
multiple processors, while providing the same 
operating system functionalities as the previous case.  

In either case, the object oriented approach seems 
to be able to adequately describe all the architectures 
(from SISD to MIMD) and to provide their rapid 
prototype development. 

The set of object instances defined by the user 
corresponds to the conventional computer architecture; 

 
Fig. 1. The main classes of a CISC architecture at the 

instruction set level. 
 

Fig. 2. The main panel of the system for a simulation 
session. 



 

and the set of activated methods is its assembly 
language. The user interacts with the system at an high 
level, by choosing objects which form the desired 
architecture. This task generates a simulator that is 
composed of objects selected by the user, while the 
corresponding methods define the assembler language 
to use the simulator 

 
 

3  The APE environment for developing 
processor simulators 
The design aim for APE was to provide 

teachers/students of the computer architecture courses 
with a tool that allows the rapid prototyping of 
processor simulators, which can be used in the 
laboratory activities. For this purpose, the system 
supports the processor simulator development 
providing two steps: the architecture definition step 
and the architecture test step. In the same way of the 
software rapid prototyping approach, APE agrees to 
repeat the previous steps until a satisfactory processor 
model has been produced. 

This iterative process leads to a definition of the 
computer architecture closer to user's requirements; 
therefore it is possible to generate the code 
corresponding to the defined architecture. This code, 
when compiled and executed, will provide a simulator 
of the defined architecture, completely independent 
from the proposed tool.  
 
 
3.1   The system overview 
The system aims to provide students with a tool to 
define and simulate computer architectures, which can 
be used by running programs written in the 
corresponding language. In particular, the system does 
not represent specific processors at a specific computer 
organisation level. So, the user can model the target 
architecture and control the code execution by 
displaying the processor's state.  

Figure 3 reports the main functions of the system 
with the meaning of the buttons.  

The APE system supports the definition of a 
processor through an opportune selection of library 
objects and, at the same time, allows the computer 
architecture to be simulated using methods of the 
chosen objects. 

The overall structure of APE provides two main 
subsystems (figure 4), which support the two different 
user-interaction phases: the Architecture Definition 
Subsystem (APE-ADS) and the Architecture Test 
Subsystem (APE-ATS). 

The APE-ADS subsystem performs computer 
architecture definition by providing facilities for 
entering information on the design requirements. In 

the left side box of figure 3, the main components of 
this subsystem are reported. 

The User interface supports three user interaction 
tasks: the Architecture design, the Architecture 
updating and the already defined Architecture loading. 

The Architecture design task shows the user a set 
of panels associated with different menu options. Each 
panel structure corresponds to each object definition 
and, according to classes designed (fig. 1), it shows the 
public object methods representing the basic 
functionalities of the hardware components. 

The operations  available in the Architecture design 
task include the definition of RISC or CISC 
architectures by the choice of hardware components 
(the constituent objects) of the  processor type [11]. 

Once the processor type has been decided, the user 
models the architecture by selecting, from the 
associated objects presented in the menu and loaded 
from the Data Base of hardware components, those 
that will constitute the  components of the prototype  
at the conventional machine level (memory, registers, 
stack,…) with the desired instruction set and address 
methods. 

For CISC architectures, it is also possible to define 
the processor components directly at the 
microprogramming level. In this case, the user chooses 
the hardware elements according to the set of 

predefined classes, indicating the layout of the objects 
(the register file, the latches, the MIR,…) he/she 
wishes to include in the computer architecture. At the 
same time, the user, looking at the components 
represented in the processor layout, can define the 
specific parameters of the selected object through a 
menu-driven dialogue.  

The user, filling-in the objects in the panel of this 
task, will specify the Architecture requirements that 
allow the system to simulate the processor defined. 
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 Fig. 3   The APE architecture 



 

The Prototype builder module creates the prototype 
that, starting from the architecture requirements, 
represents the processor simulator. The Prototype 
builder uses the Data Base of the hardware 
components that contains the constituent basic object 
of RISC and CISC architectures. 

The objects populating the Data Base of hardware 
components are organised in three sets of C++ 
simulation primitives, representing three built-in 
module libraries for RISC, CISC and the 
microprogramming architectures respectively. 

The Prototype builder, on the basis of the 
parameters specified by the user’s choice, searches the 
built-in hardware components in the database and 
loads the selected components and their methods at the 
conventional and eventually at the microprogramming 
level. Therefore, at the conventional level, this module 
creates a file of hardware objects with their associated 
addressing methods and the instruction set for their 
manipulation.  

The system creates the file of the hardware 
components and, for every machine instruction of the 
defined architecture, the corresponding microprogram. 
The set of  microprograms simulates the processor 
control storage. 

The simulation model can be tested by running the 
object code generated by a standard compiler, which 
processes the file of C++ components. The object code 
is then linked with an executable code, to allow the 
prototype execution within the APE-ATS subsystem. 
Alternatively, the code can be linked with an 
executable code for using the prototype as an off-line 
computer simulator, for example, by students in 
laboratory activities, when the defined architecture 
meets the user’s requirements. In this case, the 
prototype does not allow further modifications of 
architectural components. 

 

 
Fig. 4   The architecture layout 

 

The effect of the design process is displayed by the 
Prototype builder in an Architecture layout that shows 
the processor components and actually fires 
instructions and address methods of the prototype 
generated. Figure 4 shows an example of a simplified 
architecture layout of a prototype simulator, ready for 
the testing phase. 

The files containing the built-in classes selected, 
instantiated by user parameters in the design process 
and the associated executable simulator are stored in 
the Database of architectures for successive updating 
and testing activities. 

In the Architecture load task, the user has to 
specify the name of the file in the Database of 
architectures which contains the prototype to be tested 
in the simulation process. The file of microprograms is 
also loaded when the user specifies the simulated 
architecture he/she  wants to use. In this system 
version,  the user can view the MAL symbolic 
language (the Micro Assembly Language [13]) in 
order to understand its structure. 

Finally, the Architecture update task allows the 
user to change or complete an already defined 
architecture by removing and adding hardware 
components. The user activates the functions of the 
Prototype builder with a type of interaction analogous 
to the architecture design mode and gives new 
parameters for class instantiations.  

The APE-ATS subsystem allows the user to 
accomplish the prototype testing phase of the 
simulation process. The prototype simulates the 
behaviour of the designed architecture that can be 
examined by running assembly (or symbolic 
microcode) programs, observing the processor’s 
internal status and the result of its computations. In the 
box on the right side of fig. 3 the main components of 
this subsystem are illustrated. 

The User interface in this subsystem provides the 
main interaction tasks necessary to write-process-run 
the code for testing the processor’s software prototype.  

The task User code input  allows the user to write 
code (single instructions or programs) in assembly 
language, using the Code editor module.  

The Code Editor module stores the code files ready 
to be processed on disk. The Code files are loaded and 
verified by the Code processor module, which controls 
the assembly programs syntactically and semantically. 

The syntactic analysis discovers the typing errors. 
During the semantic analysis the module verifies if the 
program can be executed with the defined architecture 
and discovers whether some of the program 
instructions use hardware components, operation 
codes or address methods not previously selected by 
the user.  



 

Figure 5 shows the errors noted by the Code 
processor module, which discovers the references to 
undefined registers and/or instructions. 

Once the source code correctness has been verified, 
the Execution control (Run) module  simulates the 
effects of the code and of the corresponding microcode 
execution  in a fast mode or in a step by step mode. 
Therefore, this module shows the processor’s status to 
the user (figure 6) after the execution of a whole 
program or after each instruction, such as a debugging 
process.  

 

In order to allow the step-by-step execution of 
programs at the microprogramming level, the user 
interaction can be switched to microcode examination. 
In this case, the Run module shows  the user the 
instructions and the addressing methods allowed by 
the architecture tested (figure 7 reports the instructions 
and methods  of the simplified architecture layout of 
figure 4).  

Afterwards, the Run module permits the following 
user activities: a) firing a single instruction showed in 
the panel, by specifying operands; b) loading the 

assembly programs and eventually modifying them 
using the Code editor (pressing the load ASM program 
button); c) running the assembly program to be studied 
step by step at every micro instruction (pressing the 
run ASM program button)  

Figure 8 shows the internal status of the processor 
ready for the step by step execution of the 
microprogram corresponding to the instruction  mov 
a1, a2  of figure 7.     

In this way it will be possible to examine at the 
contents of microarchitecture components in order to 
understand the semantics of the single 
microinstruction execution for each assembly 
instruction of the running program.  

With the User parameter task, the user can select 
the measures of  a processor’s performance from a list 
of items in order to obtain common statistics on 
architectural characteristics. The Performance 
evaluation module computes statistics on register 
usage patterns, interruption event counts, timing 
information and so on.  

By running benchmarks, the user can obtain 
statistics on the computer architecture performance 

 
Fig 7.   Microprogram panel run for a simple 

prototype. 

Fig. 5    Code processing task 

 
Fig 8.   Example of the initial microarchitecture 
status before running a microprogram for MOV 

instruction execution 

 
Fig. 6. Status simulation of a CISC architecture. 



 

both at the instruction set level ( total execution time, 
instruction cycle time, etc.) and at the 
microprogramming level (the usage of a processor’s 
units).  

The evaluation of this type of performance  is 
important mainly from a didactic point of view. In this 
way the student can investigate the effects on 
processor performance of changing the computer 
architecture design. The statistical results can be 
shown in diagrammatic form and can be saved in files. 

 
 
4. Conclusions 

We have presented the implementation of a 
computer architecture prototyping environment. The 
system has been successfully used during a computer 
architecture course, but its facilities can also be 
extended profitably to the computer design field. In 
fact, both fields need an evolutionary procedure in the 
prototyping activity, like as the APE system.  

Furthermore, the development of simulation 
prototypes allows the architecture design to be 
implemented at  a lower cost than the hardware  
building. In the educational field this means that the 
alternation of the design and test phases allows the 
user to verify the learning progress by experimenting 
small architecture modifications and observing the 
results. The student can be progressively introduced to 
the complexity of modern computer architectures, 
starting from the simulation of a simplified instruction 
set of a simplified architecture of hypothetical 
machines. In the design field the same alternation in 
designing a new architecture helps to identify 
problems and to test the design. 

The main characteristics of our approach consists 
in the separation of the design and the implementation 
phases. This helps the user to work on the design 
without considering implementation details. At the 
same time, at the end of the architecture definition 
process, the user obtains a simulator that constitutes a 
software prototype of the designed architecture.  

In the educational environment, the APE has been 
used to design CISC and RISC architectures, such as 
Intel 80x86, SPARC (by Sun Microsystems) and 
SPUR (by D. Patterson and C. Sequin). 

The first APE prototype shows some limitations in 
the computer design field: in fact, the objects 
representing hardware components are instances of 
previously defined classes. This constraint restricts the 
choice of new components and facilities. Therefore, 
we are studying the possibility of resolving this 
disadvantage by building a class/object editor onto the 
APE, in order to allow the user to easily define new 
classes corresponding to the new components with 
different functions, and adding an APE class/editor 
inspector to find inconsistencies in the modified 
classes model. 

Finally, we will extend the APE system to 
describing and prototyping multiprocessor and non-
Von Neumann architecture design. 
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