
 A Teaching Environment to Model and Simulate Computer Processors

Sebastiano PIZZUTILO and Filippo TANGORRA
Dipartimento di Informatica

Università degli Studi di Bari
via Orabona 4, 70126 Bari

ITALY

Abstract: - The paper describes a system to design computer processors and to simulate their behaviour during the
execution of assembly user programs. The system, called APE (Architecture Prototyping Environment), is based on
a dynamic object oriented definition and use of processor components. After the user choice of the architecture
components, the system builds a processor simulator allowing users to study the processor behaviour. The iterative
process of modelling the computer architecture, prototyping the corresponding simulator and simulating its behaviour,
makes the system particularly useful in the activity of teaching computer architectures.

Key-Words: -Computer simulation, Object oriented prototyping, Teaching environment, Rapid prototyping.

1 Introduction

Computer architecture design and learning both
need to proceed in an evolutionary way, beginning
with an initial processor design and introducing
progressively in the design process or in the learning
process the complex organisation of a processor
architecture. In fact, the goal is reached by means of a
refinement process which starts from a working
model, then investigates and evaluates the system
features, modifying the initial model or adding further
details. The effectiveness of the process lies in the
capability of the software tool to investigate and
evaluate the computer architecture design and its
components.

Generally, simulation is an efficient tool for both
a clear comprehension of the functioning of complex
systems and the exploration of new solutions to avoid
building real systems. In the educational field,
computer architecture simulators are adopted in
laboratory activities in order to clarify theoretical
concepts and to provide access to the internal
processor state.

 Processor simulators remain the best tools in
architecture study, due to their ability to meet different
requirements, such as i) focusing only on the main
characteristics of complex commercial architectures;
ii) reducing costs of developing a simulator, as regards
hardware implementation costs in the prototyping
activity; iii) reducing the difficulty of following
technological progress in updating laboratories with
real machines and so on.

Among the best known processor-specific
simulators in the didactic field is SPIM [1], which
implements Hennessy and Patterson's MIPS
R2000/R3000 RISC processors [2]. SPIM is used
extensively in university courses.

The choice of the processor for teaching computer
architecture depends on the specific learning needs [3].
Generally, current simulators represent specific
architecture types, such as RISC or CISC, on a specific
hierarchical level of the computer organisation, such
as a simplified ISA processor [4] or micro-
programming [5, 6] or gate [7] levels .

The drawback of these experiences is that the
architectural characteristics cannot be changed. This is
critical because, when the computer architecture is
fixed, the assembly language that allows the simulator
to use the defined architecture, is also fixed [8].
Therefore, if the architecture is modified, the computer
simulator must also be re-designed in order to match
the new characteristics with the assembly language.
 We have developed a flexible tool which allows
the user to define, test and dynamically modify
computer architectures using the rapid prototyping
paradigm.

In this paper, we present the APE (Architecture
Prototyping Environment) system, which allows the
rapid prototyping of virtual computer architectures
with the associated simulator.

In the software development field, the rapid
prototyping paradigm essentially consists of building a
software system on the basis of user requirements and
then of the user evaluation of the prototype. An
appropriate interface allows the user to verify whether
the prototype fits the design specifications, otherwise
new user requirements are formulated to build a new
prototype. In this way, the software system is obtained
by refining initial requirements until they correspond
to user needs [9]. Similarly, APE is aimed at designing
and simulating a computer architecture starting from
the definition of architectural requirements. From
these requirements, it is possible to obtain a software
prototype that simulates the defined architecture and

allows the testing of the architecture with its assembly
language, in order to verify the coherence between the
prototype and the user requirements.

The computer architecture design is performed
through an object-oriented approach which involves
constructing a system by using objects that encapsulate
properties and functions of basic hardware
components, such as building blocks.

2 Object-Oriented Approach for the
Architecture Component Description
In our approach the computer architecture design is

viewed as a collection of hardware components
(objects). Register types (program counter, stack
pointer, general, index…), ALU, cache memory,
storage locations are primitives with which we
represent a computer architecture design. These
primitives must be designed opportunely in order to
support the rapid prototyping paradigm in simulating
the computer architecture. The design has to be done
by characterising the hardware component with a
corresponding reuse of software components [10]. So,
we have implemented the software components as
objects [11].

Every object has attributes, whose values can also
be other objects, and methods which represent the
procedures that manage objects. All the objects that
share the same attributes and methods are grouped in a
class. The structuring of the so defined classes permits
the definition of the properties of hardware
components (objects) selected in the design process.

The figure 1 reports the main classes diagram of a
CISC architecture in UML (Unified Modeling
Language) [12], which is de facto a standard in the
object-oriented software development.

In our approach, the methods are machine language
instructions or addressing methods associated with a
specific architectural component or object. The

addressing methods can be auto-consistent (for
example in the case of immediate or direct addressing)
or related to other objects (for example, in case of
register or indexed addressing which require, to be
executed, the reference of the content of other
registers). In the first case, the addressing method is
available at the creation of the object instance; in the
second one, the method is available only in the
presence of the previously defined objects.

The minimal architectural requirement is described
in figure 1 by the mandatory participation of
Accumulator, Program_Counter and Status classes
in their respective relationships with the Processor
class.

This approach is very flexible. In fact, it is possible
to model a multiprocessor architecture by simply
varying the multiplicity indicators “1” and “1” of the
relationship “uses” between the Memory class and the
Processor class in “1” and “*” or “*” and “*”. In this
way we can model the basic multiprocessor
architecture with a shared memory and a
multiprocessor with local memories respectively.

From an implementation point of view, this means
that, in the case of multiprocessors with a shared
memory (one-to-many relationship), it is possible to
associate multiple instances (each with its own register
set and its own language) of a Processor class to a
single Memory class instance. In this case, the problem
is the representation of multiple processors capable of
processing multiple programs simultaneously. On the
other hand, the simulator must provide (classes with)
algorithms to manage the concurrency in the memory
access and to schedule jobs which can be executed
efficiently.

In the case of multiprocessors with local memory
(many-to-many relationship), the main problem is the
displaying of all the components of the independent
multiple processors, while providing the same
operating system functionalities as the previous case.

In either case, the object oriented approach seems
to be able to adequately describe all the architectures
(from SISD to MIMD) and to provide their rapid
prototype development.

The set of object instances defined by the user
corresponds to the conventional computer architecture;

Fig. 1. The main classes of a CISC architecture at the

instruction set level.

Fig. 2. The main panel of the system for a simulation
session.

and the set of activated methods is its assembly
language. The user interacts with the system at an high
level, by choosing objects which form the desired
architecture. This task generates a simulator that is
composed of objects selected by the user, while the
corresponding methods define the assembler language
to use the simulator

3 The APE environment for developing
processor simulators
The design aim for APE was to provide

teachers/students of the computer architecture courses
with a tool that allows the rapid prototyping of
processor simulators, which can be used in the
laboratory activities. For this purpose, the system
supports the processor simulator development
providing two steps: the architecture definition step
and the architecture test step. In the same way of the
software rapid prototyping approach, APE agrees to
repeat the previous steps until a satisfactory processor
model has been produced.

This iterative process leads to a definition of the
computer architecture closer to user's requirements;
therefore it is possible to generate the code
corresponding to the defined architecture. This code,
when compiled and executed, will provide a simulator
of the defined architecture, completely independent
from the proposed tool.

3.1 The system overview
The system aims to provide students with a tool to
define and simulate computer architectures, which can
be used by running programs written in the
corresponding language. In particular, the system does
not represent specific processors at a specific computer
organisation level. So, the user can model the target
architecture and control the code execution by
displaying the processor's state.

Figure 3 reports the main functions of the system
with the meaning of the buttons.

The APE system supports the definition of a
processor through an opportune selection of library
objects and, at the same time, allows the computer
architecture to be simulated using methods of the
chosen objects.

The overall structure of APE provides two main
subsystems (figure 4), which support the two different
user-interaction phases: the Architecture Definition
Subsystem (APE-ADS) and the Architecture Test
Subsystem (APE-ATS).

The APE-ADS subsystem performs computer
architecture definition by providing facilities for
entering information on the design requirements. In

the left side box of figure 3, the main components of
this subsystem are reported.

The User interface supports three user interaction
tasks: the Architecture design, the Architecture
updating and the already defined Architecture loading.

The Architecture design task shows the user a set
of panels associated with different menu options. Each
panel structure corresponds to each object definition
and, according to classes designed (fig. 1), it shows the
public object methods representing the basic
functionalities of the hardware components.

The operations available in the Architecture design
task include the definition of RISC or CISC
architectures by the choice of hardware components
(the constituent objects) of the processor type [11].

Once the processor type has been decided, the user
models the architecture by selecting, from the
associated objects presented in the menu and loaded
from the Data Base of hardware components, those
that will constitute the components of the prototype
at the conventional machine level (memory, registers,
stack,…) with the desired instruction set and address
methods.

For CISC architectures, it is also possible to define
the processor components directly at the
microprogramming level. In this case, the user chooses
the hardware elements according to the set of

predefined classes, indicating the layout of the objects
(the register file, the latches, the MIR,…) he/she
wishes to include in the computer architecture. At the
same time, the user, looking at the components
represented in the processor layout, can define the
specific parameters of the selected object through a
menu-driven dialogue.

The user, filling-in the objects in the panel of this
task, will specify the Architecture requirements that
allow the system to simulate the processor defined.

generated
Prototype

Data Base of
hardware
components

APE - ADS
User interface

Tasks : new architecture design
 load architecture
 update architecture

Display of
architecture
layout

Prototype builder module

Input of
Architecture
requirements

User interface
Tasks : user code input
 user code update
 user parameters

Code editor
module

Code processor module

Execution Control
(Run module)

Display of
architecture
status

Code
files

generated
Code

APE - ATS

Performance
evaluation
module

Display of
architecture
statistics

Data Base of
architectures

 Fig. 3 The APE architecture

The Prototype builder module creates the prototype
that, starting from the architecture requirements,
represents the processor simulator. The Prototype
builder uses the Data Base of the hardware
components that contains the constituent basic object
of RISC and CISC architectures.

The objects populating the Data Base of hardware
components are organised in three sets of C++
simulation primitives, representing three built-in
module libraries for RISC, CISC and the
microprogramming architectures respectively.

The Prototype builder, on the basis of the
parameters specified by the user’s choice, searches the
built-in hardware components in the database and
loads the selected components and their methods at the
conventional and eventually at the microprogramming
level. Therefore, at the conventional level, this module
creates a file of hardware objects with their associated
addressing methods and the instruction set for their
manipulation.

The system creates the file of the hardware
components and, for every machine instruction of the
defined architecture, the corresponding microprogram.
The set of microprograms simulates the processor
control storage.

The simulation model can be tested by running the
object code generated by a standard compiler, which
processes the file of C++ components. The object code
is then linked with an executable code, to allow the
prototype execution within the APE-ATS subsystem.
Alternatively, the code can be linked with an
executable code for using the prototype as an off-line
computer simulator, for example, by students in
laboratory activities, when the defined architecture
meets the user’s requirements. In this case, the
prototype does not allow further modifications of
architectural components.

Fig. 4 The architecture layout

The effect of the design process is displayed by the
Prototype builder in an Architecture layout that shows
the processor components and actually fires
instructions and address methods of the prototype
generated. Figure 4 shows an example of a simplified
architecture layout of a prototype simulator, ready for
the testing phase.

The files containing the built-in classes selected,
instantiated by user parameters in the design process
and the associated executable simulator are stored in
the Database of architectures for successive updating
and testing activities.

In the Architecture load task, the user has to
specify the name of the file in the Database of
architectures which contains the prototype to be tested
in the simulation process. The file of microprograms is
also loaded when the user specifies the simulated
architecture he/she wants to use. In this system
version, the user can view the MAL symbolic
language (the Micro Assembly Language [13]) in
order to understand its structure.

Finally, the Architecture update task allows the
user to change or complete an already defined
architecture by removing and adding hardware
components. The user activates the functions of the
Prototype builder with a type of interaction analogous
to the architecture design mode and gives new
parameters for class instantiations.

The APE-ATS subsystem allows the user to
accomplish the prototype testing phase of the
simulation process. The prototype simulates the
behaviour of the designed architecture that can be
examined by running assembly (or symbolic
microcode) programs, observing the processor’s
internal status and the result of its computations. In the
box on the right side of fig. 3 the main components of
this subsystem are illustrated.

The User interface in this subsystem provides the
main interaction tasks necessary to write-process-run
the code for testing the processor’s software prototype.

The task User code input allows the user to write
code (single instructions or programs) in assembly
language, using the Code editor module.

The Code Editor module stores the code files ready
to be processed on disk. The Code files are loaded and
verified by the Code processor module, which controls
the assembly programs syntactically and semantically.

The syntactic analysis discovers the typing errors.
During the semantic analysis the module verifies if the
program can be executed with the defined architecture
and discovers whether some of the program
instructions use hardware components, operation
codes or address methods not previously selected by
the user.

Figure 5 shows the errors noted by the Code
processor module, which discovers the references to
undefined registers and/or instructions.

Once the source code correctness has been verified,
the Execution control (Run) module simulates the
effects of the code and of the corresponding microcode
execution in a fast mode or in a step by step mode.
Therefore, this module shows the processor’s status to
the user (figure 6) after the execution of a whole
program or after each instruction, such as a debugging
process.

In order to allow the step-by-step execution of
programs at the microprogramming level, the user
interaction can be switched to microcode examination.
In this case, the Run module shows the user the
instructions and the addressing methods allowed by
the architecture tested (figure 7 reports the instructions
and methods of the simplified architecture layout of
figure 4).

Afterwards, the Run module permits the following
user activities: a) firing a single instruction showed in
the panel, by specifying operands; b) loading the

assembly programs and eventually modifying them
using the Code editor (pressing the load ASM program
button); c) running the assembly program to be studied
step by step at every micro instruction (pressing the
run ASM program button)

Figure 8 shows the internal status of the processor
ready for the step by step execution of the
microprogram corresponding to the instruction mov
a1, a2 of figure 7.

In this way it will be possible to examine at the
contents of microarchitecture components in order to
understand the semantics of the single
microinstruction execution for each assembly
instruction of the running program.

With the User parameter task, the user can select
the measures of a processor’s performance from a list
of items in order to obtain common statistics on
architectural characteristics. The Performance
evaluation module computes statistics on register
usage patterns, interruption event counts, timing
information and so on.

By running benchmarks, the user can obtain
statistics on the computer architecture performance

Fig 7. Microprogram panel run for a simple

prototype.

Fig. 5 Code processing task

Fig 8. Example of the initial microarchitecture
status before running a microprogram for MOV

instruction execution

Fig. 6. Status simulation of a CISC architecture.

both at the instruction set level (total execution time,
instruction cycle time, etc.) and at the
microprogramming level (the usage of a processor’s
units).

The evaluation of this type of performance is
important mainly from a didactic point of view. In this
way the student can investigate the effects on
processor performance of changing the computer
architecture design. The statistical results can be
shown in diagrammatic form and can be saved in files.

4. Conclusions

We have presented the implementation of a
computer architecture prototyping environment. The
system has been successfully used during a computer
architecture course, but its facilities can also be
extended profitably to the computer design field. In
fact, both fields need an evolutionary procedure in the
prototyping activity, like as the APE system.

Furthermore, the development of simulation
prototypes allows the architecture design to be
implemented at a lower cost than the hardware
building. In the educational field this means that the
alternation of the design and test phases allows the
user to verify the learning progress by experimenting
small architecture modifications and observing the
results. The student can be progressively introduced to
the complexity of modern computer architectures,
starting from the simulation of a simplified instruction
set of a simplified architecture of hypothetical
machines. In the design field the same alternation in
designing a new architecture helps to identify
problems and to test the design.

The main characteristics of our approach consists
in the separation of the design and the implementation
phases. This helps the user to work on the design
without considering implementation details. At the
same time, at the end of the architecture definition
process, the user obtains a simulator that constitutes a
software prototype of the designed architecture.

In the educational environment, the APE has been
used to design CISC and RISC architectures, such as
Intel 80x86, SPARC (by Sun Microsystems) and
SPUR (by D. Patterson and C. Sequin).

The first APE prototype shows some limitations in
the computer design field: in fact, the objects
representing hardware components are instances of
previously defined classes. This constraint restricts the
choice of new components and facilities. Therefore,
we are studying the possibility of resolving this
disadvantage by building a class/object editor onto the
APE, in order to allow the user to easily define new
classes corresponding to the new components with
different functions, and adding an APE class/editor
inspector to find inconsistencies in the modified
classes model.

Finally, we will extend the APE system to
describing and prototyping multiprocessor and non-
Von Neumann architecture design.

References:
[1] Larus, J.R.., SPIM 520: A MIPS

R2000/R3000 Simulator,
www.cs.wisc.edu/~larus/spim.html.

[2] Hennessy, J.L. and D.A. Patterson, Computer
Architecture: A Quantitative approach,
Morgan Kaufmann, San Mateo, Calif., 1990.

[3] Clements, A., Selecting a processor for
teaching computer architecture,
 Microprocessors and Microsystems, 23, 281-
290, 1999.

[4] Campbell, R. A., Introducing computer
concepts by simulating a simple computer,
ACM SIGCSE Bulletin, 28(3), 9-11, 1996.

[5] Cutler, M. and Eckert, R., A
Microprogrammed Computer Simulator, IEEE
Transactions on Education, 30(3), 135-141,
1987.

[6] Simeonov, S. and Schneider, M., MSIM: An
Improved Microcode Simulator. ACM SIGCSE
Bulletin, 27 (2), 13-18, 1996.

[7] Meyer, R. M., CANALOGS: a logic gate
simulator for all seasons, 27th SIGCSE Techn.
Symp. on Comp. Science Education, ACM
SIGCSE Bulletin, 28 (1), 58- 62, 1996.

[8] De Blasi, M. and Tangorra, F., Prolog
simulation of computer architecture in
laboratory activities, IEEE Transactions on
Education, 35(4), 331-337, 1992.

[9] Luqi, Software Evolution Through Rapid
Prototyping, IEEE Computer, 22 (5), 9-10,
1989.

[10] Kumar, S., Aylor, J.H., Johnson, B.W. and
Wulf, Wm. A., Object-Oriented Techniques
in Hardware Design, IEEE Computer, 27 (6),
64-70, 1994.

[11] Abbattista, F., dell’Aquila, C., Pizzutilo, S.
and Tangorra, F., An Object oriented
simulator of computer microarchitectures,
Proc. of IASTED Intern. Conf. Modelling and
Simulation, 50-54, Pittsburgh, 2000.

[12] Booch G., Jacobson I., Rumbaugh J et. al., The
Unified Modeling Language for Object-
Oriented Development Version 1.0, UML
Notation Guide, UML Summary, UML
Semantics, Rational Software Corporation,
January 1997 and the UML 1.1 update of Sept.
1997 - try: official UML-site

[13] Donaldson, J. A Microprogram Simulator and
Compiler for an Enhanced Version of
Tannenbaum's Mic1 Machine, 26th SIGCSE
Techn. Symp. on Comp. Science Education,
ACM SIGCSE Bulletin, 27 (1), 238- 242, 1995.

